Skip to main content

Biodiversity and Conservation of Elaeis Species

  • Chapter
  • First Online:
Biodiversity and Conservation of Woody Plants

Abstract

The current oil palm planting materials yield three times more than the figure recorded six decades ago. This was partly achieved through genetic improvement and selection procedures imposed on the oil palm breeding populations. The repeated cycles of selection applied had removed a lot of ‘unwanted’ alleles from the breeding populations. However, this might have affected the populations’ ability to withstand environmental threat and genetic gains in the future. Realizing the important role of oil palm germplasms in harmonizing these effects, several research organizations had accumulated a large number of Elaeis guineensis and Elaeis oleifera accessions from their centers of origin. These materials exhibit greater genetic diversity and can offer genes for many economically important traits valuable for future oil palm improvement. These potential germplasm materials should be strategically conserved to ensure effective and continuous accessibility, in line with the long-term breeding cycle of the oil palm. Core collection can effectively preserve the genetic diversity of the oil palm germplasms. Apart from maintaining the genetic resources in the living ex situ field plots, in vitro methods of storing genetic materials within smaller size facilities are also available. These methods offer conservation of high numbers of materials, protection from diseases and low cost of maintenance. Both, the ex situ and in vitro methods provide complementary means for effective long-term conservation of the oil palm genetic materials for posterity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alvarado A, Escobar R (2016) Seed production and oil palm breeding in ASD Costa Rica. Proceedings of the international seminar on oil palm breeding and seed production and field visits, Kisaran, Indonesia, pp 21–38, 29–30 September 2016

    Google Scholar 

  • Alvarado A, Escobar R, Henry J (2012) The OxG hybrid: a new alternative for areas affected by bud rot disorder. Proceedings of the international seminar on breeding for oil plam disease resistance and field visits, Bogota, Colombia, 21–24 September 2012

    Google Scholar 

  • Alves AA, Pereira VM, Filho JAF, Leao AP, Formighieri EF, Souza MT Jr, Rios SA (2015) Genetic diversity patterns and genetic structure among subpopulations of Elaeis oleifera based on genome-wide SNP markers. Proceedings of the 8th Brazilian congress of plant breeding, Goiania, Brazil, 3–6 August 2015

    Google Scholar 

  • Andrade EB (1982) Relatorio da Expedicao para Coleta de Germoplasma de Caiaue Elaeis oleifera (H.B.K.) Cortes, na Amazonia brasileira. EMBRAPA-CNPSD. Manaus, p 31

    Google Scholar 

  • Ang BB (2003) Early performance of PT Asian Agri DxP test-cross progeny trials on peat and alluvial soils. Paper presented at seminar on progress of oil palm breeding and selection, Medan, Indonesia, 6–9 October 2003

    Google Scholar 

  • Arias D, Montoya C, Rey L, Romero H (2012) Genetic similarity among commercial oil palm materials based on microsatellite markers. Agronomia Colombiana 30(2):188–195

    Google Scholar 

  • Arias DM, Daza ES, Montoya C, Romero HM (2011) Genetic collection of oil palm materials from Cameroon. PALMAS 32:27–37

    Google Scholar 

  • Ataga CD, Okwuagwu CO, Okolo EC (2000) Oil palm genetic resources in Nigeria—a review. Proceedings of the international symposium on oil palm genetic resources and their utilization, Kuala Lumpur, Malaysia, pp 142–156, 8–10 June 2000

    Google Scholar 

  • Bajaj YPS (1984) Introduction of growth in frozen embryos of coconut and ovules of citrus. Cryoletters 23:1215–1216

    Google Scholar 

  • Bakoumé C, Wickneswari R, Siju S, Rajanaidu N, Kushairi A, Billote N (2015) Genetic diversity of the world’s largest oil palm (Elaeis guineensis Jacq.) field genebank accessions using microsatellite markers. Genet Resour Crop Evol 62:349–360

    Article  Google Scholar 

  • Barcelos E, Amblard P, Berthaud J, Seguim M (2000) The genetic diversity of the American oil palm Elaeis oleifera (Kunth) cortes revealed by nuclear RFLP markers. Proceedings of the international symposium on oil palm genetic resources and their utilization, Kuala Lumpur, Malaysia, pp 544–555

    Google Scholar 

  • Barcelos E, Amblard P, Berthaud J, Seguim M (2002) Genetic diversity and relationship in American and African oil palm as revealed by RFLP and AFLP molecular markers. Pesq Agropec bras Brasilia 37(8):1105–1114

    Google Scholar 

  • Billotte N, Risterucci AM, Barcelos E, Noyer JL, Amblard P, Baurens FC (2001) Development, characterization and across-taxa utility of oil palm (Elaeis guineensis Jacq.) microsatellite markers. Genome 44:413–425

    Article  CAS  PubMed  Google Scholar 

  • Blaak G (1967) Oil palm prospection tour in the Bamenda highlands of West Cameroon. Internal Report, Unilever, London

    Google Scholar 

  • Camillo J, Scherwinski-Pereira JE (2015) In vitro maintenance, under slow-growth conditions of oil palm germplasm obtained by embryo rescue Pesquisa Agropecuária Brasileira. 50(5), 426–429

