Skip to main content

Dynamic Visuospatial Ability and Learning from Dynamic Visualizations

  • Chapter
  • First Online:
Learning from Dynamic Visualization

Abstract

It is common for instruction in the areas of science, technology, engineering and mathematics (STEM) to include dynamic visualizations such as animations and videos in the hopes that they will help learners understand dynamic relationships within the material. Yet, research on dynamic visualizations has shown that they sometimes fail to benefit learning. The main purpose of this chapter is to explore a particular aptitude-by-treatment interaction that might better illuminate when dynamic visualizations may be most likely to facilitate learning. The studies reported here assess Multiple-Object Dynamic Spatial Ability, a particular set of spatial skills involving integrating information from multiple objects over time and space, and discuss its relation to learning from dynamic visualizations. When dynamic spatial abilities are considered, advantages can be seen for presenting dynamic visualizations specifically for students with lower dynamic visuospatial ability on topics that require dynamic spatial/temporal representations. These results suggest that the assessment of learners’ dynamic visuospatial ability could be useful for tailoring instruction and providing scaffolding to ensure that all learners are able to form understanding of dynamic topics and visualizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainsworth, S., & Th Loizou, A. (2003). The effects of self-explaining when learning with text or diagrams. Cognitive Science, 27, 669–681.

    Article  Google Scholar 

  • Berney, S., & BĂ©trancourt, M. (2017). Learning three-dimensional anatomical structures with animation: Effects of orientation references and learners’ spatial ability. In R. Lowe & R. Ploetzner (Eds.), Learning from dynamic visualization – Innovations in research and application. Berlin: Springer (this volume).

    Google Scholar 

  • Black, A. A. (2005). Spatial ability and earth science conceptual understanding. Journal of Geoscience Education, 53, 402–414.

    Article  Google Scholar 

  • Boucheix, J. M., & Schneider, E. (2009). Static and animated presentations in learning dynamic mechanical systems. Learning and Instruction, 19, 112–127.

    Article  Google Scholar 

  • Bower, G. H., & Morrow, D. G. (1990). Mental models in narrative comprehension. Science, 247, 44–49.

    Google Scholar 

  • Carroll, J. B. (1993). Human cognitive abilities: A survey of factor analytic studies. New York: Cambridge University Press.

    Book  Google Scholar 

  • Carter, C. S., LaRussa, M. A., & Bodner, G. M. (1987). A study of two measures of spatial ability as predictors of success in different levels of general chemistry. Journal of Research in Science Teaching, 24, 645–657.

    Article  Google Scholar 

  • Center for Educational Technologies. (1997). Volcanoes and the Earth. In Exploring the environment. Retrieved from http://www.cotf.edu/ete/modules/volcanoes/volcano.html.

  • ChanLin, L. J. (1998). Animation to teach students of different knowledge levels. Journal of Instructional Psychology, 25, 166–175.

    Google Scholar 

  • ChanLin, L. J. (2000). Attributes of animation for learning scientific knowledge. Journal of Instructional Psychology, 27, 228–238.

    Google Scholar 

  • Chi, M. T., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-explanations: How students study and use examples in learning to solve problems. Cognitive Science, 13, 145–182.

    Google Scholar 

  • Contreras, M. J., Colom, R., Hernandez, J. M., & Santacreu, J. (2003). Is static spatial performance distinguishable from dynamic spatial performance? A latent-variable analysis. The Journal of General Psychology, 130, 277–288.

    Article  Google Scholar 

  • Contreras, M. J., Colom, R., Shih, P. C., Alava, M. J., & Santacreu, J. (2001). Dynamic spatial performance: Sex and educational differences. Personality and Individual Differences, 30, 117–126.

    Article  Google Scholar 

  • Conway, A. R. A., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., & Engle, R. W. (2005). Working memory span tasks: A methodological review and user’s guide. Psychonomic Bulletin and Review, 12, 769–786.

    Google Scholar 

  • Cooper, L. A. (1975). Mental rotation of random two-dimensional shapes. Cognitive Psychology, 7, 20–43.

