Skip to main content
Log in

Spatial Ability: Its Influence on Learning with Visualizations—a Meta-Analytic Review

  • Review Article
  • Published:
Educational Psychology Review Aims and scope Submit manuscript

Abstract

This meta-analytical review focuses on the role of spatial ability when learning with pictorial visualizations. By means of selective theoretical review and meta-analysis (the latter regarding 27 different experiments from 19 studies), several sub-factors of spatial ability are considered as well as dynamic and non-dynamic, interactive and non-interactive visualizations. An overall effect of r = 0.34 (95%-CI 0.28 to 0.39) demonstrating a medium advantage for high-spatial-ability learners when working with visualizations is calculated. More importantly, two moderators could be identified: Learners with low spatial ability can be significantly supported by a dynamic instead of a non-dynamic visualization as well as by 3d- instead of 2d-illustrations. Results are discussed in consideration of contemporary theories of multimedia learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Spatial reasoning, as it is called by Hannafin et al. (2008), was measured by Raven’s Progressive Matrices (Raven et al. 1998). Note that the ability assessed by Raven’s tests is generally not considered to be a factor of spatial ability (as stated by Hannafin et al.) but a factor of general intelligence (or, more specifically, reasoning/induction). However, Carroll (1993) found that several sub-factors of spatial ability (spatial visualization, spatial relations, and perceptual speed) as well as factors generally measured with tasks involving visual forms such as Raven’s have high loadings on the same higher-order factor. Because of these correlations, it was decided to leave Hannafin et al.’s study in the meta-analysis (up to this point).

References

  • Ainsworth, S., & VanLabeke, N. (2004). Multiple forms of dynamic representation. Learning and Instruction, 14, 241–255.

    Article  Google Scholar 

  • Amthauer, R., Burkhard, B., Liepmann, D., & Beauducel, A. (1999). Intelligenz Struktur Test IST 2000 [Intelligence Structure Test 2000]. Göttingen: Hogrefe.

    Google Scholar 

  • Ayres, P., & Paas, F. (2007). Making instructional animations more effective: A cognitive load approach. Applied Cognitive Psychology, 21, 695–700.

    Article  Google Scholar 

  • Ayres, P., & Paas, F. (2009). Interdisciplinary perspectives inspiring a new generation of cognitive load research. Educational Psychology Research, 21, 1–9.

    Article  Google Scholar 

  • Bangert-Drowns, R. L., Hurley, M. M., & Wilkinson, B. (2004). The effects of school-based writing-to-learn interventions on academic achievement: A meta-analysis. Review of Educational Research, 74, 29–58.

    Article  Google Scholar 

  • Barrat, E. S. (1953). An analysis of verbal reports of solving spatial problems as an aid in defining spatial factors. Journal of Psychology, 36, 17–25.

    Article  Google Scholar 

  • Bennett, G. K., Seashore, H. G., & Wesman, A. G. (2002). Differential aptitude test (5th ed.). Paris, France: ECPA.

    Google Scholar 

  • Bétrancourt, M., & Tversky, B. (2000). Effect of computer animation on users' performance: A review. Travail-Humain, 63, 311–329.

    Google Scholar 

  • Blake, T. (1977). Motion in instructional media: Some subject-display mode interactions. Perceptual and Motor Skills, 44, 975–985.

    Google Scholar 

  • *Boucheix, J.-M., & Schneider, E. (2009). Static and animated presentations in learning dynamic mechanical systems. Learning and Instruction, 19, 112–127.

    Article  Google Scholar 

  • Carney, R. N., & Levin, J. R. (2002). Pictorial illustrations still improve students' learning from text. Educational Psychology Review, 14, 5–26.

    Article  Google Scholar 

  • Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. New York: Cambridge University Press.

    Book  Google Scholar 

  • Clark, J. M., & Paivio, A. (1991). Dual coding theory and education. Educational Psychology Review, 3, 149–210.

    Article  Google Scholar 

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • *Diaz, D. D., & Sims, V. K. (2003). Augmenting virtual environments: The influence of spatial ability on learning from integrated displays. High Ability Studies, 14, 191–212.

    Article  Google Scholar 

  • D’Oliveira, T. C. (2004). Dynamic spatial ability: An exploratory analysis and a confirmatory study. International Journal of Aviation Psychology, 14, 19–38.