    Google Scholar 

  • Chehmalee S, Te-chato S (2008) Induction of somatic embryogenesis and plantlet regeneration from cultured zygotic embryo of oil palm. J Agric Technol 4:137–146

    Google Scholar 

  • Chin CW, NG WJ, Junaidah J, Shuhaimi S, Mohd Nasruddin M (2005) Developing high oil yield DxP: the Felda experience. Proceedings of the 2005 national seminar on advances in breeding and clonal technologies for super yielding planting materials, Seri Kembangan, Selangor, Malaysia, pp 152–174

    Google Scholar 

  • Cochard B, Adon B, Rekima S, Billotte N, Desmier R, Koutou A et al (2009) Geographic and genetic structure of African oil palm diversity suggests new approaches to breeding. Tree Genet Genomes 5:493–504

    Article  Google Scholar 

  • Corley R, Tinker P (2003) The oil palm, 4th edn. Blackwell Publishing, New Jersey

    Google Scholar 

  • Crone GR (1937) The voyages of Cadamosto and other documents on Western Africa in the second half of the fifteenth century. Hakluyt Soc Series II, 80 [1.1.2]

    Google Scholar 

  • Davidson L (1993) Management for efficient cost—effective and productive oil palm plantations. Proceedings of the PORIM international palm oil conference, Kuala Lumpur, Malaysia, pp 153–170

    Google Scholar 

  • Donough CR, Chia CC (2005) Breeding oil palms for high oil yield DxP in IOI group: first cycle development of OPGL-derived materials. Proceedings of the 2005 national seminar on advances in breeding and clonal technologies for super yielding planting materials, Seri Kembangan, Selangor, Malaysia, pp 175–216

    Google Scholar 

  • Dumet D, Engelmann F, Chabrillange N, Duval Y (1993) Cryopreservation of standard oil palm (Elaeis guineensis Jacq.) somatic embryos involving a desiccation step. Plant Cell Rep 12:352–355

    Article  CAS  PubMed  Google Scholar 

  • Durand-Gasselin T, Diabate S, de Franqueville H, Cochard B, Adon B (2000) Assessing and utilizing sources of resistance to Fusarium wilt in oil palm (Elaeis guineensis Jacq.) genetic resources. Proceedings of the International Symposium on oil palm genetic resources and their utilization, Kuala Lumpur, Malaysia, pp 446–470

    Google Scholar 

  • Duval Y, Chabrillange N, Dumet D, Engelmann F (2000) Ex situ conservation of oil palm (Elaeis guineensis Jacq.) genetic resources using biotechnology. Proceedings of the International Symposium on oil palm genetic resources and their utilization, Kuala Lumpur, Malaysia, pp 471–479

    Google Scholar 

  • Ebongue FN, Koona P, Nouy B, Zok S, Carriere F, Zollo PH et al (2008) Identification of oil palm breeding lines producing oils with low fatty acids. Eur J Lipid Sci Technol 110:505–509

    Article  CAS  Google Scholar 

  • Ekaratne SNR, Senathirajah S (1983) Viability and storage of pollen of the oil palm. Elaeis guineensis Jacq. Ann Bot 51(5):661–668

    Google Scholar 

  • Elenga H, Schwartz D, Vincens A (1994) Pollen evidence of late quarternary vegetation and inferred climate changes in Congo. Palaeogeogr Palaeoclimatol Palaeoecol, pp 345–356

    Google Scholar 

  • Ellis RH, Hong TD, Roberts EH (1990) An intermediate category of seed storage behaviour? I. Coffee. J Exp Bot 41:1167–1174. doi:10.1093/jxb/41.9.1167

    Article  Google Scholar 

  • Ellis RH, Hong TD, Roberts EH, Soetisna U (1991) Seed storage behaviour in Elaeis guineensis. Seed Sci Res 1:99–104. doi:10.1017/S0960258500000726

    Google Scholar 

  • Engelmann F (1991) In vitro conservation of tropical plant germplasm—a review. Euphytica 57:227–243

    Article  Google Scholar 

  • Engelmann F (1992) Cryopreservation of embryos, reproductive biology and plant breeding. In: Dattee C, Dumas C, Gallais A (eds), Springer, Berlin, pp 281–290

    Google Scholar 

  • Engelmann F (2000) Importance of cryopreservation of plant genetic resources. In: Engelmann F, Takagi, H (eds) Cryopreservation of tropical plant germplasm. Current research progress and applications, Rome, JIRCAS, Tsukuba/IPGRI, pp 8–20

    Google Scholar 

  • Engelmann F (2004) Plant cryopreservation: progress and prospects. In Vitro Cell Dev Biol-Plant 40:427–433

    Article  Google Scholar 

  • Engelmann F, Duval Y, Dereuddre J (1985) C.R. Acad. Sci. Paris 301, Sér. DI, 111–116. Survieet proliferation d’embryons somatiques de palmier huile (Elaeis guineensis Jacq.) après congélationdansl’azoteliquide. Comptes Rendus de I’Acadéniie des Sciences Paris, Série 111 301, 111–116