    Google Scholar 

  • Cooper, L. A., & Shepard, R. N. (1973). Chronometric studies of the rotation of mental images. In W. G. Chase (Ed.), Visual information processing (pp. 75–176). New York: Academic Press.

    Chapter  Google Scholar 

  • Craig, S. D., Gholson, B., & Driscoll, D. M. (2002). Animated pedagogical agents in multimedia educational environments: Effects of agent properties, picture features and redundancy. Journal of Educational Psychology, 94, 428–434.

    Article  Google Scholar 

  • De Beni, R., Pazzaglia, F., Gyselinck, V., & Meneghetti, C. (2005). Visuospatial working memory and mental representation of spatial descriptions. European Journal of Cognitive Psychology, 17, 77–95.

    Google Scholar 

  • D’Oliveira, T. C. (2004). Dynamic spatial ability: An exploratory analysis and a confirmatory study. International Journal of Aviation Psychology, 14, 19–38.

    Article  Google Scholar 

  • Fincher-Kiefer, R. (2001). Perceptual components of situation models. Memory and Cognition, 29, 336–343.

    Article  Google Scholar 

  • Fincher-Kiefer, R., & D’Agostino, P. R. (2004). The role of visuospatial resources in generating predictive and bridging inferences. Discourse Processes, 37, 205–224.

    Article  Google Scholar 

  • Fischer, S. C., Hickey, D. T., Pellegrino, J. W., & Law, D. J. (1994). Strategic processing in dynamic spatial reasoning tasks. Learning and Individual Differences, 6, 65–105.

    Article  Google Scholar 

  • Fischer, S., Lowe, R. K., & Schwan, S. (2008). Effects of presentation speed of a dynamic visualization on the understanding of a mechanical system. Applied Cognitive Psychology, 22, 1126–1141.

    Article  Google Scholar 

  • French, J. W., Ekstrom, R. B., & Price, L. A. (1963). Kit of reference tests for cognitive factors. Princeton, NJ: Educational Testing Service.

    Google Scholar 

  • Friedman, N. P., & Miyake, A. (2000). Differential roles for spatial and verbal working memory in the comprehension of spatial descriptions. Journal of Experimental Psychology: General, 129, 61–83.

    Article  Google Scholar 

  • Geiger, J. F., & Litwiller, R. M. (2005). Spatial working memory and gender differences in science. Journal of Instructional Psychology, 32, 49–58.

    Google Scholar 

  • Haenggi, D., Kintsch, W., & Gernsbacher, M. A. (1995). Spatial situation models and text comprehension. Discourse Processes, 19, 173–199.

    Article  Google Scholar 

  • Halpern, D. F., Benbow, C. P., Geary, D. C., Gur, R. C., Hyde, J. S., & Gernsbacher, M. A. (2007). The science of sex differences in mathematics. Psychological Science in the Public Interest, 8, 1–51.

    Article  Google Scholar 

  • Hannus, M., & Hyönä, J. (1999). Utilization of illustrations during learning of science textbook passages among low-and high-ability children. Contemporary Educational Psychology, 24, 95–123.

    Google Scholar 

  • Harp, S. F., & Mayer, R. E. (1997). The role of interest in learning from scientific text and illustrations: On the distinction between emotional interest and cognitive interest. Journal of Educational Psychology, 89, 92–102.

    Google Scholar 

  • Hays, T. A. (1996). Spatial abilities and the effects of computer animation on short-term and long-term comprehension. Journal of Educational Computing Research, 14, 139–155.

    Article  Google Scholar 

  • Hegarty, M. (1992). Mental animation: Inferring motion from static diagrams of mechanical systems. Journal of Experimental Psychology: Learning, Memory and Cognition, 18, 1084–1102.

    Google Scholar 

  • Hegarty, M., & Sims, V. K. (1994). Individual differences in mental animation during mechanical reasoning. Memory & Cognition, 22, 411–430.

    Article  Google Scholar 

  • Hegarty, M., & Steinhoff, K. (1997). Individual differences in use of diagrams as memory in mechanical reasoning. Learning and Individual Differences, 9, 19–44.

