Skip to main content

Rhizobium in Rice Yield and Growth Enhancement

  • Chapter
  • First Online:
Rhizobium Biology and Biotechnology

Part of the book series: Soil Biology ((SOILBIOL,volume 50))

Abstract

The agricultural industry faces issues that affect its productivity such as fertility, pests, pathogens, and climate change. In line with moving towards sustainable agriculture, eco-friendly approaches such as biofertilizers, biopesticides, and bioremediation have been implemented through the utilization of various types of microbial inoculums such as PGPRs. PGPRs exert their influence on plants through the production of various determinants such as siderophores, enzymes, lipopolysaccharide, exopolysaccharide, lipopeptides, and signal molecules such as salysilic acid. These compounds are capable of promoting growth and yield directly through processes such as nitrogen fixation, siderophore production, phosphate solubilization, phytohormone production, and ACC deaminase. Indirectly, these organisms address biotic and abiotic stresses through the induction of systemic resistance, biocontrol, and stress management. While the role of Rhizobium has been extensively researched in legumes, the information derived in non-legume systems has not been as extensive. Here, we provide a brief overview of the role of Rhizobium species in increasing the yield and growth of rice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afzal A, Bano A (2008) Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum L.). Int J Agric Biol 10:85–88. 07-092/MFA/2008/10–1–85–88

    Google Scholar 

  • Akhtar N, Qureshi MA et al (2012) Influence of Azotobacter and IAA on symbiotic performance of Rhizobium and yield parameters of lentil. J Agric Res 50:361–372

    Google Scholar 

  • Al-Mallah MK, Davey MR et al (1989) Formation of nodular structures on rice seedlings by rhizobia. J Exp Bot 40:473–478. doi:10.1007/BF00011323

    Article  Google Scholar 

  • Al-Mallah MK, Davey MR et al (1990) Nodulation of oilseed rape (Brassica napus) by rhizobia. J Exp Bot 41:1567–1572. doi:10.1093/jxb/41.12.1567

    Article  Google Scholar 

  • Antoun H, Beauchamp CJ et al (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effects on radish (Raphanus sativus L.). Plant Soil 204:57–67. doi:10.1023/A:1004326910584

  • Arora NK, Kang SC et al (2001) Isolation of siderophore producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81:673–677

    Google Scholar 

  • Atzorn R, Crozier A et al (1988) Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta 175:532–538. doi:10.1007/BF00393076

    Article  CAS  PubMed  Google Scholar 

  • Ayyadurai N, Ravindra NP et al (2006) Isolation and characterization of a novel banana rhizosphere bacterium as fungal antagonist and microbial adjuvant in micro propagation of banana. J Appl Microbiol 100:926–937. PMID:16629993

    Google Scholar 

  • Bardin SD, Huang HC et al (2004) Biological control of Pythium damping-off of pea and sugar beet by Rhizobium leguminosarum bv. viceae. Can J Bot 82:291–296

    Article  Google Scholar 

  • Barraquio WL, Ladha JK et al (1983) Isolation and identification of N2-fixing Pseudomonas associated with wetland rice. Can J Microbiol 29:867–873. PMID:6418364

    Google Scholar 

  • Bellone CH, De Bellone SDVC et al (1997) Cell colonization and infection thread formation in sugar cane roots by Acetobacter diazotrophicus. Soil Biol Biochem 29:965–967. doi:10.1016/S0038-0717(96)00219-2

    Article  CAS  Google Scholar 

  • Bender GL, Nayudu M et al (1987) Early infection events in the nodulation of the non-legume Paraponia andersonii by Bradyrhizobium. Plant Sci 51:285–293. doi:10.1016/0168-9452(87)90205-6

    Article  Google Scholar 

  • Bhattacharjee RB, Singh A et al (2008) Use of nitrogen fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Appl Microbiol Biotechnol 80:199–209. PMID:18600321