    Google Scholar 

  • Escobar R (1982) Preliminary results of the collection and evaluation of the American oil palm Elaeis oleifera (HBK, Cortes) in Costa Rica. In: Pushparajah E, Chew PS (eds) The oil palm in agriculture in the eighties, vol 1. Incorporated Society of Planters, Kuala Lumpur, pp 79–93

    Google Scholar 

  • Frankel OH (1984) Genetic perspectives of germplasm conservation. In: Arber W, Llimensee K, Peacock WJ, Starlinger P (eds) Genetic manipulation: impact on man and society. Cambridge University Press, Cambridge, pp 161–170

    Google Scholar 

  • Gantait S, Sinniah UR, Suranthran P et al (2015) Improved cryopreservation of oil palm (Elaeis guineensis Jacq.) polyembryoids using droplet vitrification approach and assessment of genetic fidelity. Protoplasma 252:89

    Article  CAS  PubMed  Google Scholar 

  • Gerritsma W, Wessel M (1997) Oil palm: domestication achieved? Neth J Agric Sci 45:463–475

    Google Scholar 

  • Ghosh B, Sen S (1994) Plant regeneration from alginate encapsulated somatic embryos of Asparagus cooperi baker. Plant Cell Rep 9:189–194

    Google Scholar 

  • Golmirzaei AM, Panta A (2000) Advances in potato cryopreservation at CID. In: Engelmann F, Takagi, H (eds) Cryopreservation of tropical plant germplasm. Current Research Progress and Application, Japan International Research Center for Agricultural Sciences, Tsukuba, Japan, pp 250–254

    Google Scholar 

  • Gouesnard B, Bataillon TM, Decoux G, Rozale C, Schoen DJ, David JL (2001) MSTRAT: An algorithm for building germplasm core collections by maximizing allelic or phenotypic richness. J Hered 92:93–94. doi:10.1093/jhered/92.1.93

    Article  CAS  PubMed  Google Scholar 

  • Grout BWW, Sheltan K, Prichard HW (1983) Orthodox behaviour of oil palm seed and cryopreservation of the excised embryos for genetic conservation. Ann Bot 52:381–384

    Article  Google Scholar 

  • Hartley C (1988) The oil palm, 3rd edn. Longman Scientific & Technical, London

    Google Scholar 

  • Hayati A, Wickneswari R, Maizura I, Rajanaidu N (2004) Genetic diversity of oil palm (Elaeis guineensis Jacq.) germplasm collections from Africa: implications from improvement and conservation of genetic resources. Theor Appl Genet 108:1274–1284

    Article  CAS  PubMed  Google Scholar 

  • Heslop-Harrison JSP (2012) Traits with ecological functions. Ann Bot 110:139–140

    Article  PubMed  PubMed Central  Google Scholar 

  • Idris AS, Kushairi A, Ismail S, Ariffin D (2004) Selection for partial resistance in oil palm progenies to Ganoderma basal stem rot. J Oil Palm Res 16(2):12–18

    Google Scholar 

  • Idris AS, Norman K (2015) Upstream management practices to reduce Ganoderma disease outbreak—the industry’s approach. Book of abstract of the PIPOC 2015: Agriculture, Biotechnology & Sustainability (ABS) Conference, Kuala Lumpur, Malaysia. pp 9–10

    Google Scholar 

  • Inpuay K, Te-chato S (2012) Primary and secondary somatic embryos as tool for the propagation and artificial seed production of oil palm. J Agric Technol 8(2):597–609

    Google Scholar 

  • Isa ZA, Kushairi A, Chin, CW, Sharma M, Chia CC, Rajanaidu N, Mohd Din A (2005) Performance of Malaysian DxP—third round evaluation. Proceedings of the 2005 national seminar on advances in breeding and clonal technologies for super yielding planting materials, Seri Kembangan, Selangor, Malaysia, pp 95–137

    Google Scholar 

  • Isa ZA, Ong KP, Norasyikin I, Suboh O (2008) Performance of MPOB-Nigerian population 12—an update. Proceedings of the 3rd seminar on performance of MPOB PS1 and PS2 materials and elite germplasm, Bangi, Selangor, Malaysia, pp 139–149

    Google Scholar 

  • Isa ZA, Suboh O, Azhar D, Norasykin I (2013) Performance of Dami DxP planted in inland soil in Tereh Utara, Kulim Plantations. Proceedings of the international seminar on oil palm breeding—yesterday, today and tomorrow, Kuala Lumpur, Malaysia, pp 40–63

    Google Scholar 

  • Jansen J, van Hintum T (2007) Genetic distance sampling: a novel sampling method for obtaining core collections using genetic distances with an application to cultivated lettuce. Theor Appl Genet 114:421–428

    Article  CAS  PubMed  Google Scholar 

  • Julian Barba R (2012) Ecuadorian oleiferas minimize losses caused by bud rot in Latin America. Proceedings of the international seminar on breeding for oil plam disease resistance and field visits, Bogota, Colombia, 21–24 September 2012