    Article  Google Scholar 

  • Ekstrom, R. B., French, J. W., Harman, H. H., & Dermen, D. (1976). Manual for kit of factor-referenced cognitive tests. Princeton, NJ: Educational Testing Service.

    Google Scholar 

  • Eliot, J., & Hauptman, A. (1981). Different dimensions of spatial ability. Studies in Science Education, 8, 45–66.

    Article  Google Scholar 

  • Eliot, J., & Smith, I. M. (1983). An international directory of spatial tests. Windsor, England: NFER/Nelson.

  • Erez, A., Bloom, M. C., & Wells, M. T. (1996). Using random rather than fixed effect models in meta-analysis: Implications for situational specificity and validity generalization. Personnel Psychology, 49, 275–306.

    Article  Google Scholar 

  • French, J. W. (1951). The description of aptitude and achievement tests in terms of rotated factors. Psychometric Monographs, 5.

  • Garg, A. X., Norman, G., & Sperotable, L. (2001). How medical students learn spatial anatomy. The Lancet, 357, 363–364.

    Article  Google Scholar 

  • Gibson, J. J. (1947). Army air forces aviation psychology program, report no. 7: Motion picture testing and research. Washington, DC: U.S. Government Printing Office.

    Google Scholar 

  • Ginns, P. (2005). Meta-analysis of the modality effect. Learning and Instruction, 15, 313–331.

    Article  Google Scholar 

  • Glass, G. V., McGaw, B., & Smith, M. L. (1981). Meta-analysis in social research. Beverly Hills, CA: Sage.

    Google Scholar 

  • Guilford, J. P., & Zimmerman, W. S. (1948). The Guilford–Zimmerman aptitude survey. Journal of Applied Psychology, 32, 24–34.

    Article  Google Scholar 

  • *Hannafin, R. D., Truxaw, M. P., Vermillion, J. R., & Liu, Y. J. (2008). Effects of spatial ability and instructional program on geometry achievement. Journal of Educational Research, 101, 148–156.

    Article  Google Scholar 

  • *Hays, T. A. (1996). Spatial abilities and the effects of computer animation on short-term and long-term comprehension. Journal of Educational Computing Research, 14, 139–155.

    Article  Google Scholar 

  • Hedges, L. V., & Olkin, I. (1985). Statistical methods for meta-analysis. Orlando, FL: Academic.

    Google Scholar 

  • Hegarty, M. (2004). Dynamic visualizations and learning: Getting to the difficult questions. Learning and Instruction, 14, 343–351.

    Article  Google Scholar 

  • Hegarty, M. (2005). Multimedia learning about physical systems. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 447–465). Cambridge, England: Cambridge University Press.

    Google Scholar 

  • Hegarty, M., & Kozhevnikov, M. (1999). Spatial abilities, working memory and mechanical reasoning. In J. Gero & B. Tversky (Eds.), Visual and spatial reasoning in design (pp. 221–241). Sydney, Australia: University of Sydney.

    Google Scholar 

  • Hegarty, M., & Kriz, S. (2008). Effects of knowledge and spatial ability on learning from animation. In R. Lowe & W. Schnotz (Eds.), Learning with animation: Research implications for design (pp. 3–29). Cambridge, England: Cambridge University Press.

    Google Scholar 

  • Hegarty, M., & Sims, V. K. (1994). Individual differences in mental animation during mechanical reasoning. Memory and Cognition, 22, 411–430.

    Google Scholar 

  • Hegarty, M., & Steinhoff, K. (1997). Individual differences in use of diagrams as external memory in mechanical reasoning. Learning and Individual Differences, 9, 19–24.

    Article  Google Scholar 

  • Hegarty, M., & Waller, D. (2004). A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence, 32, 175–191.

    Article  Google Scholar 

  • Hegarty, M., & Waller, D. (2005). Individual differences in spatial abilities. In P. Shah & A. Miyake (Eds.), The Cambridge handbook of visuospatial thinking (pp. 121–169). Cambridge, England: Cambridge University Press.

    Google Scholar 

  • *Hegarty, M., Kriz, S., & Cate, C. (2003). The roles of mental animations and external animations in understanding mechanical systems. Cognition and Instruction, 21, 325–360.