    Article  Google Scholar 

  • Hegarty, M., Crookes, R. D., Dara-Abrams, D., & Shipley, T. F. (2010). Do all science disciplines rely on spatial abilities? Preliminary evidence from self-report questionnaires. In Spatial Cognition VII (pp. 85–94). Berlin: Springer.

    Google Scholar 

  • Höffler, T. N. (2010). Spatial ability: Its influence on learning with visualizations – A meta-analytic review. Educational Psychology Review, 22, 245–269.

    Article  Google Scholar 

  • HÓ§ffler, T. N., & Leutner, D. (2007). Instructional animation versus static pictures: A meta-analysis. Learning and Instruction, 17, 722–738.

    Article  Google Scholar 

  • HÓ§ffler, T. N., & Leutner, D. (2011). The role of spatial ability in learning from instructional animations – Evidence for an ability-as-compensator hypothesis. Computers in Human Behavior, 27, 209–216.

    Article  Google Scholar 

  • Hunt, E., Pellegrino, J. W., Frick, R. W., Farr, S. A., & Alderton, D. L. (1988). The ability to reason about movement in the visual field. Intelligence, 12, 77–100.

    Article  Google Scholar 

  • Jackson, D. N., Vernon, P. A., & Jackson, D. N. (1993). Dynamic spatial performance and general intelligence. Intelligence, 17, 451–460.

    Article  Google Scholar 

  • Jaeger, A. J., & Wiley, J. (2014). Do illustrations help or harm metacomprehension accuracy? Learning and Instruction, 34, 58–73.

    Article  Google Scholar 

  • Jaeger, A. J., Jarosz, A.F., & Wiley, J. (2014, November). Know when to hold em, know when to fold em: WMC and spatial reasoning. Poster presented at the 2014 Annual Meeting of the Psychonomic Society, Long Beach.

    Google Scholar 

  • Just, M. A., & Carpenter, P. A. (1985). Cognitive coordinate systems: Accounts of mental rotation and individual differences in spatial ability. Psychological Review, 92, 137–172.

    Google Scholar 

  • Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., & Engle, R. W. (2004). The generality of working memory capacity: A latent variable approach to verbal and visuospatial memory span and reasoning. Journal of Experimental Psychology: General, 133, 189–217.

    Article  Google Scholar 

  • Koroghlanian, C., & Klein, J. D. (2004). The effect of audio and animation in multimedia instruction. Journal of Educational Multimedia and Hypermedia, 13, 23–45.

    Google Scholar 

  • Law, D. J., Pellegrino, J. W., & Hunt, E. B. (1993). Comparing the tortoise and the hare: Gender difference and experience in dynamic spatial reasoning tasks. Psychological Science, 4, 35–40.

    Article  Google Scholar 

  • Loftus, G. R., & Harley, E. M. (2004). How different spatial-frequency components contribute to visual information acquisition. Journal of Experimental Psychology. Human Perception and Performance, 30, 104–118.

    Google Scholar 

  • Lowe, R. K. (2003). Animation and learning: Selective processing of information in dynamic graphics. Learning and Instruction, 13, 157–176.

    Article  Google Scholar 

  • Lowe, R. (2004). Interrogation of a dynamic visualization during learning. Learning and Instruction, 14, 257–274.

    Article  Google Scholar 

  • Lowe, R., & Boucheix, J.-M. (2017). A composition approach to design of educational animations. In R. Lowe & R. Ploetzner (Eds.), Learning from dynamic visualization – Innovations in research and application. Berlin: Springer (this volume).

    Chapter  Google Scholar 

  • Mayer, R. E. (1989). Systematic thinking fostered by illustrations in scientific text. Journal of Educational Psychology, 81, 240–246.

    Google Scholar 

  • Mayer, R. E., & Gallini, J. K. (1990). When is an illustration worth ten thousand words? Journal of Educational Psychology, 82, 715–726.

