Skip to main content

EAAT2 and the Molecular Signature of Amyotrophic Lateral Sclerosis

  • Chapter
  • First Online:
Glial Amino Acid Transporters

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 16))

Abstract

Amyotrophic lateral sclerosis (ALS) is a rapid and fatal neurodegenerative disease, primarily affecting upper and lower motor neurons. It is an extremely heterogeneous disease in both cause and symptom development, and its mechanisms of pathogenesis remain largely unknown. Excitotoxicity, a process caused by excessive glutamate signaling, is believed to play a substantial role, however. Excessive glutamate release, changes in postsynaptic glutamate receptors, and reduction of functional astrocytic glutamate transporters contribute to excitotoxicity in ALS. Here, we explore the roles of each, with a particular emphasis on glutamate transporters and attempts to increase them as therapy for ALS. Screening strategies have been employed to find compounds that increase the functional excitatory amino acid transporter EAAT2 (GLT1), which is responsible for the vast majority of glutamate clearance. One such compound, ceftriaxone, was recently tested in clinical trials but unfortunately did not modify disease course, though its effect on EAAT2 expression in patients was not measured.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Aizawa H, Sawada J, Hideyama T, Yamashita T, Katayama T, Hasebe N, et al. TDP-43 pathology in sporadic ALS occurs in motor neurons lacking the RNA editing enzyme ADAR2. Acta Neuropathol (Berl). 2010 Apr 7;120(1):75–84.

    Article  CAS  Google Scholar 

  • Andreadou E, Kapaki E, Kokotis P, Paraskevas GP, Katsaros N, Libitaki G, et al. Plasma glutamate and glycine levels in patients with amyotrophic lateral sclerosis: the effect of riluzole treatment. Clin Neurol Neurosurg. 2008 Mar;110(3):222–6.

    Article  PubMed  Google Scholar 

  • Anneser JMH, Chahli C, Borasio GD. Protective effect of metabotropic glutamate receptor inhibition on amyotrophic lateral sclerosis–cerebrospinal fluid toxicity in vitro. Neuroscience. 2006;141(4):1879–86.

    Article  CAS  PubMed  Google Scholar 

  • Aoki M, Lin C-LG, Rothstein JD, Geller BA, Hosler BA, Munsat TL, et al. Mutations in the glutamate transporter EAAT2 gene do not cause abnormal EAAT2 transcripts in amyotrophic lateral sclerosis. Ann Neurol. 1998 May 1;43(5):645–53.

    Article  CAS  PubMed  Google Scholar 

  • Arriza JL, Fairman WA, Wadiche JI, Murdoch GH, Kavanaugh MP, Amara SG. Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J Neurosci. 1994 Sep 1;14(9):5559–69.

    CAS  PubMed  Google Scholar 

  • Arriza JL, Eliasof S, Kavanaugh MP, Amara SG. Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci. 1997 Apr 15;94(8):4155–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Battaglia G, Riozzi B, Bucci D, Di Menna L, Molinaro G, Pallottino S, et al. Activation of mGlu3 metabotropic glutamate receptors enhances GDNF and GLT-1 formation in the spinal cord and rescues motor neurons in the SOD-1 mouse model of amyotrophic lateral sclerosis. Neurobiol Dis. 2015 Feb;74:126–36.

    Article  CAS  PubMed  Google Scholar 

  • Bellingham MC. A review of the neural mechanisms of action and clinical efficiency of riluzole in treating amyotrophic lateral sclerosis: what have we learned in the last decade? CNS Neurosci Ther. 2011 Feb 1;17(1):4–31.

    Article  CAS  PubMed  Google Scholar 

  • Bendotti C, Tortarolo M, Suchak SK, Calvaresi N, Carvelli L, Bastone A, et al. Transgenic SOD1 G93A mice develop reduced GLT-1 in spinal cord without alterations in cerebrospinal fluid glutamate levels. J Neurochem. 2001 Nov 15;79(4):737–46.