    Google Scholar 

  • Junaidah J, Chin CW, Rafii MY, Syuhada WH (2008) Performance and utilization of MPOB-Nigerian oil palm materials in FELDA. Proceedings of the 3rd seminar on performance of MPOB PS1 and PS2 materials and elite germplasm, Bangi, Selangor, Malaysia, pp 73–90

    Google Scholar 

  • Kahn F (1997). The palms of eldorado (Edition Champlour ed) Orstom

    Google Scholar 

  • Kim KW, Chung HK, Cho GT, Ma KH, Chandrabalan D, Gwag JG, Kim TS, Cho EG, Park YJ (2007) PowerCore: a program applying the advanced M strategy with a heuristic search for establishing core sets. Bioinformatics 23:2155–2162. doi:10.1093/bioinformatics/btm313

    Article  CAS  PubMed  Google Scholar 

  • Krishnan S (2015) Fine tuning the Nigerian germpalsm breeding programme at FGV for climate change in Malaysia. Proceedings of the international seminar on gearing oil palm breeding and agronomy for climate change, Kuala Lumpur, Malaysia, p 8

    Google Scholar 

  • Kularatne RS, Shah F, Rajanaidu N (2001) The evaluation of genetic diversity of Deli dura and African oil palm genrmplasm collection by AFLP markers. Trop Agric Res 13:1–12

    Google Scholar 

  • Kushairi A, Rajanaidu N, Jalani S, Mohd Rafii Y, Mohd Din A (1999) PORIM oil palm planting materials. PORIM Bull 38:1–13

    Google Scholar 

  • Kushairi A, Rajanaidu N, Mohd Din A, Isa ZA, Noh A, Junaidah J (2003a) Performance of Tanzania germplasm. Proceedings of the seminar on progress of PS1 and PS2 planting materials and release of elite germplasm to the industry, Bangi, Selangor, Malaysia, pp 91–112

    Google Scholar 

  • Kushairi A, Rajanaidu N, Mohd Din A, Isa ZA, Noh A, Junaidah J (2003b) Performance of Angola genetic materials. Proceedings of the seminar on progress of PS1 and PS2 planting materials and release of elite germplasm to the industry, Bangi, Selangor, Malaysia, pp 75–90

    Google Scholar 

  • Kushairi A, Rajanaidu V, Mohd Din A (2003c) Mining the germplasm. Paper presented at ISOPB seminar on the progress of oil palm breeding and selection, Medan, Sumatra, Indonesia, 6–9 October 2003

    Google Scholar 

  • Kushairi A, Tarmizi A H, Zamzuri A, Ong-Abdullah M, Rohani O, Samsul Kamal R, Ooi S E, Ravigadevi S, Mohd Basri W (2010) Current status of oil palm tissue culture in Malaysia. Proceedings of the clonal and quality replanting material workshop: towards increasing the national productivity by one tonnes FFB/ha/year, Kuala Lumpur, Malaysian, pp 3–14, 10 August 2010

    Google Scholar 

  • Kushairi A, Mohd Din A, Ranaidu N (2011) Oil palm breeding and seed production. In: Mohd Basri W, Choo YM, Chan KW (eds) Further advances in oil palm research (2000-2010), vol 1. Malaysian Palm Oil Board, Kuala Lumpur, pp 47–93

    Google Scholar 

  • Maizura I, Rajanaidu N, Zakri A, Cheah S (2006) Assessment of genetic diversity in oil palm (Elaeis guineensis) using Restriction Length Polymorphism (RFLP). Genet Resour Crop Evol 56:187–195

    Google Scholar 

  • Maizura I, Suzana M, Ting NC, Leslie Ooi CL, Norziha A, Rajinder S. (2013) Population structure of selected oil palm germplasm as revealed by SNP markers, a pre-requisite for association mapping. Proceedings of MPOB International Palm Oil Conference (PIPOC), Kuala Lumpur, Malaysia

    Google Scholar 

  • Makeen AM, Normah MN, Dussert S, Clyde MM (2005) Cryopreservation of whole seeds and excised embryogenic axes of Citrus suhuiensis cv. Limau langkat in accordance to their desiccation sensitivity. Cryoletters 26:259–268

    PubMed  Google Scholar 

  • Malik SK, Chaudhury R, Pritchard HW (2012) Long-term, large-scale banking of citrus species embryos: comparisons between cryopreservation and other seed banking temperatures. Cryoletters 33(6):453–464

    CAS  PubMed  Google Scholar 

  • Marhalil M, Mohd Din A, Rajanaidu N, Kushairi A (2015) Utilization of MPOB oil palm germplasm for climate change. Proceedings of the international seminar on gearing oil palm breeding and agronomy for climate change, Kuala Lumpur, Malaysia, p 7

    Google Scholar 

  • Marhalil M, Rajanaidu N (2011) Oil palm (Elaeis guineensis) germplasm in Angola: second prospection. Proceedings of the international seminar on breeding for sustainability in oil palm, Kuala Lumpur, Malaysia, pp 133–154