    Google Scholar 

  • Bhattacharjee RB, Jourand P et al (2012) Indole acetic acid and ACC deaminase-producing Rhizobium leguminosarum bv. trifolii SN10 promote rice growth, and in the process undergo colonization and chemotaxis. Biol Fertil Soils 48:173–182. doi:10.1007/s00374-011-0614-9

    Article  CAS  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350. PMID:22805914

    Google Scholar 

  • Biswas JC, Ladha JK et al (2000a) Rhizobial inoculation improves nutrient uptake and growth of lowland rice. Soil Sci Soc Am J 64:1644–1650. doi:10.2136/sssaj2000.6451644x

    Article  CAS  Google Scholar 

  • Biswas JC, Ladha JK et al (2000b) Rhizobial inoculation influences seedling vigor and yield of rice. Agron J 92:880–886. doi:10.2134/agronj2000.925880x

    Article  Google Scholar 

  • Boiero L, Perrig D et al (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880. PMID:17136369

    Google Scholar 

  • Bouman BAM, Peng S et al (2005) Yield and water use of irrigated tropical aerobic rice systems. Agric Water Manag 74:87–105. doi:10.1016/j.agwat.2004.11.007

    Article  Google Scholar 

  • Bouman BAM, Yang XG et al (2006) Performance of aerobic rice varieties under irrigated conditions in North China. Field Crops Res 97:53–65. doi:10.1016/j.fcr.2005.08.015

    Article  Google Scholar 

  • Burr JJ, Reid CL (1994) Biological control of grape crown gall with nontumarigenic Agrobacterium vitis strain Fe/5. Am J Enol Vitric 45:213–219

    Google Scholar 

  • Capoen W, Goormachtig S et al (2005) SrSymRK: a plant receptor essential for symbiosome formation. Proc Natl Acad Sci USA 102:10369–10374. doi:10.1073/pnas.0504250102. PMID:16006516

  • Carson KC, Meyer JM et al (2000) Hydroxamate siderophore of root nodule bacteria. Soil Biol Biochem 32:11–21. doi:10.1016/S0038-0717(99)00107-8

    Article  CAS  Google Scholar 

  • Cassan F, Perrig D et al (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45:28–35. doi10.1016/j.ejsobi.2008.08.005

  • Chabot R, Antoun H et al (1996) Growth promotion of maize and lettuce by phosphate solubilizing Rhizobium leguminosarum bv. phaseoli. Plant Soil 184:311–321. doi:10.1077/BF00010460

    Article  CAS  Google Scholar 

  • Chaintreuil C, Giraud E et al (2000) Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Appl Environ Microbiol 66:5437–5447. doi:10.1128/AEM.66.12.5437-5447.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra S, Choure K et al (2007) Rhizosphere competent Mesorhizobium loti MP6 induces root hair curling, inhibits Sclerotinia sclerotiorum and enhances growth of Indian mustard (Brassica campestris). Braz J Microbiol 38:128–130. doi:10.1590/S1517-83822007000100026

    Article  Google Scholar 

  • Chen C, Fan C, Gao M et al (2009) Antiquity and function of CASTOR and POLLUX, the twin ion channel-encoding genes key to the evolution of root symbioses in plants. Plant Physiol 149:306–317. doi:10.1104/pp.108.131540. PMID:18978069

  • Chi F, Yang P et al (2010) Proteomic analysis of rice seedlings infected by Sinorhizobium meliloti 1021. Proteomics 10:1861–1874. PMID:20213677

    Google Scholar 

  • Chien CT, Chien, J et al (1992) Characterization of salt-tolerant and salt-sensitive mutants of Rhizobium leguminosarum biovar viciae strain C1204b FEMS. Microbiol Lett 90:135–140. PMID:1537541

    Google Scholar 

  • Choudhury ATMA, Khanif YM (2001) Evaluation of effects of nitrogen and magnesium fertilization on rice yield and fertilizer nitrogen efficiency using 15N tracer technique. J Plant Nutr 24:855–871. doi:10.1081/PLN-100103778

    Article  CAS  Google Scholar 

  • Cocking EC (2000) Helping plants get more nitrogen from air. Eur Rev 8(2):193–200. doi:10.1017/S1062798700004762