    Article  CAS  PubMed  Google Scholar 

  • Benkler C, Barhum Y, Ben-Zur T, Offen D. Multifactorial gene therapy enhancing the glutamate uptake system and reducing oxidative stress delays symptom onset and prolongs survival in the SOD1-G93A ALS mouse model. J Mol Neurosci. 2015 Dec 21;58(1):46–58.

    Article  PubMed  CAS  Google Scholar 

  • van den Berg LH. Therapy of amyotrophic lateral sclerosis remains a challenge. Lancet Neurol. 2014 Nov;13(11):1062–3.

    Article  PubMed  Google Scholar 

  • Berry JD, Shefner JM, Conwit R, Schoenfeld D, Keroack M, Felsenstein D, et al. Design and initial results of a multi-phase randomized trial of ceftriaxone in amyotrophic lateral sclerosis. PLoS One. 2013 Apr 17;8(4):e61177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Blitterswijk M, DeJesus-Hernandez M, Rademakers R. How do C9ORF72 repeat expansions cause amyotrophic lateral sclerosis and frontotemporal dementia: can we learn from other noncoding repeat expansion disorders? Curr Opin Neurol. 2012 Dec;25(6):689–700.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blizzard CA, Southam KA, Dawkins E, Lewis KE, King AE, Clark JA, et al. Identifying the primary site of pathogenesis in amyotrophic lateral sclerosis – vulnerability of lower motor neurons to proximal excitotoxicity. Dis Model Mech. 2015 Mar 1;8(3):215–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonifacino T, Musazzi L, Milanese M, Seguini M, Marte A, Gallia E, et al. Altered mechanisms underlying the abnormal glutamate release in amyotrophic lateral sclerosis at a pre-symptomatic stage of the disease. Neurobiol Dis. 2016 Nov;95:122–33.

    Article  CAS  PubMed  Google Scholar 

  • Boston-Howes W, Gibb SL, Williams EO, Pasinelli P, Brown RH Jr, Trotti D. Caspase-3 cleaves and inactivates the glutamate transporter EAAT2. J Biol Chem. 2006 May 19;281(20):14076–84.

    Article  CAS  PubMed  Google Scholar 

  • Boston-Howes W, Williams EO, Bogush A, Scolere M, Pasinelli P, Trotti D. Nordihydroguaiaretic acid increases glutamate uptake in vitro and in vivo: therapeutic implications for amyotrophic lateral sclerosis. Exp Neurol. 2008 Sep;213(1):229–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruijn LI, Becher MW, Lee MK, Anderson KL, Jenkins NA, Copeland NG, et al. ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron. 1997 Feb;18(2):327–38.

    Article  CAS  PubMed  Google Scholar 

  • Camu W, Billiard M, Baldy-Moulinier M. Fasting plasma and CSF amino acid levels in amyotrophic lateral sclerosis: a subtype analysis. Acta Neurol Scand. 1993 Jul 1;88(1):51–5.

    Article  CAS  PubMed  Google Scholar 

  • Carriedo SG, Yin HZ, Weiss JH. Motor neurons are selectively vulnerable to AMPA/kainate receptor-mediated injury in vitro. J Neurosci. 1996 Jul 1;16(13):4069–79.

    CAS  PubMed  Google Scholar 

  • Chen W, Aoki C, Mahadomrongkul V, Gruber CE, Wang GJ, Blitzblau R, et al. Expression of a variant form of the glutamate transporter GLT1 in neuronal cultures and in neurons and astrocytes in the rat brain. J Neurosci. 2002 Mar 15;22(6):2142–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colton CK, Kong Q, Lai L, Zhu MX, Seyb KI, Cuny GD, et al. Identification of translational activators of glial glutamate transporter EAAT2 through cell-based high-throughput screening: an approach to prevent excitotoxicity. J Biomol Screen. 2010 Jul 1;15(6):653–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corona JC, Tapia R. AMPA receptor activation, but not the accumulation of endogenous extracellular glutamate, induces paralysis and motor neuron death in rat spinal cord in vivo. J Neurochem. 2004 May 1;89(4):988–97.