    Google Scholar 

  • Mauricio M, Fontanilla C (2015) Bud rot technology validation in oil palm plantations from the Colombian Central Zone. Book of abstract of the PIPOC 2015: Agriculture, Biotechnology & Sustainability (ABS) Conference, Kuala Lumpur, Malaysia, pp 24–25

    Google Scholar 

  • Maxted N, FordLlyod BV, Hawkes JG (1997) Plant genetic conservation: the in situ approach. Chapman and Hall, London, UK

    Book  Google Scholar 

  • Meunier J (1969) Etude des populations naturelles d’Elaeis guineensis en Cote d’Ivoire. Oleagineux 24(2):195

    Google Scholar 

  • Meunier J, Baudouin L (1986) Evaluation and utilization of Yocoboue population of Elaeis guineensis. Proceedings of the international workshop on oil palm germplasm and utilization, Bangi, Selangor, Malaysia, pp 144–152

    Google Scholar 

  • Morcillo F, Cros D, Billotte N, Ngando-Ebongue GF, Domonhédo H, Pizot M et al (2013) Improving palm oil quality through identification and mapping of the lipase gene causing oil deterioration. Nat Commun 4:2160. doi:10.1038/ncomms3160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohaimi M (2011) Updates of the evaluation of semi-clonal DxP progenies in Sime Darby. Proceedings of international seminar on breeding for sustainability in oil palm, Kuala Lumpur, Malaysia, pp 101–111

    Google Scholar 

  • Mohd Din A, Rajanaidu N, Jalani S (2000) Performance of Elaeis oleifera from Panama, Costa Rica, Colombia and Honduras. J Oil Palm Res 12(1):71–80

    Google Scholar 

  • Mohd Din A, Rajanaidu N, Kushairi A, Rafii M, Isa ZA, Noh A (2002) PS4- High Carotene E. oleifera planting Materials. MPOB Information Series No. 154. MPOB TT No. 137. MPOB, Bangi, Selangor

    Google Scholar 

  • Mohd Zaki N, Ismail I, Rosli R, Chin TN, Singh R (2010) Development and characterization of Elaeis oleifera microsatellite markers. Sains Malaysiana 39(6):909–912

    Google Scholar 

  • Mohd Zaki N, Singh R, Rosli R, Ismail I (2012) Elaeis oleifera genomic-SSR markers: exploitation in oil palm germplasm diversity and cross-amplification in arecaceae. Int J Mol Sci 13:4069–4088. Available online: doi:10.3390/ijms13044069

  • Moretzshon MC, Ferreira MA, Amaral ZPS, Coelho PJA, Grattapaglia D, Ferreira ME (2002) Genetic diversity of Brazillian oil palm (Elaeis oleifera H.B.K.) germplasm collected in the Amazon forest. Euphytica 124:35–45

    Article  Google Scholar 

  • Musa B, Gurmit S (2008) Utilization of MPOB germplasm at UPB. Proceedings of the 3rd seminar on performance of MPOB PS1 and PS2 materials and elite germplasm, Bangi, Selangor, Malaysia, pp 43–72

    Google Scholar 

  • Musa B, Sritharan K, Xaviar A (2011) Performance of bi-clonal DxP planting material at United Plantations Berhad. Proceedings of international seminar on breeding for sustainability in oil palm, Kuala Lumpur, Malaysia, pp 78–100

    Google Scholar 

  • Noh A, Kushairi A, Mohd Din A, Maizura I, Marhalil M, Osman A, Rajanaidu N (2008) Genetic variation for long stalk and high protein kernel in oil palm germplasm. Proceedings of the 3rd seminar on performance of MPOB PS1 and PS2 materials and elite germplasm, Bangi, Selangor, Malaysia, pp 150–167

    Google Scholar 

  • Normah MN, Reed BM, Yu YL (1994) Seed storage and cryoexposure behaviour in hazelnut (Corylusavellana L. cv. Barcellona). Cryoletters 15:315–322

    Google Scholar 

  • Normahnani MN, Siang SC (2016) Screening for Ganoderma disease tolerant oil palm progenies in Sime Darby. Program book of the 6th IOPRI-MPOB International seminar on current research and management of pests, Ganoderma and pollination in oil palm for higher productivity, Medan, Indonesia, pp 32, 27–29 September 2016

    Google Scholar 

  • Norziha A, Marhalil M, Maizura I (2011) Dessication and cryopreservation of oil palm (Elaeis guineensis Jacq.) embryos. Proceedings of agriculture, biotechnology and sustainability conference PIPOC 2011, Kuala Lumpur, Malaysia, pp 300–303

    Google Scholar 

  • Norziha A, Noh A, Fadila AM, Zulkifly Y, Mohd Din A (2012) Ganoderma infection studies in selfed and intercrossed Deli dura progenies. Proceedings of the international seminar on breeding for oil palm disease resistance and field visits, Bogota, Colombia, 21–24 September 2012

    Google Scholar 

  • Norziha A, Rafii MY, Maizura I, Ghizan S (2008) Genetic variation among oil palm parent genotypes and their progenies based on microsatellite markers. J Oil Palm Res 20:533–541

