Skip to main content

Natural Fiber-Based Biocomposites

  • Chapter
  • First Online:
Green Biocomposites

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Due to the depletion of fossil resources such as crude oil, coal and natural gas, the impact of energy crisis is becoming more severe as seen from the intense fluctuation of the crude oil price. The growing public concern of using petroleum-based synthetic polymers has stimulated the interest in biodegradable materials from the renewable resources. Recent years have seen a remarkable progress in the development of biocomposites. There is abundant literature concerning the physical properties, manufacturing, applications, and many other aspects of biocomposite research. In this chapter, biodegradable polymers and fillers are introduced in details. A brief overview of some key elements in biocomposites research is given, including surface modification of natural fibers; classification of biocomposites and their general properties; manufacturing of the biocomposites; and applications of the biocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdul Khalil HPS, Bhat AH, Abu Bakar A, Tahir PM, Zaidul ISM, Jawaid M (2015) In: Pandey JK, Takagi H, Nakagaito AN, Kim HJ (eds) Handbook of polymer nanocomposites. Processing, performance, and application—volume c: polymer nanocomposites of cellulose nanoparticles. Springer-Verlag, Berlin, Heidelberg, pp 475–511

    Google Scholar 

  • Agrawal R, Saxena NS, Sharma KB, Thomas S, Sreekala MS (2000) Activation energy and crystallization kinetics of untreated and treated oil palm fibre reinforced phenol formaldehyde composites. Mater Sci Eng A 277:77–82

    Article  Google Scholar 

  • Alves C, Ferrao PMC, Silva AJ, Reis LG, Freitas M, Rodrigues LB (2011) Ecodesign of automotive components making use of natural jute fiber composites. J Clean Prod 18:313–327

    Article  Google Scholar 

  • Araujo JR, Waldman WR, De Paoli MA (2008) Thermal properties of high density polyethylene composites with natural fibres: coupling agent effect. Polym Degrad Stab 93(10):1770–1775

    Article  CAS  Google Scholar 

  • Averous L (2008) Polylactic acid: synthesis, properties and applications. In: Belgacem NM, Gandini A (eds) Monomers, polymers, and composites from renewable resources. Elsevier, Amsterdam, pp 433–450

    Chapter  Google Scholar 

  • Azwa ZN, Yousif BF, Manalo AC, Karunasena W (2013) A review on the degradability of polymeric composites based on natural fibres. Mater Des 47:424–442

    Article  CAS  Google Scholar 

  • Bakare IO, Okieimen FE, Pavithran C, Khalil HPSA, Brahmakumar M (2010) Mechanical and thermal properties of sisal fiber-reinforced rubber seed oil-based polyurethane composites. Mater Des 31(9):4274–4280

    Article  CAS  Google Scholar 

  • Barari B, Ellingham TK, Ghamhia II, Pillai KM, El-Hajjar R, Turng LS, Sabo R (2016) Mechanical characterization of scalable cellulose nano-fiber based composites made using liquid composite molding process. Compos B Eng 84:277–284

    Article  CAS  Google Scholar 

  • Bax B, Muessig J (2008) Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos Sci Technol 68(7–8):1601–1607

    Article  CAS  Google Scholar 

  • Belgacem MN, Gandini A (2005) The surface modification of cellulose fibres for use as reinforcing elements in composite materials. Compos Interface 12(1–2):41–75

    Article  CAS  Google Scholar 

  • Belgacem MN, Gandini A (2008) Surface modification of cellulose fibres. In: Belgacem NM, Gandini A (eds) Monomers, polymers, and composites from renewable resources. Elsevier, Amsterdam, pp 385–400

    Chapter  Google Scholar 

  • Bera M, Alagirusamy R, Das A (2010) A study on interfacial properties of jute-PP composites. J Reinf Plast Compos 29(20):3155–3161

    Google Scholar 

  • Bisanda ETN, Ansell MP (1992) Properties of SISAL-CNSL composites. J Mater Sci 27(6):1690–1700

    Article  CAS  Google Scholar 

  • Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274

    Article  CAS  Google Scholar 

  • Bledzki AK, Jaszkiewicz A (2010) Mechanical performance of biocomposites based on PLA and PHBV reinforced with natural fibres—a comparative study to PP. Compos Sci Technol 70(12):1687–1696