    Article  CAS  PubMed  Google Scholar 

  • Couratier P, Sindou P, Hugon J, Couratier P, Hugon J, Vallat J-M, et al. Originally published as Volume 1, Issue 8840 Cell culture evidence for neuronal degeneration in amyotrophic lateral sclerosis being linked to glutamate AMPA/kainate receptors. Lancet. 1993 Jan 30;341(8840):265–8.

    Article  CAS  PubMed  Google Scholar 

  • Cudkowicz ME, Titus S, Kearney M, Yu H, Sherman A, Schoenfeld D, et al. Safety and efficacy of ceftriaxone for amyotrophic lateral sclerosis: a multi-stage, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2014 Nov;13(11):1083–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damme PV, Van Den Bosch L, Houtte EV, Callewaert G, Robberecht W. GluR2-dependent properties of AMPA receptors determine the selective vulnerability of motor neurons to excitotoxicity. J Neurophysiol. 2002 Sep 1;88(3):1279–87.

    PubMed  Google Scholar 

  • Danbolt NC, Pines G, Kanner BI. Purification and reconstitution of the sodium- and potassium-coupled glutamate transport glycoprotein from rat brain. Biochemistry (Mosc). 1990 Jul 1;29(28):6734–40.

    Article  CAS  Google Scholar 

  • Diaper DC, Adachi Y, Lazarou L, Greenstein M, Simoes FA, Domenico AD, et al. Drosophila TDP-43 dysfunction in glia and muscle cells cause cytological and behavioural phenotypes that characterize ALS and FTLD. Hum Mol Genet. 2013 May 31;ddt243.

    Google Scholar 

  • Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science. 2008 Aug 29;321(5893):1218–21.

    Article  CAS  PubMed  Google Scholar 

  • Dingledine R, Borges K, Bowie D, Traynelis SF. The glutamate receptor ion channels. Pharmacol Rev. 1999 Mar 1;51(1):7–62.

    CAS  PubMed  Google Scholar 

  • Donnelly CJ, Zhang P-W, Pham JT, Haeusler AR, Mistry NA, Vidensky S, et al. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron. 2013 Oct 16;80(2):415–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumont AO, Hermans E, Goursaud S. Differential regulation of the glutamate transporter variants GLT-1a and GLT-1b in the cortex and spinal cord of transgenic rats expressing hSOD1G93A. Neurochem Int. 2013 Aug;63(2):61–8.

    Article  CAS  PubMed  Google Scholar 

  • Fairman WA, Vandenberg RJ, Arriza JL, Kavanaught MP, Amara SG. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature. 1995 Jun 15;375(6532):599–603.

    Article  CAS  PubMed  Google Scholar 

  • Flomen R, Makoff A. Increased RNA editing in EAAT2 pre-mRNA from amyotrophic lateral sclerosis patients: involvement of a cryptic polyadenylation site. Neurosci Lett. 2011 Jun 22;497(2):139–43.

    Article  CAS  PubMed  Google Scholar 

  • Foran E, Bogush A, Goffredo M, Roncaglia P, Gustincich S, Pasinelli P, et al. Motor neuron impairment mediated by a sumoylated fragment of the glial glutamate transporter EAAT2. Glia. 2011 Nov;59(11):1719–31.

    Article  PubMed  PubMed Central  Google Scholar 

  • Foran E, Rosenblum L, Bogush A, Pasinelli P, Trotti D. Sumoylation of the astroglial glutamate transporter EAAT2 governs its intracellular compartmentalization. Glia. 2014 Apr 1;n/a–n/a.

    Google Scholar 

  • Fray AE, Ince PG, Banner SJ, Milton ID, Usher PA, Cookson MR, et al. The expression of the glial glutamate transporter protein EAAT2 in motor neuron disease: an immunohistochemical study. Eur J Neurosci. 1998 Aug 1;10(8):2481–9.