    Google Scholar 

  • Mayer, R. E., & Moreno, R. (1998). A split-attention effect in multimedia learning: Evidence for dual processing systems in working memory. Journal of Educational Psychology, 90, 312–320.

    Google Scholar 

  • Mayer, R. E., & Moreno, R. (2002). Aids to computer-based multimedia learning. Learning and Instruction, 12, 107–119.

    Article  Google Scholar 

  • Mayer, R. E., & Sims, V. K. (1994). For whom is a picture worth a thousand words? Extension of a dual-coding theory of multimedia learning. Journal of Educational Psychology, 86, 389–401.

    Article  Google Scholar 

  • Meneghetti, C., De Beni, R., Pazzaglia, F., & Gyselinck, V. (2011). The role of visuo-spatial abilities in recall of spatial descriptions: A mediation model. Learning and Individual Differences, 21, 719–723.

    Google Scholar 

  • Moreno, R., & Mayer, R. E. (1999). Cognitive principles of multimedia learning: The role of modality and contiguity. Journal of Educational Psychology, 91, 358–368.

    Google Scholar 

  • Mumaw, R. J., Pellegrino, J. W., Kail, R. V., & Carter, P. (1984). Different slopes for different folks: Process analysis of spatial aptitude. Memory and Cognition, 12, 515–521.

    Article  Google Scholar 

  • National Research Council. (2006). Learning to think spatially. Washington, DC: The National Academies Press.

    Google Scholar 

  • Newcombe, N. S., & Shipley, T. F. (2012). Thinking about spatial thinking: New typology, new assessments. In J. S. Gero (Ed.), Studying visual and spatial reasoning for design creativity (pp. 1–18). New York: Springer.

    Google Scholar 

  • Palmiter, S., & Elkerton, J. (1993). Animated demonstrations for learning procedural computer-based tasks. Human-Computer Interaction, 8, 193–216.

    Google Scholar 

  • Pellegrino, J. W., & Hunt, E. B. (1991). Cognitive models for understanding and assessing spatial abilities. In H. A. H. Rowe (Ed.), Intelligence: Reconceptualization and measurement (pp. 203–225). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Pribyl, J. R., & Bodner, G. M. (1987). Spatial ability and its role in organic chemistry: A study of four organic courses. Journal of Research in Science Teaching, 24, 229–240.

    Article  Google Scholar 

  • Rieber, L. P. (1990). Using computer animated graphics with science instruction in children. Journal of Educational Psychology, 82, 135–140.

    Article  Google Scholar 

  • Rieber, L. P. (1991). Animation, incidental learning, and continuing motivation. Journal of Educational Psychology, 83, 318–328.

    Article  Google Scholar 

  • Rieber, L. P., Boyce, M. J., & Assad, C. (1990). The effects of computer animation on adult learning and retrieval tasks. Journal of Computer-Based Instruction, 17, 46–52.

    Google Scholar 

  • Rinck, M. (2005). Spatial situation models. In P. Shah & A. Miyake (Eds.), The Cambridge handbook of visuospatial thinking (pp. 334–382). New York: Cambridge University Press.

    Google Scholar 

  • Sanchez, C. A. (2012). Enhancing visuospatial performance through video game training to increase learning in visuospatial science domains. Psychonomic Bulletin and Review, 19, 58–65.

    Article  Google Scholar 

  • Sanchez, C. A., & Branaghan, R. J. (2009). The interaction of map resolution and spatial abilities on map learning. International Journal of Human-Computer Studies, 67, 475–481.

    Article  Google Scholar 

  • Sanchez, C. A., & Wiley, J. (2006). An examination of the seductive details effect in terms of working memory capacity. Memory & Cognition, 34, 344–355.

    Article  Google Scholar 

  • Sanchez, C. A., & Wiley, J. (2010). Sex differences in science learning: Closing the gap through animations. Learning and Individual Differences, 20, 271–275.

    Article  Google Scholar 

  • Sanchez, C. A., & Wiley, J. (2014). The role of dynamic spatial ability in geoscience text comprehension. Learning and Instruction, 31, 33–45.