    Article  Google Scholar 

  • Heller, K. A., & Perleth, C. (2000). Kognitiver Fähigkeitstest für 4. bis 12. Klassen, Revision (KFT 4–12+R) [Cognitive Capability Test for grades 4 to 12; revision]. Göttingen: Beltz Testgesellschaft.

    Google Scholar 

  • Höffler, T. N., Sumfleth, E., & Leutner, D. (2006). The role of spatial ability when learning from an instructional animation or a series of static pictures. In J. Plass (Ed.), Proceedings of the NYU Symposium on Technology and Learning, April 2006. New York: New York University.

    Google Scholar 

  • Höffler, T. N., & Leutner, D. (2007). Instructional animation versus static pictures: A meta-analysis. Learning and Instruction, 17, 722–738.

    Article  Google Scholar 

  • *Höffler, T. N., & Leutner, D. (2007b). Learning from an instructional animation vs. a series of static pictures: The role of spatial ability. In American Educational Research Association (Ed.), The World of Educational Quality. 2007 Annual Meeting. April 9–13. Chicago (p. 137). Washington, DC: AERA.

    Google Scholar 

  • Höffler, T. N., Prechtl, H., & Nerdel, C. (2010). The influence of visual cognitive style when learning from instructional animations and static pictures. Learning and Individual Differences. doi:10.1016/j.lindif.2010.03.001.

  • Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 65–70.

    Google Scholar 

  • Horn, W. (1983). Leistungsprüfsystem [Performance test system]. Göttingen: Hogrefe.

    Google Scholar 

  • *Huk, T. (2006). Who benefits from learning with 3d models? The case of spatial ability. Journal of Computer-Assisted Learning, 22, 392–404.

    Article  Google Scholar 

  • *Huk, T., & Steinke, M. (2007). Learning cell biology with close-up views or connecting lines: Evidence for the structure mapping effect. Computers in Human Behavior, 23, 1089–1104.

    Article  Google Scholar 

  • Hunter, J. E., & Schmidt, F. L. (1990). Methods of meta-analysis: Correcting error and bias in research findings. Newbury Park, CA: Sage.

    Google Scholar 

  • Hunter, J. E., & Schmidt, F. L. (2000). Fixed effects vs. random effects meta-analysis methods: Implications for cumulative research knowledge. International Journal of Selection and Assessment, 8, 275–292.

    Article  Google Scholar 

  • Isaak, M. I., & Just, M. A. (1995). Constraints on the processing of rolling motion: The curtate cycloid illusion. Journal of Experimental Psychology: Human Perception and Performance, 21, 1391–1408.

    Article  Google Scholar 

  • Jaccard, J. (2006). Zumastat 4.0. [Computer software]. Miami, FL: Applied Scientific Analysis.

    Google Scholar 

  • Jonassen, D. H., & Grabowski, B. L. (1993). Handbook of individual differences, learning, and instruction. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Kalyuga, S. (2007). Expertise reversal effect and its implications for learner-tailored instruction. Educational Psychology Review, 19, 509–539.

    Article  Google Scholar 

  • Kalyuga, S. (2008). Relative effectiveness of animated and static diagrams: An effect of learner prior knowledge. Computers in Human Behavior, 24, 852–861.

    Article  Google Scholar 

  • *Koroghlanian, C., & Klein, J. D. (2004). The effect of audio and animation in multimedia instruction. Journal of Educational Multimedia and Hypermedia, 13, 23–46.

    Google Scholar 

  • Kozhevnikov, M., Motes, M., & Hegarty, M. (2007). Spatial visualization in physics problem solving. Cognitive Sciences, 31, 549–579.

    Google Scholar 

  • Large, A., Beheshti, J., Breuleux, A., & Renaud, A. (1996). Effect of animation in enhancing descriptive and procedural texts in a multimedia learning environment. Journal of the American Society for Information Science, 47, 437–448.

    Article  Google Scholar 

  • *Lee, H. (2007). Instructional design of web-based simulations for learners with different levels of spatial ability. Instructional Science, 35, 467–479.

    Article  Google Scholar 

  • Lewalter, D. (2003). Cognitive strategies for learning from static and dynamic visuals. Learning and Instruction, 13, 177–189.