    Article  CAS  PubMed  Google Scholar 

  • Fumagalli E, Funicello M, Rauen T, Gobbi M, Mennini T. Riluzole enhances the activity of glutamate transporters GLAST, GLT1 and EAAC1. Eur J Pharmacol. 2008 Jan 14;578(2–3):171–6.

    Article  CAS  PubMed  Google Scholar 

  • Gegelashvili G, Dehnes Y, Danbolt NC, Schousboe A. The high-affinity glutamate transporters GLT1, GLAST, and EAAT4 are regulated via different signalling mechanisms. Neurochem Int. 2000 Aug 1;37(2–3):163–70.

    Article  CAS  PubMed  Google Scholar 

  • Gerdes J, Ahmed S, Braden M, Dannoon S, Blecha J, VanBrocklin H. Radiosynthesis, rodent and non-human primate studies of a novel PET tracer for the excitatory amino acid transporter 2 (EAAT2) in the CNS. J Nucl Med. 2015 May 1;56(suppl 3):1100.

    Google Scholar 

  • Ghosh M, Lane M, Krizman E, Sattler R, Rothstein JD, Robinson MB. The transcription factor Pax6 contributes to the induction of GLT-1 expression in astrocytes through an interaction with a distal enhancer element. J Neurochem. 2016 Jan 1;136(2):262–75.

    Article  CAS  PubMed  Google Scholar 

  • Gibb SL, Boston-Howes W, Lavina ZS, Gustincich S, Brown RH Jr, Pasinelli P, et al. A caspase-3-cleaved fragment of the glial glutamate transporter EAAT2 is sumoylated and targeted to promyelocytic leukemia nuclear bodies in mutant SOD1-linked amyotrophic lateral sclerosis. J Biol Chem. 2007 Nov 2;282(44):32480–90.

    Article  CAS  PubMed  Google Scholar 

  • Giribaldi F, Milanese M, Bonifacino T, Anna Rossi PI, Di Prisco S, Pittaluga A, et al. Group I metabotropic glutamate autoreceptors induce abnormal glutamate exocytosis in a mouse model of amyotrophic lateral sclerosis. Neuropharmacology. 2013 Mar;66:253–63.

    Article  CAS  PubMed  Google Scholar 

  • Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science. 1994 Jun 17;264(5166):1772–5.

    Article  CAS  PubMed  Google Scholar 

  • Haidet-Phillips AM, Hester ME, Miranda CJ, Meyer K, Braun L, Frakes A, et al. Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat Biotechnol. 2011 Sep;29(9):824–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hideyama T, Yamashita T, Aizawa H, Tsuji S, Kakita A, Takahashi H, et al. Profound downregulation of the RNA editing enzyme ADAR2 in ALS spinal motor neurons. Neurobiol Dis. 2012 Mar;45(3):1121–8.

    Article  CAS  PubMed  Google Scholar 

  • Holmseth S, Scott HA, Real K, Lehre KP, Leergaard TB, Bjaalie JG, et al. The concentrations and distributions of three C-terminal variants of the GLT1 (EAAT2; slc1a2) glutamate transporter protein in rat brain tissue suggest differential regulation. Neuroscience. 2009 Sep 15;162(4):1055–71.

    Article  CAS  PubMed  Google Scholar 

  • Honig LS, Chambliss DD, Bigio EH, Carroll SL, Elliott JL. Glutamate transporter EAAT2 splice variants occur not only in ALS, but also in AD and controls. Neurology. 2000 Oct 24;55(8):1082–8.

    Article  CAS  PubMed  Google Scholar 

  • Howland DS, Liu J, She Y, Goad B, Maragakis NJ, Kim B, et al. Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc Natl Acad Sci. 2002 Feb 5;99(3):1604–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson M, Steers G, Leigh PN, Morrison KE. Polymorphisms in the glutamate transporter gene EAAT2 in European ALS patients. J Neurol. 1999;246(12):1140–4.

    Article  CAS  PubMed  Google Scholar 

  • Kanai Y, Hediger MA. Primary structure and functional characterization of a high-affinity glutamate transporter. Nature. 1992 Dec 3;360(6403):467–71.