    CAS  Google Scholar 

  • Nuzul HD (2015) Agricultural practices strategies in oil palm plantations to adapt climate change. Proceedings of the international seminar on gearing oil palm breeding and agronomy for climate change, Kuala Lumpur, Malaysia, pp 9–16

    Google Scholar 

  • Oil World (2016a) Fading growth in palm oil raises the dependence on seed oil 59(4):37–39 (29 Jan 2016)

    Google Scholar 

  • Oil world (2016b) Soya oil temporarily gaining market share from palm oil 59(8):89–92 (26 Feb 2016)

    Google Scholar 

  • Okwuagwu CO (1986) The genetic base of the NIFOR oil palm programme. Proceedings of international workshop on oil palm germplasm, Bangi, Selangor, Malaysia, pp 228–237

    Google Scholar 

  • Ooi S, Da Silva E, Muller A, Nascimento J (1981) Oil palm genetic resources—native E. oleifera populations in Brazil offer promising sources. Pesq agropec bras 16(3):385–395

    Google Scholar 

  • Pichel R (1956) L’Ameriolation du Palmier a huile du Congo Belge Conf. Franco-Brittanique sur le palmier a huile. Bull Agron Min Fr d’outre Mer 14:59–66

    Google Scholar 

  • Pillai RSN, Blaak G, Paul Closen H (2000) Collection of oil palm (Elaeis guineensis Jacq.) germplasm from Africa. Int Jour of Oil Palm 1(1&2):23–37

    Google Scholar 

  • Prasetyo JHH, Sitepu B, Iswandar HE, Djhujana J, Nelson SPC (2011) Performance of Sumbio semi-clonal progenies. Proceedings of the agriculture, biotechnology and sustainability conference PIPOC 2011, Kuala Lumpur, Malaysia, pp 212–216

    Google Scholar 

  • Purba AR, Arif M, Yenni Y (2013) Current oil palm breeding programs and commercial planting materials. Proceedings of the International Seminar on oil palm breeding—yesterday, today and tomorrow, Kuala Lumpur, Malaysia, pp 30–42

    Google Scholar 

  • Purba AR, Setiawati U, Susanto A, Rahmaningsih M, Yenni Y, Tahmadi HY, Nelson SPC (2012) Indonesia’s experience of developing Ganoderma tolerant/resistant oil palm planting materials. Proceedings of the international seminar on breeding for oil palm disease resistance and field visits, Bogota, Colombia, 21–24 September 2012

    Google Scholar 

  • Rachier GO, Wabule MN, Wasilwa L, Odenya JO, Orondo SG, Mambiri G, Wanjalla AW, Cheboi P, Makheti PT (2009) Introduction and promotion of cold tolerant oil palm (Elaeis guineensis) in Western Kenya. Proceedings of agriculture, biotechnology and sustainability conference PIPOC 2009, Kuala Lumpur, Malaysia, pp 1035–1044

    Google Scholar 

  • Radhamani J, Chandel KPS (1992) Cryopreservation of embryonic axes of trifoliate orange (Poncirus trifoliate (L) Raf.). Plant Cell Rep 11:204–206

    Article  CAS  PubMed  Google Scholar 

  • Rajanaidu N (1986a) The oil palm (Elaeis guineensis) collections in Africa. Proceedings of international workshop on oil palm germplasm and utilization, Bangi, Selangor, Malaysia, pp 59–83

    Google Scholar 

  • Rajanaidu N (1986b) Elaeis oleifera collection in Central and South America. Proceedings of international workshop on oil palm and utilization, Bangi, Selangor, Malaysia, pp 84–94

    Google Scholar 

  • Rajanaidu N (1995) PORIM oil palm gene bank. Palm Oil Tech Bull 1(4):7

    Google Scholar 

  • Rajanaidu N, Ainul MM, Kushairi A, Mohd Din A (2013) Historical review of oil palm breeding for the past 50 years—Malaysian journey. Proceedings of the international seminar on oil palm breeding—yesterday, today and tomorrow, Kuala Lumpur, Malaysia, pp 11–28

    Google Scholar 

  • Rajanaidu N, Jalani BS (1994) Prospects for breeding for kernels in oil palm (Elaeis guineensis). The Planter 70(820):307–318

    Google Scholar 

  • Rajanaidu N, Kushairi A, Chan KW, Mohd Din A (2007) Current status of oil palm material in the world and future challenges. Proceedings of agriculture, biotechnology and sustainability conference, vol 1, Kuala Lumpur, Malaysia, pp 503–520

    Google Scholar 

  • Rajanaidu N, Kushairi A, Mohd Din A, Norziha A, Ainul M (2012) Breeding for disease resistance in oil palm—current status. Proceedings of the international seminar on breeding for oil palm disease resistance and field visits, Bogota, Colombia, 21–24 September 2012

    Google Scholar 

  • Rajanaidu N, Kushairi A, Rafii M, Mohd Din A, Maizura I, Jalani BS (2000) Oil palm breeding and genetic resources. In: Basiron Y, Jalani BS, Chan KW (eds), Advances in oil palm research. Malaysian Palm Oil Board, Kuala Lumpur, pp 171–237