    Article  Google Scholar 

  • Lipsey, M. W., & Wilson, D. B. (2001). Practical meta-analysis. Thousand Oaks, CA: Sage.

    Google Scholar 

  • Lohman, D. F. (1979). Spatial ability: review and re-analysis of the correlational literature. Tech. Rep. No. 8, Stanford University.

  • Lohman, D. F. (1988). Spatial ability as traits, processes, and knowledge. In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence (pp. 181–248). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Low, R., & Sweller, J. (2005). The modality principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 147–158). Cambridge, England: Cambridge University Press.

    Google Scholar 

  • *Massa, L. J., & Mayer, R. E. (2006). Testing the ATI hypothesis: Should multimedia instruction accommodate verbalizer-visualizer cognitive style? Learning and Individual Differences, 16, 321–335.

    Article  Google Scholar 

  • Mayer, R. E. (1997). Multimedia learning: Are we asking the right questions? Educational Psychologist, 32, 1–19.

    Article  Google Scholar 

  • Mayer, R. E. (2001). Multimedia learning. Cambridge, England: Cambridge University Press.

    Google Scholar 

  • Mayer, R. E. (2005). The Cambridge handbook of multimedia learning. Cambridge, England: Cambridge University Press.

    Google Scholar 

  • Mayer, R. E., & Anderson, R. (1991). Animations need narrations: An experimental test of a dual-coding hypothesis. Journal of Educational Psychology, 83, 484–490.

    Article  Google Scholar 

  • *Mayer, R. E., & Sims, V. K. (1994). For whom is a picture worth a thousand words? Extensions of a dual-coding theory of multimedia learning. Journal of Educational Psychology, 82, 715–726.

    Article  Google Scholar 

  • Mayer, R. E., Hegarty, M., Mayer, S., & Campbell, J. E. (2005). When static media promote active learning: Annotated illustrations versus narrated animations in multimedia instruction. Journal of Experimental Psychology: Applied, 11, 256–265.

    Article  Google Scholar 

  • McGee, M. G. (1979). Human spatial abilities: Sources of sex differences. New York: Praeger.

    Google Scholar 

  • Miyake, A., Friedman, N. P., Rettinger, D. A., Shah, P., & Hegarty, M. (2001). How are visuospatial working memory, executive functioning, and spatial abilities related? A latent-variable analysis. Journal of Experimental Psychology, 130, 621–640.

    Google Scholar 

  • Moreno, R., & Mayer, R. (1999). Cognitive principles of multimedia learning: The role of modality and contiguity. Journal of Educational Psychology, 91, 358–368.

    Article  Google Scholar 

  • Mousavi, S., Low, R., & Sweller, J. (1995). Reducing cognitive load by mixing auditory and visual presentation modes. Journal of Educational Psychology, 87, 319–334.

    Article  Google Scholar 

  • *Münzer, S., Seufert, T., & Brünken, R. (2009). Learning from multimedia presentations: Facilitation function of animations and spatial abilities. Learning and Individual Differences, 19, 481–485.

    Article  Google Scholar 

  • *Narayanan, N. H., & Hegarty, M. (2002). Multimedia design for communication of dynamic information. International Journal of Human-Computer Studies, 57, 279–315.

    Article  Google Scholar 

  • Orwin, R. G. (1983). A fail-safe N for effect size in meta-analysis. Journal of Educational Statistics, 8, 157–159.

    Article  Google Scholar 

  • Paivio, A. (1978). A dual coding approach to perception and cognition. In H. L. Pick & E. Saltzman (Eds.), Modes of perceiving and processing information (pp. 39–52). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Paivio, A. (1986). Mental representations: A dual coding approach. Oxford, England: Oxford University Press.

    Google Scholar 

  • Pellegrino, J. W., & Hunt, E. B. (1989). Computer-controlled assessment of static and dynamic spatial reasoning. In R. F. Dillon & J. W. Pellegrino (Eds.), Testing: Theoretical and applied perspectives (pp. 174–198). New York: Praeger.

    Google Scholar 

  • Pellegrino, J. W., Alderton, D. L., & Shute, V. J. (1984). Understanding spatial ability. Educational Psychologist, 19, 239–253.

    Google Scholar 

  • *Plass, J. L., Chun, D., Mayer, R. E., & Leutner, D. (2003). Cognitive load in reading a foreign language text with multimedia aids and the influence of verbal and spatial abilities. Computers in Human Behavior, 19, 211–220.