    Article  Google Scholar 

  • Cocking EC, Webser G et al (1994) Nodulation of non-legume crops. A new look. Agro-Food-Industry Hi-Tech, January/February, pp 21–24

    Google Scholar 

  • Dakora FD (2003) Defining new roles for plant and rhizobial molecules in sole and mixed plant cultures involving symbiotic legumes. New Phytol 158:39–49. doi:10.1046/j.1469-8137.2003.00725.x

    Article  CAS  Google Scholar 

  • Davies PJ (1995) Plant hormones: physiology, biochemistry, and molecular biology. Kluwer Academic Publishers, London, pp 6–7

    Book  Google Scholar 

  • Dazzo FB, Yanni YG et al (2000) Progress in multinational collaborative studies on the beneficial association between Rhizobium leguminosarum bv. trifolii and rice. In: Ladha JK, Reddy PM et al (eds) The quest for nitrogen fixation in rice. IRRI, Los Banos, pp 167–189

    Google Scholar 

  • Dazzo FB, Yanni YG et al (2005) Recent studies on the Rhizobium cereal association. In: Wang YP, Lin M, Tian ZX, Elmericj C, Newton WE (eds) Biological nitrogen fixation: sustainable agriculture and the environment. Proceedings of the 14th international nitrogen fixation congress. Springer, Dordrecht, pp 379–380

    Google Scholar 

  • Deubel A, Gransee A et al (2000) Transformation of organic rhizodeposits by rhizoplane bacteria and its influence on the availability of tertiary calcium phospate. J Plant Nutr Soil Sci 163(4):387–392. ISSN:1436-8730. doi:10.1002/1522-2624(200008)163:4<387::AID-JPLN387>3.0.CO;2-K

  • Dobbelaere S, Croomenborghs A et al (2001) Responses of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28:871–879. doi:10.1071/PP01074

    Google Scholar 

  • Dobbelaere S, Vanderleyden J et al (2003) Plant growth promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149. doi:10.1080/713610853

    Article  CAS  Google Scholar 

  • Duan J, Muller KM et al (2009) 1-Aminocyclopropane-1carboxylate (ACC) deaminase gene in Rhizobium from Southern Saskatchewan. Microbial Ecol 57:423–436. PMID:18548183

    Google Scholar 

  • Egamberdieva D, Kucharova Z (2009) Selection for root colonising bacteria stimulating wheat growth in saline soils. Biol Fertil Soils 45:563–571

    Article  Google Scholar 

  • Elkoca E, Kantar F et al (2008) Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth and yield of chickpea. J Plant Nutr 31:157–171. doi:10.1080/01904160701742097

    Article  CAS  Google Scholar 

  • Engelhard M, Hurek T et al (2000) Preferential occurrence of diazotrophic endophytes, Azoarcus spp., in wild rice species and land races of Oryza sativa in comparison with modern races. Environ Microbiol 2:131–141. PMID:11220300

    Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica Article ID:963401. doi:10.6064/2012/963401

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39. doi:10.1016/j.micres.2013.09.009

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Sathya A et al (2015) Plant growth promoting rhizobia: challenges and opportunities. Biotech 5:355–377. doi:10.1007/s13205-014-0241-x

    Google Scholar 

  • Gough C, Webster G et al (1996) Specific flavonoids stimulate intercellular colonization of nonlegumes by Azorhizobium caulinodans. In: Stacey G, Mullin B, Gresshoff PM (eds) Biology of plant microb interactions. International Society for Molecular Plant-Microbe Interactions, Minnesota, pp 409–415

    Google Scholar 

  • Gutiérrez-Zamora ML, Martínez-Romero E (2001) Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J Biotechnol 91:117–126. PMID:11566384

    Google Scholar 

  • Hafeez FY, Hassan Z et al (2008) Rhizobium leguminosarum bv. viciae strain LC–31: analysis of novel bacteriocin and ACC-deaminase gene(s). In: Dakora FD, Chimphango SBM, Valentine AJ, Elmerich C, Newton WE (eds) Biological nitrogen fixation: towards poverty alleviation through sustainable agriculture. Springer, Dordrecht, pp 247–248