    Google Scholar 

  • Rajanaidu N, Rao V (1987) Oil palm genetic collections: their performance and use to the industry. Proceedings of international oil palm/palm oil conference in agriculture, Kuala Lumpur, Malaysia, pp 59–85

    Google Scholar 

  • Rajinder S, Noorhariza MZ, Ting NC, Rozana R, Tan SG, Low ETL, Maizura I, Cheah SC (2008) Exploiting an oil palm EST database for the development of gene-derived SSR markers and their exploitation for assessment of genetic diversity. Biologia 63(2):227–235

    Google Scholar 

  • Ravi D, Anand P (2012) Production and applications of artificial seeds: a review. Int Res J Biol Sci 1(5):74–78

    Google Scholar 

  • Rao V (1996) Ripening in the virescens oil palm. Proceedings of the international conference on oil and kernel production in oil palm: a global perspective. Bangi, Selangor, p 226

    Google Scholar 

  • Restrepo EF, Navia EA, Avila RA, Daza EE (2012) Use of epidemiological tools to differentiate the ability of various oil palm materials to respond to bud rot disease under field conditions. Proceedings of the international seminar on breeding for oil palm disease resistance and field visits, Bogota, Colombia, 21–24 September 2012

    Google Scholar 

  • Rey L, Gómez PL, Ayala I, Delgado W, Rocha P (2004) Colecciones genéticas de palma de aceite Elaeis guineensis (Jacq.) y Elaeis oleifera (H.B.K.) de Cenipalma: Características de importancia en el sector palmicultor. PALMAS 25(2):39–48

    Google Scholar 

  • Reynaud-Farrera I, Maley J, Wirrmann D (1996) Vegetation and climate in the forest of South-West Cameroon since 4770 years BP: pollen analysis of sediments from Lake Ossa. C.R. Acad. Sci. Ser. IIA. Sciences de le terre et des plantes 322:749

    Google Scholar 

  • Roongsattham et al (2012) Temporal and spatial expression of galacturonase members reveals divergent regulation during fleshy fruit ripening and abscission in the monocot species oil palm. BMC Plant Biol 12:150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakai A (1965) Determining the degree of frost-hardiness in highly hardy plants. Nature 185:393–394

    Article  Google Scholar 

  • Sapey E, Adusei-Fosu K, Agyei-Dwarko D, Okyere-Baoteng G (2012) Collection of oil palm (Elaeis guineensis Jacq.) germplasm from the northern regions of Ghana. Asian J Agric Sci 4(5):325–328

    Google Scholar 

  • Schultes RE (1990) Taxonomic, nomenclatural and ethnobotanic notes on Elaeis. Elaeis 2(1):172–187

    Google Scholar 

  • Seng TY, Siti Hawa MS, Junaidah J, Chin CW, Sharifah SRSA (2009) Developing a DNA database of Felda’s critical breeding palms. Proceedings of the international seminar on oil palm genomics and its application to oil palm breeding, Kuala Lumpur, Malaysia

    Google Scholar 

  • Sharma M (2000) Exploitation of (Elaeis oleifera) germplasm in improving the quality of palm oil. Proceedings of the international symposium on oil palm genetic resources and their utilization, Kuala Lumpur, Malaysia, pp 322–398

    Google Scholar 

  • Sharma M, Beng AB, Harkingto, Sidhu M (2016) Performance of Asian Agri Group’s 2nd generation DxP planting materials—moving to the next level of improved DxP. Proceedings of the international seminar on oil palm breeding and seed production and field visits, Kisaran, Indonesia, p 7

    Google Scholar 

  • Smith NJH, Williams JT, Plucknett DL Talbot JP (1992) Rubber, oils and resins. In: Tropical forests and their crops. Cornell University Press, New York, pp 207–263

    Google Scholar 

  • Soh AC (1999) Breeding plans and selection method in oil palm. Proceedings of the symposium on the science of oil palm breeding. Montpellier, France, pp 65–95

    Google Scholar 

  • Soh AC, Walker S, Ong CK (2015) Breeding for sustainability. Book of abstracts PIPOC 2015 Kuala Lumpur, Malaysia, p 5

    Google Scholar 

  • Sowunmi M (1999) The significance of the oil palm (Elaeis guineensis jacq.) in the late Holocene environments of west and central Africa: a further consideration. Veg Hist Archaeobotany 8:199–210

    Article  Google Scholar 

  • Sudharto P, Giono, Alam S, Taofik M, Salman M, Pujangga, Advento AD, Caliman MN (2016) Research and management of major oil palm pests: strategy for control of bagworm in oil palm plantation. Program book of the 6th IOPRI-MPOB international seminar on current research and management of pests, Ganoderma and pollination in oil palm for higher productivity, Medan, Indonesia, p 16

    Google Scholar 

  • Taeprayoon P, Tanya P, Lee SH, Srinives P (2015) Genetic background of three commercial oil palm breeding in Thailand revealed by SSR markers. Aust J Crop Sci 9(4):281–288