    Article  CAS  Google Scholar 

  • Bledzki AK, Reihmane S, Gassan J (1996) Properties and modification methods for vegetrable fibers for natural fiber composites. J Appl Polym Sci 59(8):1329–1336

    Article  CAS  Google Scholar 

  • Bledzki AK, Faruk O, Sperber VE (2006) Cars from bio-fibres. Macromol Mater Eng 291:449–457

    Article  CAS  Google Scholar 

  • Bledzki AK, Mamun AA, Lucka-Gabor M, Gutowski VS (2008) The effects of acetylation on properties of flax fibre and its polypropylene composites. eXPRESS Polym Lett 2:413–422

    Google Scholar 

  • Bledzki AK, Jaszkiewicz A, Scherzer D (2009) Mechanical properties of PLA composites with man-made cellulose and abaca fibres. Compos Part A 40(4):404–412

    Article  CAS  Google Scholar 

  • Bledzki AK, Franciszczak P, Osman Z, Elbadawi M (2015) Polypropylene biocomposites reinforced with softwood, abaca, jute, and kenaf fibers. Ind Crops Prod 70:91–99

    Article  CAS  Google Scholar 

  • Bodros E, Pillin I, Montrelay N, Baley C (2007) Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Compos Sci Technol 67(3–4):462–470

    Article  CAS  Google Scholar 

  • Bogoeva-Gaceva G, Avella M, Malinconico M, Buzarovska A, Grozdanov A, Gentile G, Errico ME (2007) Natural fiber eco-composites. Polym Compos 28(1):98–107

    Article  CAS  Google Scholar 

  • Brosius D (2006) Natural fiber composites slowly take root. Compos Technol (February)

    Google Scholar 

  • Bullions T, Gillespie R, Price-O’Brien J, Loos A (2004) The effect of maleic anhydride modified polypropylene on the mechanical properties of feather fiber, kraft pulp, polypropylene composites. J Appl Polym Sci 92:3771–3783

    Article  CAS  Google Scholar 

  • Cao PF, Mangdlao JD, Advincula RC (2015) Stimuli-responsive polymers and their potential applications in oil-gas industry. Polym Rev 55:706–733

    Article  CAS  Google Scholar 

  • Carlmark A, Larsson E, Malmstrom E (2012) Grafting of cellulose by ring-opening polymerisation—a review. Eur Polym J 48(10):1646–1659

    Article  CAS  Google Scholar 

  • Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23(7):1273–1335

    Article  CAS  Google Scholar 

  • Cunha AM, Liu ZQ, Feng Y, Yi XS, Bernardo CA (2001) Preparation, processing and characterization of biodegradable wood flour/starch-cellulose acetate compounds. J Mater Sci 36(20):4903–4909

    Article  CAS  Google Scholar 

  • Dittenber DB, GangaRao HVS (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos A 43(8):1419–1429

    Article  Google Scholar 

  • Dobircau L, Sreekumar PA, Saiah R, Leblanc N, Terrie C, Gattin R et al (2009) Wheat flour thermoplastic matrix reinforced by waste cotton fibre: agro-green-composites. Compos A 40(4):329–334

    Article  CAS  Google Scholar 

  • Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596

    Article  CAS  Google Scholar 

  • Fejos M, Karger-Kocsis J, Grishchuk S (2013) Effect of fibre content and textile structure on dynamic—mechanical and shape-memory properties of ELO/Flax biocomposites. J Reinf Plast Compos 32(24):1879–1886

    Article  CAS  Google Scholar 

  • Fuqua MA, Huo S, Ulven CA (2012) Natural fiber reinforced composites. Polym Rev 52(3):259–320

    Article  CAS  Google Scholar 

  • Gelse K, Poschl E, Aigner T (2003) Collagens—structure, function, and biosynthesis. Adv Drug Deliv Rev 55(12):1531–1546

    Article  CAS  Google Scholar 

  • George M, Mussone PG, Bressler DC (2014) Surface and thermal characterization of natural fibres treated with enzymes. Ind Crops Prod 53:365–373

    Article  CAS  Google Scholar 

  • Gowda TM, Naidu ACB, Chhaya R (1999) Some mechanical properties of untreated jute fabric-reinforced polyester composites. Compos A 30(3):277–284