    Chapter  Google Scholar 

  • Hossain M, Fischer KS (1995) Rice research for food security and sustainable development in Asia: achievements and future challenges. GeoJournal 35(3):286–298. doi:10.1007/BF00989136

    Article  Google Scholar 

  • Hurek TB, Reinhold-Hurek M et al (1994) Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J Bacteriol 176:1913–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain MB, Mehboob I et al (2009) Potential of Rhizobium spp. for improving growth and yield of rice (Oryza sativa L.). Soil Environ 28(1):49–55

    Google Scholar 

  • Hussain A, Shah ST et al (2015) Effect of IAA on in vitro growth and colonization of Nostoc in plant roots. Front Plant Sci 5:6–46. doi:10.3389/fpls.2015.00046. eCollection

    Google Scholar 

  • Ishizuka J (1992) Trends in biological nitrogen fixation research and application. Plant Soil 141:197–209. doi:10.1007/BF00011317

    Article  CAS  Google Scholar 

  • Jain V, Gupta K (2003) The flavonoid naringen enhances intercellular colonization of rice roots by Azorhizobium caulinodans. Biol Fertil Soils 38:119–123. doi:10.1007/s00374-003-0599-0

    Article  CAS  Google Scholar 

  • James EK, Gyaneshwar P et al (2000) In: Ladha JK, Reddy PM (eds) The quest for nitrogen fixation in rice. IRRI, Manila, pp 119–140

    Google Scholar 

  • Khiari L, Parent LE (2005) Phosphorus transformations in acid light-textured soils treated with dry swine manure. Can J Soil Sci 85(1):75–87. doi:10.4141/S03-049

    Article  Google Scholar 

  • Khush GS, Bennet J (1992) Nodulation and nitrogen fixation rice: potential and prospect. International Rice Research Institute Press, Mannila, p 136

    Google Scholar 

  • Kinkle BK, Sadowsky MJ et al (1994) Tellurium and selenium resistance in rhizobia and its potential use for direct isolation of Rhizobium meliloti from soil. Appl Environ Microbiol 60:1674–1677. PMID:PMC201536

    Google Scholar 

  • Kulkarni S, Nautiyal CS (2000) Effects of salt and pH stress on temperature tolerant Rhizobium sp. NBRI330 nodulating Prosopis juliflora. Curr Microbiol 40:221–226. PMID:10688689

    Google Scholar 

  • Ladha JK, Reddy PM (1995) Extension of nitrogen fixation to rice – necessity and possibilities. GeoJournal 35:363–372

    Article  Google Scholar 

  • Lakzian A, Murphy P et al (2002) Rhizobium leguminosarum bv. viciae populations in soils with increasing heavy metal contamination: abundance, plasmid profiles, diversity and metal tolerance. Soil Biol Biochem 34:519–529. doi:10.1016/S0038-0717(01)00210-3

    Article  CAS  Google Scholar 

  • Lemanceau P, Expert D et al (2009) Role of iron in plant-microbe interactions. Adv Bot Res 51:491–549. doi:10.1016/S0065-2296(09)51012-9

    Article  CAS  Google Scholar 

  • Liu Y, Lam MC et al (2001) Adsorption of heavy metals by EPS of activated sludge. Water Sci Technol 43:59–66. PMID:11381973

    Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant growth promoting rhizobacteria. Ann Rev Microbiol 63:541–556. PMID:19575558

    Google Scholar 

  • Ma W, Guinel FC et al (2003a) The Rhizobium leguminosarum bv. viciae ACC deaminase protein promotes the nodulation of pea plants. Appl Environ Microbiol 69:4396–4402. PMID:12902221

    Google Scholar 

  • Ma W, Sebestianova S et al (2003b) Prevalence of 1-aminocyclopropaqne-1-carboxylate in deaminase in Rhizobiaum sp. Antonie Van Leeuwenhoek 83:285–291. doi:10.1023/A:1023360919140