    Article  CAS  PubMed  Google Scholar 

  • Kanekura K, Yagi T, Cammack AJ, Mahadevan J, Kuroda M, Harms MB, et al. Poly-dipeptides encoded by the C9ORF72 repeats block global protein translation. Hum Mol Genet. 2016 Feb 29;ddw052.

    Google Scholar 

  • Kawahara Y, Ito K, Sun H, Aizawa H, Kanazawa I, Kwak S. Glutamate receptors: RNA editing and death of motor neurons. Nature. 2004 Feb 26;427(6977):801.

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Lee S-G, Kegelman TP, Su Z-Z, Das SK, Dash R, et al. Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: opportunities for developing novel therapeutics. J Cell Physiol. 2011 Oct 1;226(10):2484–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirschner MA, Copeland NG, Gilbert DJ, Jenkins NA, Amara SG. Mouse excitatory amino acid transporter EAAT2: isolation, characterization, and proximity to neuroexcitability loci on mouse chromosome 2. Genomics. 1994 Nov 15;24(2):218–24.

    Article  CAS  PubMed  Google Scholar 

  • Kong Q, Chang L-C, Takahashi K, Liu Q, Schulte DA, Lai L, et al. Small-molecule activator of glutamate transporter EAAT2 translation provides neuroprotection. J Clin Invest. 2014 Mar 3;124(3):1255–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuner R, Groom AJ, Bresink I, Kornau H-C, Stefovska V, Müller G, et al. Late-onset motoneuron disease caused by a functionally modified AMPA receptor subunit. Proc Natl Acad Sci U S A. 2005 Apr 19;102(16):5826–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon I, Xiang S, Kato M, Wu L, Theodoropoulos P, Wang T, et al. Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells. Science. 2014 Sep 5;345(6201):1139–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagier-Tourenne C, Polymenidou M, Hutt KR, Vu AQ, Baughn M, Huelga SC, et al. Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nat Neurosci. 2012 Sep 30;15(11):1488–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauriat TL, McInnes LA. EAAT2 regulation and splicing: relevance to psychiatric and neurological disorders. Mol Psychiatry. 2007 Aug 7;12(12):1065–78.

    Article  CAS  PubMed  Google Scholar 

  • Lee S-G, Su Z-Z, Emdad L, Gupta P, Sarkar D, Borjabad A, et al. Mechanism of ceftriaxone induction of excitatory amino acid transporter-2 expression and glutamate uptake in primary human astrocytes. J Biol Chem. 2008 May 9;283(19):13116–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Sattler R, Yang EJ, Nunes A, Ayukawa Y, Akhtar S, et al. Harmine, a natural beta-carboline alkaloid, upregulates astroglial glutamate transporter expression. Neuropharmacology. 2011 Jun;60(7–8):1168–75.

    Article  CAS  PubMed  Google Scholar 

  • Li K, Hala TJ, Seetharam S, Poulsen DJ, Wright MC, Lepore AC. GLT1 overexpression in SOD1G93A mouse cervical spinal cord does not preserve diaphragm function or extend disease. Neurobiol Dis. 2015a Jun;78:12–23.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Balasubramanian U, Cohen D, Zhang P-W, Mosmiller E, Sattler R, et al. A comprehensive library of familial human amyotrophic lateral sclerosis induced pluripotent stem cells. PLoS One. 2015b Mar 11;10(3):e0118266.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin C-LG, Bristol LA, Jin L, Dykes-Hoberg M, Crawford T, Clawson L, et al. Aberrant RNA processing in a neurodegenerative disease: the cause for absent EAAT2, a glutamate transporter, in amyotrophic lateral sclerosis. Neuron. 1998 Mar;20(3):589–602.

    Article  CAS  PubMed  Google Scholar 

  • Machtens J-P, Kortzak D, Lansche C, Leinenweber A, Kilian P, Begemann B, et al. Mechanisms of anion conduction by coupled glutamate transporters. Cell. 2015 Jan 29;160(3):542–53.