    Article  Google Scholar 

  • Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297(5582):803–807

    Article  CAS  Google Scholar 

  • Gulati D, Sain M (2006) Fungal modification of natural fibers: a novel method of treating natural fibers for composite reinforcement. J Polym Environ 14:347–352

    Article  CAS  Google Scholar 

  • Gurunathan T, Mohanty S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos Part A 77:1–25

    Article  CAS  Google Scholar 

  • Gwon JG, Lee SY, Chun SJ, Doh GH, Kim JH (2010) Effect of chemical treatments of wood fibers on the physical strength of polypropylene based composites. Korean J Chem Eng 27(2):651–657

    Article  CAS  Google Scholar 

  • Hartmann H (1998) High molecular weight polylactic acid polymers. In: Kaplan DL (ed) Biopolymers from renewable resources. Springer-Verlag, Berlin, pp 367–411

    Chapter  Google Scholar 

  • Hassan MK, Mauritz KA, Storey RF, Wiggins JS (2006) Biodegradable aliphatic thermoplastic polyurethane based on poly(epsilon-caprolactone) and L-lysine diisocyanate. J Polym Sci Part A Polym Chem 44(9):2990–3000

    Article  CAS  Google Scholar 

  • Hollaway LC (2010) A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties. Constr Build Mater 24(12):2419–2445

    Article  Google Scholar 

  • Hon DNS (1992) New developments in cellulosic derivatives and copolymers. ACS Symp Ser 476:176–196

    Article  CAS  Google Scholar 

  • Hon DNS, Ou NH (1989) Thermoplasticization of wood I. Benzylation of wood. J Polym Sci Polym Chem 27(7):2457–2482

    Google Scholar 

  • Hong CK, Wool RP (2005) Development of a bio-based composite material from soybean oil and keratin fibers. J Appl Polym Sci 95(6):1524–1538

    Article  CAS  Google Scholar 

  • Hori Y, Takahashi Y, Yamaguchi A, Nishishita T (1993) Ring-opening copolymerization of optically-active beta-butyrolactone with several lactones catalyzed by distannoxane complexes—synthesis of new biodegradable polyesters. Macromolecules 26(16):4388–4390

    Article  CAS  Google Scholar 

  • Hsieh W-C, Wada Y, Mitobe T, Mitomo H, Seko N, Tamada M (2009) Effect of hydrophilic and hydrophobic monomers grafting on microbial poly(3-hydroxybutyrate). J Taiwan Inst Chem Eng 40(4):413–417

    Article  CAS  Google Scholar 

  • Hu L, Wan Y, He F, Luo HL, Liang H, Li X, Wang J (2009) Effect of coupling treatment on mechanical properties of bacterial cellulose nanofibre reinforced UPR ecocomposites. Mater Lett 63:1952–1954

    Article  CAS  Google Scholar 

  • Huda MS, Mohanty AK, Drzal LT, Schut E, Misra M (2005) “Green” composites from recycled cellulose and poly(lactic acid): Physico-mechanical and morphological properties evaluation. J Mater Sci 40(16):4221–4229

    Article  CAS  Google Scholar 

  • Huda MS, Drzal LT, Mohanty AK, Misra M (2006) Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly(lactic acid) (PLA) composites: a comparative study. Compos Sci Technol 66(11–12):1813–1824

    Article  CAS  Google Scholar 

  • Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers. Compos Sci Technol 68(2):424–432

    Article  CAS  Google Scholar 

  • Islam MN, Rahman MR, Haque MM, Huque MM (2010) Physico-mechanical properties of chemically treated coir reinforced polypropylene composites. Compos Part A Appl Sci 41:192–198

    Article  CAS  Google Scholar 

  • John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71(3):343–364

    Article  CAS  Google Scholar 

  • Joseph P (1999) Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites. Compos Sci Technol 59:1625–1640

    Article  CAS  Google Scholar 

  • Joubert F, Musa OM, Hodgson DRW, Cameron NR (2014) The preparation of graft copolymers of cellulose and cellulose derivatives using ATRP under homogeneous reaction conditions. Chem Soc Rev 43:7217–7235

    Article  CAS  Google Scholar 

  • Juzwa M, Jedlinski Z (2006) Novel synthesis of poly(3-hydroxybutyrate). Macromolecules 39(13):4627–4630