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Charles TC et al (2004) Expression of an exogenous 1 aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. Appl Environ Microbiol 70:5891–5897. PMID:15466529

    Google Scholar 

  • Matiru VN, Dakora FD (2004) Potential use of rhizobial bacteria as promoters of plant growth for increased yield in landraces of African cereal crops. Afr J Biotechnol 3(1):1–7

    Article  CAS  Google Scholar 

  • Mauseth JD (1991) Botany: an introduction to plant biology. Saunders, Philadelphia, pp 348–415

    Google Scholar 

  • McCully ME (2001) Niches for endophytes in crop plants: a plant biologist view. Aust J Plant Physiol 28:983–990

    Google Scholar 

  • Mehboob I, Naveed M et al (2012) Potential of rhizobia for sustainable production of non-legumes. In: Ashraf M, Öztürk M, Ahmad M, Aksoy A (eds) Crop production for agricultural improvement. Springer, Netherlands, pp 659–704

    Chapter  Google Scholar 

  • Mia MAB, Shamsuddin ZH et al (2005) High-yielding and quality banana production through plant growth promoting rhizobacterial inoculation. Fruits 60:179–185

    Article  Google Scholar 

  • Mishra RPN, Singh RK et al (2006) Rhizobium-mediated induction of phenolics and plant growth promotion in rice (Oryza sativa L.). Curr Microbiol 52:383–389. PMID:16586021

    Google Scholar 

  • Molla AH, Shamsuddin ZH et al (2001) Mechanism of root growth and promotion of nodulation in vegetable soybean by Azospirillum brasilense. Commun Soil Sci Plant Anal 32:2177–2187. doi:10.1081/CSS-120000276

    Article  CAS  Google Scholar 

  • Mrabet M, Mhamdi R et al (2005) Competitiveness and symbiotic effectiveness of a R. gallicum strain isolated from root nodules of Phaseolus vulgaris. Eur J Agron 22:209–216. doi:10.1016/j.eja.2004.02.006

    Article  Google Scholar 

  • Muglia CI, Grasso DH et al (2007) Rhizobium tropici response to acidity involves activation of glutathione synthesis. Microbiology 153:1286–1296. PMID:17379738

    Google Scholar 

  • Nadarajah K (2016) Induced systemic resistance in rice. In: Choudhary KD, Varma A (eds) Microbial-mediated induced systemic resistance in plants. Springer, Singapore, pp 103–124. doi:10.1007/978-981-10-0388-2_7

    Chapter  Google Scholar 

  • Nahas E (1996) Factors determining rock phosphate solubilization by microorganism isolated from soil. World J Microbiol Biotechnol 12:18–23. doi:10.1007/BF00327716

    Article  Google Scholar 

  • Naidu VSGR, Panwar JDS et al (2004) Effect of synthetic auxins and Azorhizobium caulinodans on growth and yield of rice. Ind J Microbiol 44:211–213

    CAS  Google Scholar 

  • Nandal K, Sehrawat AR et al (2005) High temperature-induced changes in exo-polysaccharides, lipopolysaccharides and protein profile of heat-resistant mutants of Rhizobium sp. (Cajanus). Microbiol Res 160:367–373. PMID:16255141

    Google Scholar 

  • Naz I, Bano A, Tamoor-ul-Hassan (2009) Isolation of phytohormones producing plant growth promoting rhizobacteria from weeds growing in Khewra salt range, Pakistan and their implication in providing salt tolerance to Glycine max L. Afr J Biotechnol 8(21):5762–5766

    Article  CAS  Google Scholar 

  • Okazaki S, Sugawara M et al (2004) Bradyrhizobium elkanii rtxC gene is required for expression of symbiotic phenotypes in the final step of rhizobitoxine biosynthesis. Appl Environ Microbiol 70:535–541. doi:10.1128/AEM.70.1.535-541.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozkoc I, Deliveli MH (2001) In vitro inhibition of the mycelial growth of some root rot fungi by Rhizobium leguminosarum biovar phaseoli isolates. Turk J Biol 25:435–445

    Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220. PMID:8868227

    Google Scholar 

  • Peng S, Biswas JC et al (2002) Influence of rhizobial inoculation on photosynthesis and grain yield of rice. Argon J 94:925–929. doi:10.2134/agronj2002.9250

    Google Scholar 

  • Perrine FM, Prayitno J et al (2001) Rhizobium plasmids are involved in the inhibition or stimulation of rice growth and development. Aust J Plant Physiol 28:923–937

    CAS  Google Scholar 

  • Perrine FM, Hocart CH et al (2005) Plasmid associated genes in the model micro-symbiont Sinorhizobium meliloti 1021 affect the growth and development of young rice seedlings. Environ Microbiol 7:1826–1838. PMID:16232297

    Google Scholar 

  • Perrine-Walker FM, Prayitno J et al (2007) Infection process and the interaction of rice roots with rhizobia. J Exp Bot 58:3343–3350. doi:10.1093/jxb/erm181. PMID:17925300

  • Pieterse CMJ, Van Wees SCM et al (2002) Signaling in rhizobacteria-induced systemic resistance in Arabidopsis thaliana. Plant Biol (Stuttgart) 4:535–544. doi:10.1055/s-2002-35441

    Article  CAS  Google Scholar 

  • Prayitno J, Stefaniak J et al (1999) Interactions of rice seedlings with bacteria isolated from rice roots. Aust J Plant Physiol 26:521–535. doi:10.1071/PP98090

    Article  Google Scholar 

  • Rajagopal BS, Belay N et al (1988) Isolation and characterization of methanogenic bacteria from rice paddies. FEMS Microbiol Ecol 53:153–158

    Article  CAS  Google Scholar 

  • Rajkumar M, Ae N et al (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149. PMID:20044160

    Google Scholar 

  • Rao VR, Adhya TK (1994) Bacterial nitrogen fixation associated with rice ecosystem. In: Kannaiyan S (ed) Rice management biotechnology. Associated Publishing Co., New Delhi, pp 321–327. ISBN:81-85211-39-6

    Google Scholar 

  • Reddy PM, Ladha JK et al (1997) Rhizobial communication with rice roots: induction of phenotypic changes, mode of invasion and extent of colonization. Plant Soil 194:81–98. doi:10.1023/A:1004243915997

    Article  CAS  Google Scholar 

  • Reddy PM, Hernandez-Oane RJ et al (2000) Exploring the genetic potential of rice for forming symbiotic associations with rhizobia. In: Pedrosa FO, Hungria M, Yates MG, Newton WE (eds) Nitrogen fixation: from molecules to crop productivity. Kluwer Academic Publishers, Dordrecht, pp 331–332. doi:10.1007/0-306-47615-0_176

    Google Scholar 

  • Reinhold B, Hurek T (1988) Location of diazotrophs in the root interior with special attention to the Kallar grass association. Plant Soil 110:259–268

    Article  Google Scholar 

  • Ridge RW, Ride KM et al (1993) Nodule-like structures induced on the roots of rice seedlings by addition of the synthetic auxin 2,4-dichlorophenoxyacetic acid. Aust J Plant Physiol 20:705–717. doi:10.1071/PP9930705

    Article  CAS  Google Scholar 

  • Rolfe BG, Djordjevic MA et al (1997) Root morphogenesis in legumes and cereals and the effect of bacterial inoculation on root development. Plant Soil 194:131–144

    Article  CAS  Google Scholar 

  • Sagoe CIT, Ando K et al (1998) Relative importance of protons and solution calcium concentration in phosphate rock dissolution by organic acids. Soil Sci Plant Nutr 44:617–625

    Article  Google Scholar 

  • Saikia R, Kumar R et al (2006) Pseudomonas aeruginosa inducing rice resistance against Rhizoctonia solani: production of salicylic acid and peroxidases. Folia Microbiol 51(5):375–380. doi:10.1007/BF02931579