    Article  CAS  PubMed  Google Scholar 

  • Mahajan SS, Thai KH, Chen K, Ziff E. Exposure of neurons to excitotoxic levels of glutamate induces cleavage of the RNA editing enzyme, adenosine deaminase acting on RNA 2, and loss of GLUR2 editing. Neuroscience. 2011 Aug 25;189:305–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maragakis NJ, Dykes-Hoberg M, Rothstein JD. Altered expression of the glutamate transporter EAAT2b in neurological disease. Ann Neurol. 2004 Apr 1;55(4):469–77.

    Article  CAS  PubMed  Google Scholar 

  • Marin B, Boumédiene F, Logroscino G, Couratier P, Babron M-C, Leutenegger AL, et al. Variation in worldwide incidence of amyotrophic lateral sclerosis: a meta-analysis. Int J Epidemiol. 2016 May 16;dyw061.

    Google Scholar 

  • Meyer T, Fromm A, Münch C, Schwalenstöcker B, Fray AE, Ince PG, et al. The RNA of the glutamate transporter EAAT2 is variably spliced in amyotrophic lateral sclerosis and normal individuals. J Neurol Sci. 1999 Nov 15;170(1):45–50.

    Article  CAS  PubMed  Google Scholar 

  • Milanese M, Zappettini S, Onofri F, Musazzi L, Tardito D, Bonifacino T, et al. Abnormal exocytotic release of glutamate in a mouse model of amyotrophic lateral sclerosis. J Neurochem. 2011 Mar 1;116(6):1028–42.

    Article  CAS  PubMed  Google Scholar 

  • Münch C, Ebstein M, Seefried U, Zhu B, Stamm S, Landwehrmeyer GB, et al. Alternative splicing of the 5′-sequences of the mouse EAAT2 glutamate transporter and expression in a transgenic model for amyotrophic lateral sclerosis. J Neurochem. 2002 Aug 1;82(3):594–603.

    Article  PubMed  Google Scholar 

  • Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H, et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci. 2007 May;10(5):615–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicoll RA, Malenka RC, Kauer JA. Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. Physiol Rev. 1990 Apr 1;70(2):513–65.

    CAS  PubMed  Google Scholar 

  • Pines G, Danbolt NC, BjørÃ¥s M, Zhang Y, Bendahan A, Eide L, et al. Cloning and expression of a rat brain L-glutamate transporter. Nature. 1992 Dec 3;360(6403):464–7.

    Article  CAS  PubMed  Google Scholar 

  • Plaitakis A, Caroscio JT. Abnormal glutamate metabolism in amyotrophic lateral sclerosis. Ann Neurol. 1987 Nov 1;22(5):575–9.

    Article  CAS  PubMed  Google Scholar 

  • Plaitakis A, Constantakakis E, Smith J. The neuroexcitotoxic amino acids glutamate and aspartate are altered in the spinal cord and brain in amyotrophic lateral sclerosis. Ann Neurol. 1988 Sep 1;24(3):446–9.

    Article  CAS  PubMed  Google Scholar 

  • Robberecht W, Philips T. The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci. 2013 Apr;14(4):248–64.

    Article  CAS  PubMed  Google Scholar 

  • Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993 Mar 4;362(6415):59–62.

    Article  CAS  PubMed  Google Scholar 

  • Ross CA, Tabrizi SJ. Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 2011 Jan;10(1):83–98.

    Article  CAS  PubMed  Google Scholar 

  • Rothstein JD. Excitotoxicity hypothesis. Neurology. 1996 Oct 1;47(4 Suppl 2):19S–26S.

    Article  Google Scholar 

  • Rothstein JD, Tsai G, Kuncl RW, Clawson L, Cornblath DR, Drachman DB, et al. Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann Neurol. 1990 Jul 1;28(1):18–25.

    Article  CAS  PubMed  Google Scholar 

  • Rothstein JD, Martin LJ, Kuncl RW. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med. 1992 May 28;326(22):1464–8.