    Article  CAS  Google Scholar 

  • Kang H, Liu R, Huang Y (2015) Graft modification of cellulose: methods, properties and applications. Polymer 70:A1–A16

    Article  CAS  Google Scholar 

  • Kharazipour A, Huettermann A, Luedemann HD (1997) Enzymatic activation of wood fibres as a means for the production of wood composites. J Adhes Sci Technol 11(3):419–427

    Article  Google Scholar 

  • Koronis G, Silva A, Fontul M (2013) Green composites: a review of adequate materials for automotive applications. Compos B 44:120–127

    Article  CAS  Google Scholar 

  • Kushwaha PK, Kumar R (2010) Influence of chemical treatments on the mechanical and water absorption properties of bamboo fiber composites. J Reinf Plast Compos 0(00):1–13

    Google Scholar 

  • Lawton JW, Shogren RL, Tiefenbacher KF (2004) Aspen fiber addition improves the mechanical properties of baked cornstarch foams. Ind Crops Prod 19(1):41–48

    Article  CAS  Google Scholar 

  • Le Duigou A, Castro M (2015) Moisture-induced self-shaping flax-reinforced polypropylene biocomposite actuator. Ind Crops Prod 71:1–6

    Article  CAS  Google Scholar 

  • Lee KY, Delille A, Bismarck A (2011) Greener surface treatments of natural fibres for the production of renewable composite materials. In: Kalia S, Kaith BS, Kaur I (eds) Cellulose fibers: bio- and nano-polymer. Springer-Verlag, Heidelberg, pp 155–178

    Chapter  Google Scholar 

  • Lenz RW (2005) Biodegradable polymers. Adv Polym Sci 107:1–40

    Article  Google Scholar 

  • Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33

    Article  CAS  Google Scholar 

  • Li J, Isayev AI, Ren X, Soucek MD (2015a) Modified soybean oil-extended SBR compounds and vulcanizates filled with carbon black. Polymer 60:144–156

    Article  CAS  Google Scholar 

  • Li Y, Luo X, Hu S (2015b) Bio-based polyols and polyurethanes. Springer, Heidelberg

    Book  Google Scholar 

  • Liu ZS, Erhan SZ, Xu J, Calvert PD (2002) Development of soybean oil-based composites by solid freeform fabrication method: epoxidized soybean oil with bis or polyalkyleneamine curing agents system. J Appl Polym Sci 85(10):2100–2107

    Article  CAS  Google Scholar 

  • Liu Z, Erhan SZ, Xu J (2005) Preparation, characterization and mechanical properties of epoxidized soybean oil/clay nanocomposites. Polymer 46(23):10119–10127

    Article  CAS  Google Scholar 

  • Liu L, Yu J, Cheng L, Yang X (2009) Biodegradability of poly(butylene succinate) (PBS) composite reinforced with jute fibre. Polym Degrad Stab 94(1):90–94

    Article  CAS  Google Scholar 

  • Malmstrom E, Carlmark A (2012) Controlled grafting of cellulose fibres—an outlook beyond paper and cardboard. Polym Chem 3:1702–1713

    Article  Google Scholar 

  • Manikandan Nair KC, Diwan SM, Thomas S (1996) Tensile properties of short sisal fiber reinforced polystyrene composites. J Appl Polym Sci 60:1483–1497

    Article  Google Scholar 

  • Manikandan Nair KC, Thomas S, Groeninckx G (2001) Thermal and dynamic mechanical analysis of polystyrene composites reinforced with short sisal fibres. Compos Sci Technol 61(16):2519

    Google Scholar 

  • Mansour OY, Nagaty A, El-Zawawy WK (1994) Variables affecting the methylation reactions of cellulose. J Appl Polym Sci 54(5):519–524

    Article  CAS  Google Scholar 

  • Masuelli MA (2013) Fiber reinforced polymers—the technology applied for concrete repair. InTech, Rijeka

    Book  Google Scholar 

  • Matyjaszewski K (2012) Atom transfer radical polymerization: current status and future perspectives. Macromolecules 45(10):4015–4039

    Article  CAS  Google Scholar 

  • Meng H, Li G (2013) A review of stimuli-responsive shape memory polymer composites. Polymer 54(9):2199–2221

    Article  CAS  Google Scholar 

  • Mishra S, Naik JB, Patil YP (2000) The Compstibilising effect of maleic anhydride on swelling and mechanical properties of plant-fiber-reinforced novolac composites. Compos Sci Technol 60(9):1729–1735