    Article  CAS  Google Scholar 

  • Salimpour S, Khavazi K et al (2010) Enhancing phosphorous availability to canola (Brassica napus L.) using P solubilizing and sulfur oxidizing bacteria. Aust J Crop Sci 4(5):330–334

    CAS  Google Scholar 

  • Salmeron V, Martinez-Toledo MV et al (1990) Nitrogen fixation and production of auxins gibberellins and cytokinins by an Azotobacter chrococcum strain isolated from the root of Zea mays in the presence of insoluble phosphate. Chemosphere 20:417–422. doi:10.1016/0045-6535(90)90072-2

    Article  CAS  Google Scholar 

  • Sandhya V, Ali SZ et al (2009) Alleviation of drought stress effects in sunflower seedlings by exopolysaccharides producing Pseudomonas putida strain P45. Biol Fertil Soil 46:17–26. doi:10.1007/s00374-009-0401-z

    Article  CAS  Google Scholar 

  • Senthilkumar M, Madhaiyan M et al (2009) Intercellular colonization and growth promoting effects of Methylobacterium sp. with plant-growth regulators on rice (Oryza sativa L. CvCO-43). Microbiol Res 164:92–104. doi:10.1016/j.micres.2006.10.007

    Article  CAS  PubMed  Google Scholar 

  • Sessitsch A, Reiter B et al (2002) Cultivation independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes specific PCR of 16S rRNA genes. FEMS Microbiol Ecol 39:23–32. doi:10.1111/j.1574-6941.2002.tb00903.x

    Article  CAS  PubMed  Google Scholar 

  • Shaukat SS, Siddqui IA (2003) The influence of mineral and carbon sources on biological control of charcoal rot fungus, Macrophomina phaseolina by fluorescent pseudomonads in tomato. Lett Appl Microbiol 36:392–398. PMID:12753248

    Google Scholar 

  • Siddiqui ZA, Mahmood I (2001) Effects of rhizobacteria and root symbionts on the reproduction of Meloidogyne javanica and growth of chickpea. Bioresour Technol 79:41–45. PMID:11396906

    Google Scholar 

  • Siddiqui IA, Ehteshamul-Haque S et al (1998) Effect of rhizobia and fungal antagonists in the control of root infecting fungi on sunflower and chickpea. Pak J Bot 30:279–286

    Google Scholar 

  • Siddiqui IA, Ehteshamul-Haque S et al (2000) Effect of urea on the efficacy of Bradyrhizobium sp. and Trichoderma harzianum in the control of root infecting fungi in mungbean and sunflower. Sarhad J Agric 16:403–406

    Google Scholar 

  • Singh RK, Mishra RPN et al (2006) Isolation and identification of natural endophytic rhizobia from rice (Oryza sativa L.) through rDNA PCR-RFLP and sequence analysis. Curr Microbiol 52:345–349. PMID:16586025

    Google Scholar 

  • Skrary FA, Cameron DC (1998) Purification and characterization of a Bacillus licheniformis phosphatase specific for D-alphaglycerphosphate. Arch Biochem Biophys 349:27–35. PMID:9439579

    Google Scholar 

  • Souza R, Beneduzi A et al (2013) The effect of plant growth-promoting rhizobacteria on the growth of rice (Oryza sativa L.) cropped in southern Brazilian fields. Plant Soil 366:585–603. doi:10.1007/s11104-012-1430-1

    Article  Google Scholar 

  • Souza R, Meyer J et al (2014) Characterization of plant growth-promoting bacteria associated with rice cropped in iron-stressed soils. Ann Microbiol 65:951–964. doi:10.1007/s13213-014-0939-3

    Article  Google Scholar 

  • Stan V, Gament E et al (2011) Effects of heavy metal from polluted soils on the Rhizobium diversity. Not Bot Hort Agrobot Cluj 39:88–95. doi:10.15835/nbha3916081

    CAS  Google Scholar 

  • Stein RJ, Duarte GL et al (2009) Distinct physiological responses of two rice cultivars subjected to iron toxicity under field conditions. Ann Appl Biol 154:269–277. doi:10.1111/j.1744-7348.2008.00293.x