    Google Scholar 

  • Tandon R, Chaudhury R, Shivana KR (2007) Cryopreservation of oil palm pollen. Curr Sci 92(2),  pp 182–183 (Ref. 15)

    Google Scholar 

  • Te-chato S, Hilae A (2007) High-frequency plant regeneration through secondary somatic embryogenesis in oil palm (Elaeis guineensis Jacq. var. tenera). J Agric Technol 3:345–357

    Google Scholar 

  • Thachuk C, Crossa J, Franco J, Dreisigacker S, Warburton M, Davenport GF (2009) Core hunter: an algorithm for sampling genetic resources based on multiple genetic measures. BMC Bioinform 10:243. doi:10.1186/1471-2105-10-243

    Article  Google Scholar 

  • Ting NC, Zaki NM, Rosli R, Low ETL, Ithnin M, Cheah SC, Tan SG, Singh R (2010) SSR mining in oil palm EST database: application in oil palm germplasm diversity studies. J Genet 89(2):135–145

    Article  PubMed  Google Scholar 

  • Turnbull N, Cazemajor M, Guerin C, Louise C, Amblard P, Cochard B, Durand-Gasselin, T (2016) Oil palm breeding and seed production in PalmElit. Proceedings of the international seminar on oil palm breeding and seed production and field visits, Kisaran, Indonesia, pp 8–20

    Google Scholar 

  • Turnbull N, de Franqueville H, Breton F, Jeyen S, Syahoutra I, Cochard B, Poulin V, Durand-Gassellin T (2014) Breeding methodology to select oil palm planting material partially resistant to Ganoderma boninense. Paper presented at the 5th quadrennial international oil palm conference, Bali Nusa Dua Convention Center, Indonesia, 17–19 June 2014

    Google Scholar 

  • Vanderweyen R (1952) La prospection des palmeraies congolaises et ses premier results. Bull Inf INEAC 1:357–382

    Google Scholar 

  • Veriappan A, Rajanaidu N, Johari O, Ahmad SF (2008) Performance of MPOB population 12 in SPAD. Proceedings of the 3rd seminar on performance of MPOB PS1 and PS2 materials and elite germplasm, Bangi, Selangor, Malaysia, pp 91–116

    Google Scholar 

  • Wening S, Wilkinson MJ, Filianti H, Djuhjana J, Forster BP, Nelson SPC, Caligari PDS (2013) Genetic diversity of commercial oil palm seed production parents. Oil Palm Bulletin 67:1–4

    Google Scholar 

  • Wong WC, Jit TC, Kien WC, Mayes S, Singh R, Soh AC (2015) Development of an effective SSR-based fingerprint system for commercial planting materials and breeding applications in oil palm. J Oil Palm Res 27(2):113–127

    Google Scholar 

  • Wong CK, Choo CN, Liew YR, Ng WJ, Krishnan K, and Tan CC (2010) Benchmarking best performing semi-clonal seeds against tenera clones: avenue for superior clonal ortet identification. Proceeding of the advances in oil palm tissue culture, Yogyakarta, Indonesia, 29 May 2010

    Google Scholar 

  • Xianhai Z, Genglang P, Zhao L, Junming C, Weifu L (2016) Evaluation of cold tolerant high yielding oil palm germplasm in Guangdong province of South China, a northern tropical region. J Oil Palm Res 28(3):266–280

    Article  Google Scholar 

  • Zeven A (1964) On the origin of the oil palm (Elaeis guineensis Jacq.). Grana Palynologica, pp 121–123

    Google Scholar 

  • Zhou LX, Xiao Y, Xia W, Yang YD (2015) Analysis of genetic diversity and population structure of oil palm (Elaeis guineensis) from China and Malaysia based on species-specific simple sequence repeat markers. Genet Mol Res 14(4):16247–16254

    Article  CAS  PubMed  Google Scholar 

  • Zulhermana, Puspitanigrum Y, Sirait MR, Raganata AP, Asmady, Asmono D (2011) Current progress on Sampoerna Agro DxP semi-clones. Proceedings of the agriculture, biotechnology and sustainability conference PIPOC 2011, Kuala Lumpur, Malaysia, pp 266–270

    Google Scholar 

  • Zulkifli Y, Maizura I, Rajinder S (2012) Evaluation of MPOB oil palm (Elaeis guineensis Jacq.) germplasm populations using EST-SSR. J Oil Palm Res 24:1368–1377

    CAS  Google Scholar 

  • Zuraini S, Jayne JJ, Hoong HW (2013) Exploitation of sabah breeding programme in enhancing the performance of Sawit Kinabalu DxP planting materials. Proceedings of the international seminar on oil palm breeding—yesterday, today and tomorrow, Kuala Lumpur, Malaysia, pp 40–63

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maizura Ithnin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ithnin, M., Serdari, N.M., Abdullah, N., Kushairi, A., Singh, R. (2017). Biodiversity and Conservation of Elaeis Species. In: Ahuja, M., Jain, S. (eds) Biodiversity and Conservation of Woody Plants. Sustainable Development and Biodiversity, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-66426-2_9

Download citation

Publish with us

Policies and ethics