    Article  Google Scholar 

  • Quintana, S. M., & Minami, T. (2006). Guidelines for meta-analyses of counseling psychology research. The Counseling Psychologist, 34, 839–877.

    Article  Google Scholar 

  • Raven, J., Raven, J. C., & Court, J. H. (1998). Coloured progressive matrices. Oxford, England: Oxford Psychologists Press.

    Google Scholar 

  • Roff, M. (1952). A factorial study of tests in the perceptual area. Psychometric Monograph No. 8.

  • Rosenthal, R. (1979). The “file-drawer problem” and tolerance for null results. Psychological Bulletin, 86, 638–641.

    Article  Google Scholar 

  • Rosenthal, R. (1991). Meta-analytic procedures for social research. Beverly Hills, CA: Sage.

    Google Scholar 

  • *Sanchez, C. A., & Branaghan, R. J. (2009). The interaction of map resolution and spatial abilities on map learning. International Journal of Human-Computer Studies, 67, 475–481.

    Article  Google Scholar 

  • Schwan, S., & Riempp, R. (2004). The cognitive benefits of interactive videos: Learning to tie nautical knots. Learning and Instruction, 14, 293–305.

    Article  Google Scholar 

  • Shah, P., Freedman, E. G., & Vekiri, I. (2005). The comprehension of quantitative information in graphical displays. In P. Shah & A. Miyake (Eds.), The Cambridge handbook of visuospatial thinking (pp. 426–476). Cambridge, England: Cambridge University Press.

    Google Scholar 

  • Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171, 701–703.

    Article  Google Scholar 

  • Stumpf, H., & Fay, E. (1983). Schlauchfiguren: Ein Test zur Beurteilung des räumlichen Vorstellungsvermögens [Tube figures: A test to assess spatial ability]. Göttingen, Germany: Hogrefe.

    Google Scholar 

  • Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learning and Instruction, 4, 295–312.

    Article  Google Scholar 

  • Sweller, J., & Chandler, P. (1994). Why some material is difficult to learn. Cognition and Instruction, 12, 185–233.

    Article  Google Scholar 

  • Swezey, R. W. (1991). Effects of instructional strategy and motion presentation conditions on the acquisition and transfer of electromechanical troubleshooting skill. Human Factors, 33, 309–323.

    Google Scholar 

  • Thurstone, L. L. (1950). Some primary abilities in visual thinking (Tech. Rep. No. 59). Chicago: University of Chicago.

    Google Scholar 

  • Tversky, B., Morrison, J. B., & Bétrancourt, M. (2002). Animation: Can it facilitate? International Journal of Human Computer Studies, 57, 247–262.

    Article  Google Scholar 

  • *Urhahne, D., Nick, S., & Schanze, S. (2009). The effect of three-dimensional simulations on the understanding of chemical structures and their properties. Research in Science Education, 39, 495–513.

    Article  Google Scholar 

  • Van Merrienboer, J. G., & Sweller, J. (2005). Cognitive load theory and complex learning: Recent developments and future directions. Educational Psychology Review, 17, 147–177.

    Article  Google Scholar 

  • *Wender, K. F., & Mühlböck, J.-S. (2003). Animated diagrams in teaching statistics. Behavior Research Methods, Instruments, & Computers, 35, 255–258.

    Google Scholar 

  • *Westerman, S. J. (1997). Individual differences in the use of command line and menu computer interfaces. Journal of Human-Computer Interaction, 9, 183–198.

    Article  Google Scholar 

  • Yang, E. M., Andre, T., & Greenbowe, T. Y. (2003). Spatial ability and the impact of visualization/animation on learning electrochemistry. International Journal of Science Education, 25, 329–349.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim N. Höffler.

Additional information

References marked with an asterisk indicate studies included in the meta-analysis.

Research in multimedia learning and individual differences

Rights and permissions

Reprints and permissions

About this article

Cite this article

Höffler, T.N. Spatial Ability: Its Influence on Learning with Visualizations—a Meta-Analytic Review. Educ Psychol Rev 22, 245–269 (2010). https://doi.org/10.1007/s10648-010-9126-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10648-010-9126-7

Keywords

Navigation