    Article  CAS  PubMed  Google Scholar 

  • Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, et al. Localization of neuronal and glial glutamate transporters. Neuron. 1994 Sep;13(3):713–25.

    Article  CAS  PubMed  Google Scholar 

  • Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW. Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol. 1995 Jul 1;38(1):73–84.

    Article  CAS  PubMed  Google Scholar 

  • Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron. 1996 Mar;16(3):675–86.

    Article  CAS  PubMed  Google Scholar 

  • Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, et al. β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature. 2005 Jan 6;433(7021):73–7.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki S, Komori T, Iwata M. Excitatory amino acid transporter 1 and 2 immunoreactivity in the spinal cord in amyotrophic lateral sclerosis. Acta Neuropathol (Berl). 2000;100(2):138–44.

    Article  CAS  Google Scholar 

  • Sen I, Nalini A, Joshi NB, Joshi PG. Cerebrospinal fluid from amyotrophic lateral sclerosis patients preferentially elevates intracellular calcium and toxicity in motor neurons via AMPA/kainate receptor. J Neurol Sci. 2005 Aug 15;235(1–2):45–54.

    Article  CAS  PubMed  Google Scholar 

  • Shaw PJ, Chinnery RM, Ince PG. [3H]d-aspartate binding sites in the normal human spinal cord and changes in motor neuron disease: a quantitative autoradiographic study. Brain Research. 1994;655(1–2):195–201.

    Google Scholar 

  • Spreux-Varoquaux O, Bensimon G, Lacomblez L, Salachas F, Pradat PF, Le Forestier N, et al. Glutamate levels in cerebrospinal fluid in amyotrophic lateral sclerosis: a reappraisal using a new HPLC method with coulometric detection in a large cohort of patients. J Neurol Sci. 2002 Jan 15;193(2):73–8.

    Article  CAS  PubMed  Google Scholar 

  • Storck T, Schulte S, Hofmann K, Stoffel W. Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain. Proc Natl Acad Sci. 1992 Nov 15;89(22):10955–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Foster JB, Lin C-LG. Glutamate transporter EAAT2: regulation, function, and potential as a therapeutic target for neurological and psychiatric disease. Cell Mol Life Sci. 2015 Jun 2;72(18):3489–506.

    Article  CAS  PubMed  Google Scholar 

  • Takuma H, Kwak S, Yoshizawa T, Kanazawa I. Reduction of GluR2 RNA editing, a molecular change that increases calcium influx through AMPA receptors, selective in the spinal ventral gray of patients with amyotrophic lateral sclerosis. Ann Neurol. 1999 Dec 1;46(6):806–15.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science. 1997 Jun 13;276(5319):1699–702.

    Article  CAS  PubMed  Google Scholar 

  • Tian G, Lai L, Guo H, Lin Y, Butchbach MER, Chang Y, et al. Translational control of glial glutamate transporter EAAT2 expression. J Biol Chem. 2007 Jan 19;282(3):1727–37.

    Article  CAS  PubMed  Google Scholar 

  • Tollervey JR, Curk T, Rogelj B, Briese M, Cereda M, Kayikci M, et al. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci. 2011 Apr;14(4):452–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong J, Huang C, Bi F, Wu Q, Huang B, Liu X, et al. Expression of ALS-linked TDP-43 mutant in astrocytes causes non-cell-autonomous motor neuron death in rats. EMBO J. 2013 May 28;32(13):1917–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tortarolo M, Grignaschi G, Calvaresi N, Zennaro E, Spaltro G, Colovic M, et al. Glutamate AMPA receptors change in motor neurons of SOD1G93A transgenic mice and their inhibition by a noncompetitive antagonist ameliorates the progression of amytrophic lateral sclerosis-like disease. J Neurosci Res. 2006 Jan 1;83(1):134–46.

    Article  CAS  PubMed  Google Scholar 

  • Trotti D, Rolfs A, Danbolt NC, Brown RH, Hediger MA. SOD1 mutants linked to amyotrophic lateral sclerosis selectively inactivate a glial glutamate transporter. Nat Neurosci. 1999 May;2(5):427–33.

    Article  CAS  PubMed  Google Scholar 

  • Turner MR, Hardiman O, Benatar M, Brooks BR, Chio A, de Carvalho M, et al. Controversies and priorities in amyotrophic lateral sclerosis. Lancet Neurol. 2013 Mar;12(3):310–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Damme P, Leyssen M, Callewaert G, Robberecht W, Van Den Bosch L. The AMPA receptor antagonist NBQX prolongs survival in a transgenic mouse model of amyotrophic lateral sclerosis. Neurosci Lett. 2003 Jun 5;343(2):81–4.

    Article  PubMed  CAS  Google Scholar 

  • Van Den Bosch L, Van Damme P, Bogaert E, Robberecht W. The role of excitotoxicity in the pathogenesis of amyotrophic lateral sclerosis. Biochim Biophys Acta (BBA) – Mol Basis Dis. 2006 Nov;1762(11–12):1068–82.

    Article  CAS  Google Scholar 

  • Vanoni C, Massari S, Losa M, Carrega P, Perego C, Conforti L, et al. Increased internalisation and degradation of GLT-1 glial glutamate transporter in a cell model for familial amyotrophic lateral sclerosis (ALS). J Cell Sci. 2004 Oct 15;117(22):5417–26.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Qin Z. Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis. 2010 Nov 1;15(11):1382–402.

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Kihara T, Akaike A, Niidome T, Sugimoto H. PI3K/Akt/mTOR signaling regulates glutamate transporter 1 in astrocytes. Biochem Biophys Res Commun. 2010 Mar 12;393(3):514–8.

    Article  CAS  PubMed  Google Scholar 

  • Wuolikainen A, Moritz T, Marklund SL, Antti H, Andersen PM. Disease-related changes in the cerebrospinal fluid metabolome in amyotrophic lateral sclerosis detected by GC/TOFMS. PLoS One. 2011 Apr 4;6(4):e17947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Gozen O, Watkins A, Lorenzini I, Lepore A, Gao Y, et al. Presynaptic regulation of astroglial excitatory neurotransmitter transporter GLT1. Neuron. 2009 Mar 26;61(6):880–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin HZ, Tang DT, Weiss JH. Intrathecal infusion of a Ca2+-permeable AMPA channel blocker slows loss of both motor neurons and of the astrocyte glutamate transporter, GLT-1 in a mutant SOD1 rat model of ALS. Exp Neurol. 2007 Oct;207(2):177–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zagami CJ, O’shea RD, Lau CL, Cheema SS, Beart PM. Regulation of glutamate transporters in astrocytes: evidence for a relationship between transporter expression and astrocytic phenotype. Neurotox Res. 2005;7(1–2):143–9.

    Article  CAS  PubMed  Google Scholar 

  • Zagami CJ, Beart PM, Wallis N, Nagley P, O’shea RD. Oxidative and excitotoxic insults exert differential effects on spinal motoneurons and astrocytic glutamate transporters: Implications for the role of astrogliosis in amyotrophic lateral sclerosis. Glia. 2009 Jan 15;57(2):119–35.

    Article  PubMed  Google Scholar 

  • Zhang P-W, Haidet-Phillips AM, Pham JT, Lee Y, Huo Y, Tienari PJ, et al. Generation of GFAP::GFP astrocyte reporter lines from human adult fibroblast-derived iPS cells using zinc-finger nuclease technology. Glia. 2016 Jan 1;64(1):63–75.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren Taylor Rosenblum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rosenblum, L.T., Trotti, D. (2017). EAAT2 and the Molecular Signature of Amyotrophic Lateral Sclerosis. In: Ortega, A., Schousboe, A. (eds) Glial Amino Acid Transporters. Advances in Neurobiology, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-55769-4_6

Download citation

Publish with us

Policies and ethics