    Article  CAS  Google Scholar 

  • Surange S, Wollum AGN et al (1995) Characterization of Rhizobium from root nodules of leguminous trees growing in alkaline soils. Can J Microbiol 43:891–894

    Article  Google Scholar 

  • Tao G, Tian S et al (2008) Phosphate solubilizing and mineralizing abilities of bacteria isolated from soils. Pedosphere 18:515–523

    Article  CAS  Google Scholar 

  • Uchiumi T, Oowada T et al (2004) Expression islands clustered on symbiosis island of Mesorhizobium loti genome. J Bacteriol 186:2439–2448. PMID:15060047

    Google Scholar 

  • Verma JP, Yadav J et al (2004) Evaluation of plant growth promoting activities of microbial strains and their effect on growth and yield of chickpea (Cicer arietinum L.) in India. Soil Biol Biochem 70:33–37. doi:10.1016/j.soilbio.2013.12.001

    Article  Google Scholar 

  • Vessey KJ (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586. doi:10.1023/A:1026037216893

    Article  CAS  Google Scholar 

  • Watkin ELJ, O’Hara GW et al (2003) Physiological responses to acid stress of an acid-soil tolerant and an acid-soil sensitive strain of Rhizobium leguminosarum biovar trifolii. Soil Biol Biochem 35:621–624. doi:10.1016/S0038-0717(03)00012-9

    Article  CAS  Google Scholar 

  • Weyens N, van der Lelie D et al (2009) Phytoremediation: plant-endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254. PMID:19327979

    Google Scholar 

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate solubilizing fungi. Adv Agron 69:99–151. doi:10.1016/S0065-2113(08)60948-7

    Article  CAS  Google Scholar 

  • Wilson PW, Burris RH (1947) The mechanism of biological nitrogen fixation. Bacteriol Rev 11(1):41–73. PMCID:PMC440909

    Google Scholar 

  • Yanni YG, Dazzo FB (2010) Enhancement of rice production using endophytic strains of Rhizobium leguminosarum bv. trifolii in extensive field inoculation trials within the Egypt Nile delta. Plant Soil 336:129–142. doi:10.1007/s11104-010-0454-7

    Article  CAS  Google Scholar 

  • Yanni YG, Dazzo FB (2015) Occurrence and ecophysiology of the natural endophytic Rhizobium–Rice Association and Translational Assessment of its biofertilizer performance within the Egypt Nile Delta. In: de Bruijn FJ (ed) Biological nitrogen fixation. Wiley, Hoboken, NJ. doi:10.1002/9781119053095.ch111

    Google Scholar 

  • Yanni YG, Rizk RY et al (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessments of its potential to promote rice growth. Plant Soil 194:99–114. doi:10.1023/A:1004269902246

    Article  CAS  Google Scholar 

  • Yanni YG, Rizk RY et al (2001) The beneficial plant growth promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Aust J Plant Physiol 28:845–870. doi:10.1071/PP01069

    CAS  Google Scholar 

  • Yoo ID, Fujii T et al (1986) Dinitrogen fixation of rice-Klebsiella associations. Crop Sci 26:297–301. doi:10.2135/cropsci1986.0011183X002600020018x

    Article  CAS  Google Scholar 

  • You CB, Zhou FY (1989) Non-nodular endorhizospheric nitrogen fixation in wetland rice. Can J Microbiol 35:403–408

    Article  CAS  Google Scholar 

  • Zhang XP, Karsisto M et al (1991) Diversity of Rhizobium bacteria isolated from the root nodules of leguminous trees. Int J Syst Evol Bacteriol 41:104–113

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalaivani K. Nadarajah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nadarajah, K.K. (2017). Rhizobium in Rice Yield and Growth Enhancement. In: Hansen, A., Choudhary, D., Agrawal, P., Varma, A. (eds) Rhizobium Biology and Biotechnology. Soil Biology, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-319-64982-5_6

Download citation

Publish with us

Policies and ethics