    Google Scholar 

  • Schnotz, W., & Rasch, T. (2005). Enabling, facilitating, and inhibiting effects of animation in multimedia learning: Why reduction of cognitive load can have negative results on learning. Educational Technology Research and Development, 53, 1042–1629.

    Article  Google Scholar 

  • Schnotz, W., Böckheler, J., & Grzondziel, H. (1999). Individual and co-operative learning with interactive animated pictures. European Journal of Psychology of Education, 14, 245–265.

    Google Scholar 

  • Serra, M. J., & Dunlosky, J. (2010). Metacomprehension judgments reflect the belief that diagrams improve learning from text. Memory, 18, 698–711.

    Article  Google Scholar 

  • Sibley, D. F. (2005). Visual abilities and misconceptions about plate tectonics. Journal of Geoscience Education, 53, 471–477.

    Article  Google Scholar 

  • Smith, G. A., & Bermea, S. B. (2012). Using students’ sketches to recognize alternative conceptions about plate tectonics persisting from prior instruction. Journal of Geoscience Education, 60, 350–359.

    Article  Google Scholar 

  • Stumpf, H., & Eliot, J. (1995). Gender-related differences in spatial ability and the k factor of general spatial ability in a population of academically talented students. Personality and Individual Differences, 19, 33–45.

    Article  Google Scholar 

  • Tversky, B., Morrison, J. B., & BĂ©trancourt, M. (2002). Animation: Can it facilitate? International Journal of Human-Computer Studies, 57, 247–262.

    Article  Google Scholar 

  • Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., et al. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139, 352–402.

    Article  Google Scholar 

  • Wagner, I., & Schnotz, W. (2017). Learning from static and dynamic visualizations: What kind of questions should we ask? In R. Lowe & R. Ploetzner (Eds.), Learning from dynamic visualization – Innovations in research and application. Berlin: Springer (this volume).

    Google Scholar 

  • Westelinck, K., Valcke, M., De Craene, B., & Kirschner, P. (2005). Multimedia learning in social sciences: Limitations of external graphical representations. Computers in Human Behavior, 21, 555–573.

    Google Scholar 

  • Wiley, J. (2001). Supporting understanding through task and browser design. In L. R. Gleitman & A. K. Joshi (Eds.), Proceedings of the twenty-third annual conference of the Cognitive Science Society (pp. 1136–1143). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Wiley, J. (2003). Cognitive and educational implications of visually-rich media: Images and imagination. In M. Hocks & M. Kendrick (Eds.), Eloquent images: Word and image in the age of new media (pp. 201–218). Cambridge, MA: MIT Press.

    Google Scholar 

  • Wiley, J., Ash, I. K., Sanchez, C. A., & Jaeger, A. (2011). Clarifying readers’ goals for learning from expository science texts. In M. McCrudden, J. Magliano, & G. Schraw (Eds.), Text relevance and learning from text (pp. 353–374). Greenwich, CT: Information Age Publishing.

    Google Scholar 

  • Wiley, J., & Sanchez, C. A. (2010). Constraints on learning from expository science texts. In N. L. Stein & S. Raudenbush (Eds.), Developmental cognitive science goes to school (pp. 45–58). New York: Routledge.

    Google Scholar 

  • Wiley, J., Sanchez, C. A., & Jaeger, A. J. (2014). The individual differences in working memory capacity principle for multimedia learning. In R. Mayer (Ed.), The Cambridge handbook of multimedia learning (2nd ed., pp. 598–619). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Wu, H., & Shah, P. (2004). Exploring visuospatial thinking in chemistry learning. Science Education, 88, 465–492.

    Article  Google Scholar 

Download references

Acknowledgements

Portions of this work were supported by the APA dissertation research award to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Sanchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sanchez, C.A., Wiley, J. (2017). Dynamic Visuospatial Ability and Learning from Dynamic Visualizations. In: Lowe, R., Ploetzner, R. (eds) Learning from Dynamic Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-56204-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56204-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56202-5

  • Online ISBN: 978-3-319-56204-9

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics