Skip to main content

Advertisement

Log in

Multifactorial Gene Therapy Enhancing the Glutamate Uptake System and Reducing Oxidative Stress Delays Symptom Onset and Prolongs Survival in the SOD1-G93A ALS Mouse Model

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The 150-year-long search for treatments of amyotrophic lateral sclerosis (ALS) is still fueled by frustration over the shortcomings of available therapeutics. Contributing to the therapeutic limitations might be the targeting of a single aspect of this multifactorial-multisystemic disease. In an attempt to overcome this, we devised a novel multifactorial-cocktail treatment, using lentiviruses encoding: EAAT2, GDH2, and NRF2, that act synergistically to address the band and width of the effected excito-oxidative axis, reducing extracellular-glutamate and glutamate availability while improving the metabolic state and the anti-oxidant response. This strategy yielded particularly impressive results, as all three genes together but not separately prolonged survival in ALS mice by an average of 19–22 days. This was accompanied by improvement in every parameter evaluated, including body-weight loss, reflex score, neurologic score, and motor performance. We hope to provide a novel strategy to slow down disease progression and alleviate symptoms of patients suffering from ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Azzouz M, Ralph G, Storkebaum E et al (2004) VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature 429:413–417

    Article  CAS  PubMed  Google Scholar 

  • Barber S, Shaw P (2010) Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radic Biol Med 48:629–641

    Article  CAS  PubMed  Google Scholar 

  • Bendotti C, Carri M (2004) Lessons from models of SOD1-linked familial ALS. Trends Mol Med 10:393–400

    Article  CAS  PubMed  Google Scholar 

  • Benkler C, Ben Zur T, Barhum Y, Offen D (2013a) Altered astrocytic response to activation in SOD1(G93A) mice and its implications on amyotrophic lateral sclerosis pathogenesis. Glia 61:312–326

    Article  PubMed  Google Scholar 

  • Benkler C, Offen D, Melamed E, et al. (2013b) Advances in predictive, preventive and personalised medicine, Chapter: Recent advances in ALS research: perspectives for personalized clinical application. Business Media Dordrecht

  • Bensimon G, Lacomblez L, Meininger V (1994) A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N Engl J Med 330:585–591

    Article  CAS  PubMed  Google Scholar 

  • Bialer M (2012) Chemical properties of antiepileptic drugs (AEDs). Adv Drug Deliv Rev 64:887–895

    Article  CAS  PubMed  Google Scholar 

  • Boillée S, Vande Velde C, Cleveland D (2006) ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52:39–59

    Article  PubMed  Google Scholar 

  • Brambilla L, Martorana F, Rossi D (2013) Astrocyte signaling and neurodegeneration: new insights into CNS disorders. Prion 7:28–36

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Calkins M, Vargas M, Johnson D, Johnson J (2010) Astrocyte-specific overexpression of Nrf2 protects striatal neurons from mitochondrial complex II inhibition. Toxicol Sci 115:557–568

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cashman N, Durham H, Blusztajn J et al (1992) Neuroblastoma x spinal cord (NSC) hybrid cell lines resemble developing motor neurons. Dev Dyn 194:209–221

    Article  CAS  PubMed  Google Scholar 

  • Charles T, Swash M (2001) Amyotrophic lateral sclerosis: current understanding. J Neurosci Nurs 33:245–253

    Article  CAS  PubMed  Google Scholar 

  • Coyle J, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695

    Article  CAS  PubMed  Google Scholar 

  • Cozzolino M, Ferri A, Carri M (2008) Amyotrophic lateral sclerosis: from current developments in the laboratory to clinical implications. Antioxid Redox Signal 10:405–443

    Article  CAS  PubMed  Google Scholar 

  • Cronin S, Berger S, Ding J et al (2008) A genome-wide association study of sporadic ALS in a homogenous Irish population. Hum Mol Genet 17:768–774

    Article  CAS  PubMed  Google Scholar 

  • de Carvalho M, Pinto S, Costa J, Evangelista T, Ohana B, Pinto A (2010) A randomized, placebo-controlled trial of memantine for functional disability in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 11:456–460

    Article  PubMed  Google Scholar 

  • Eggett C, Crosier S, Manning P et al (2000) Development and characterisation of a glutamate-sensitive motor neurone cell line. J Neurochem 74:1895–1902

    Article  CAS  PubMed  Google Scholar 

  • Gordon P, Moore D, Miller R et al (2007) Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial. Lancet Neurol 6:1045–1053

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Lai L, Butchbach M et al (2003) Increased expression of the glial glutamate. Hum Mol Genet 12:2519–2532

    Article  CAS  PubMed  Google Scholar 

  • Gurney M, Pu H, Chiu A et al (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264:1772–1775

    Article  CAS  PubMed  Google Scholar 

  • Heath P, Shaw P (2002) Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis. Muscle Nerve 26:438–458

    Article  CAS  PubMed  Google Scholar 

  • Howland D, Liu J, She Y et al (2002) Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc Natl Acad Sci U S A 99:1604–1609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hybertson B, Gao B, Bose S, McCord J (2011) Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. HYPERLINK “http://www.ncbi.nlm.nih.gov/pubmed/?term=Hybertson+B%2C+Gao+B%2C+Bose+S.+and+McCord+J.+(2011)” \o “Molecular aspects of medicine.” Mol Aspects Med 32:234–246

  • Ilieva H, Polymenidou M, Cleveland D (2009) Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J Cell Biol 187:761–772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaspar B, Llado J, Sherkat N, Rothstein J, Gage F (2003) Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science 301:839–842

    Article  CAS  PubMed  Google Scholar 

  • Kruman I, Pedersen W, Springer J, Mattson M (1999) ALS-linked Cu/Zn-SOD mutation increases vulnerability of motor neurons to excitotoxicity by a mechanism involving increased oxidative stress and perturbed calcium homeostasis. Exp Neurol 160:28–39

    Article  CAS  PubMed  Google Scholar 

  • Lacomblez L, Bensimon G, Leigh P, Guillet P, Meininger V (1996) Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II. Lancet 347:1425–1431

    Article  CAS  PubMed  Google Scholar 

  • Mastorodemos V, Zaganas I, Spanaki C, Bessa M, Plaitakis A (2005) Molecular basis of human glutamate dehydrogenase regulation under changing energy demands. HYPERLINK “http://www.ncbi.nlm.nih.gov/pubmed/?term=Mastorodemos+V%2C+Zaganas+I%2C+Spanaki+C%2C+Bessa+M.+and+Plaitakis+A.+(2005)” \o “Journal of neuroscience research.” J Neurosci Res 79:65–73

  • Matusica D, Fenech M, Rogers M, Rush R (2008) Characterization and use of the NSC-34 cell line for study of neurotrophin receptor trafficking. J Neurosci Res 86:553–565

    Article  CAS  PubMed  Google Scholar 

  • Nagai M, Re D, Nagata T et al (2007) Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 10:615–622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oliveira A, Pereira R (2009) Amyotrophic lateral sclerosis (ALS): three letters that change the people’s life. For ever. Arq Neuropsiquiatr 67:750–782

    Article  PubMed  Google Scholar 

  • Orrell R, Lane R, Ross M (2007) Antioxidant treatment for amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database Syst Rev 1:CD002829

    PubMed  Google Scholar 

  • Palmada M, Centelles J (1998) Excitatory amino acid neurotransmission. Pathways for metabolism, storage and reuptake of glutamate in brain. Front Biosci 20(3):d701–d718

    Google Scholar 

  • Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50:427–434

    Article  PubMed  Google Scholar 

  • Plaitakis A, Zaganas I (2001) Regulation of human glutamate dehydrogenases: implications for glutamate, ammonia and energy metabolism in brain. J Neurosci Res 66:899–908

    Article  CAS  PubMed  Google Scholar 

  • Polymenidou M, Cleveland D (2011) The seeds of neurodegeneration: prion-like spreading in ALS. Cell 147:498–508

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ralph G, Radcliffe P, Day D et al (2005) Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat Med 11:429–433

    Article  CAS  PubMed  Google Scholar 

  • Rosen D, Siddique T, Patterson D et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    Article  CAS  PubMed  Google Scholar 

  • Rothstein J (2009) Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol 65(Suppl 1):S3–S9

    Article  CAS  PubMed  Google Scholar 

  • Rothstein J, Van Kammen M, Levey A, Martin L, Kuncl R (1995) Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 38:73–84

    Article  CAS  PubMed  Google Scholar 

  • Rothstein J, Dykes-Hoberg M, Pardo C et al (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686

    Article  CAS  PubMed  Google Scholar 

  • Rothstein J, Patel S, Regan M et al (2005) Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433:73–77

    Article  CAS  PubMed  Google Scholar 

  • Spanaki C, Zaganas I, Kleopa K, Plaitakis A (2010) Human GLUD2 glutamate dehydrogenase is expressed in neural and testicular supporting cells. J Biol Chem 285:16748–16756

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Suzuki M, McHugh J, Tork C et al (2008) Direct muscle delivery of GDNF with human mesenchymal stem cells improves motor neuron survival and function in a rat model of familial ALS. Mol Ther 16:2002–2010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Turner B, Talbot K (2008) Transgenics, toxicity and therapeutics in rodent models of mutant SOD-1-mediated familial ALS. Prog Neurobiol 85:94–134

    Article  CAS  PubMed  Google Scholar 

  • Van Damme P, Dewil M, Robberecht W, Van Den Bosch L (2005) Excitotoxicity and amyotrophic lateral sclerosis. Neurodegener Dis 2:147–159

    Article  PubMed  Google Scholar 

  • Van Den Bosch L, Robberecht W (2008) Crosstalk between astrocytes and motor neurons: what is the message? Exp Neurol 211:1–6

    Article  Google Scholar 

  • Vargas M, Johnson J (2009) The Nrf2-ARE cytoprotective pathway in astrocytes. Expert Rev Mol Med 11:e17

    Article  PubMed  Google Scholar 

  • Vargas M, Pehar M, Cassina P, Beckman J, Barbeito L (2006) Increased glutathione biosynthesis by Nrf2 activation in astrocytes prevents p75NTR-dependent motor neuron apoptosis. J Neurochem 97:687–696

    Article  CAS  PubMed  Google Scholar 

  • Vargas M, Johnson D, Sirkis D, Messing A, Johnson J (2008) Nrf2 activation in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis. J Neurosci 28:13574–13581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wan L, Sharma K, Grisotti G, Roos R (2009) The effect of mutant SOD1 dismutase activity on non-cell autonomous degeneration in familial amyotrophic lateral sclerosis. Neurobiol Dis 35:234–240

    Article  Google Scholar 

  • Wang L, Lu Y, Muramatsu S et al (2002) Neuroprotective effects of glial cell line-derived neurotrophic factor mediated by an adeno-associated virus vector in a transgenic animal model of amyotrophic lateral sclerosis. J Neurosci 22:6920–6928

    CAS  PubMed  Google Scholar 

  • Weishaupt J, Bartels C, Pölking E et al (2006) Reduced oxidative damage in ALS by high-dose enteral melatonin treatment. J Pineal Res 41:313–323

    Article  CAS  PubMed  Google Scholar 

  • Wong P, Pardo C, Borchelt D et al (1995) An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14:1105–1116

    Article  CAS  PubMed  Google Scholar 

  • Xiao S, McLean J, Robertson J (2006) Neuronal intermediate filaments and ALS: a new look at an old question. Biochim Biophys Acta 1762:1001–1012

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka K, Chun S, Boillee S et al (2008) Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat Neurosci 11:251–253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Offen.

Ethics declarations

Funding

The study was partially supported by Prize4life.

Conflict of Interest

D. O. is a consultant in Brainstorm Cell Therapeutics, Israel. C.B and D.O. have registered a patent on this issue. The other authors declare no conflict of interest.

Animal Care

The experiments were performed in accordance with local and international regulations, and were approved by the Tel Aviv University Ethical Committee. Every effort was made to reduce the number of animals used and to minimize their suffering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benkler, C., Barhum, Y., Ben-Zur, T. et al. Multifactorial Gene Therapy Enhancing the Glutamate Uptake System and Reducing Oxidative Stress Delays Symptom Onset and Prolongs Survival in the SOD1-G93A ALS Mouse Model. J Mol Neurosci 58, 46–58 (2016). https://doi.org/10.1007/s12031-015-0695-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-015-0695-2

Keywords

Navigation