    Article  CAS  Google Scholar 

  • Mishra S, Misra M, Tripathy SS, Mayak SK, Mohanty AK (2002) The influence of chemical surface modification on the performance of sisal-polyester biocomposites. Polym Compos 23(2):164–170

    Article  CAS  Google Scholar 

  • Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276(3–4):1–24

    Article  Google Scholar 

  • Mohanty AK, Misra M, Drzal LT (2001) Surface modifications of natural fibers and performance of the resulting biocomposites: an overview. Compos Interfaces 8:313–343

    Article  CAS  Google Scholar 

  • Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10(1–2):19–26

    Article  CAS  Google Scholar 

  • Mohanty AK, Tummala P, Misra M, Drzal LT (2009) Filler-reinforced thermoplastic compositions containing metal salts and process for manufacture. US Patent 7,582,241 B2

    Google Scholar 

  • Monteiro SN, Calado V, Rodriguez RJS, Margem FM (2012) Thermogravimetric stability of polymer composites reinforced with less common lignocellulosic fibers—an overview. J Mater Res Technol 1(2):117–126

    Article  CAS  Google Scholar 

  • Mukherjee T, Kao N (2011) PLA based biopolymer reinforced with natural fibre: a review. J Polym Environ 19(3):714–725

    Article  CAS  Google Scholar 

  • Mukherjee PS, Satyanarayana KG (1986) Structure and properties of some vegetable fibers. 2. Pineapple fiber (Anannus-comosus). J Mater Sci 21(1):51–56

    Article  Google Scholar 

  • Musiol M, Janeczek H, Jurczyk S, Kwiecien I, Sobota M, Marcinkowski A et al (2015) (Bio)Degradation studies of degradable polymer composites with jute in different environments. Fibers Polym 16(6):1362–1369

    Article  CAS  Google Scholar 

  • Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84(12):2222–2234

    Article  CAS  Google Scholar 

  • Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32(8–9):762–798

    Article  CAS  Google Scholar 

  • Nakajima-Kambe T, Shigeno-Akutsu Y, Nomura N, Onuma F, Nakahara T (1999) Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes. Appl Microbiol Biotechnol 51(2):134–140

    Article  CAS  Google Scholar 

  • Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101(22):8493–8501

    Article  CAS  Google Scholar 

  • Nguyen T, Zavarin E, Barral EM (1981) Thermal analysis of lignocellulosic materials. Part I—unmodified materials. J Macromol Sci Rev Macromol Chem C20:1–65

    Google Scholar 

  • Nguyen T, Zavarin E, Barral EM (1981) Thermal analysis of lignocellulosic materials. Part II—modified materials. J Macromol Sci Rev Macromol Chem C21:1–60

    Google Scholar 

  • Nicolas J, Guillaneuf Y, Lefay C, Bertin D, Gigmes D, Charleux B (2013) Nitroxide-mediated polymerization. Prog Polym Sci 38(1):63–235

    Article  CAS  Google Scholar 

  • Nykter M, Kymalainen HR, Thomsen AB, Lilholt H, Koponen H, Sjoberg AM, Thygesen A (2008) Effects of thermal and enzymatic treatments and harvesting time on the microbial quality and chemical composition of fiber hemp (Cannabis sativa L.). Biomass Bioenerg 32:392–399

    Article  CAS  Google Scholar 

  • Oksman K (2001) High quality flax fibre composites manufactured by the resin transfer moulding process. J Reinf Plast Compos 20(7):621–627

    Article  CAS  Google Scholar 

  • Paetau I, Chen CZ, Jane JL (1994) Biodegradable plastic made from soybean products. 1. Effect of preparation and processing on mechanical-properties and water-absorption. Ind Eng Chem Res 33(7):1821–1827

    Article  CAS  Google Scholar 

  • Pandey JK, Ahn SH, Lee CS, Mohanty AK, Misra M (2010) Recent advances in the application of natural fiber based composites. Macromol Mater Eng 295:975–989

    Article  CAS  Google Scholar 

  • Paredes N, Rodriguez-Galan A, Puiggali J (1998) Synthesis and characterization of a family of biodegradable poly(ester amide)s derived from glycine. J Polym Sci Part A Polym Chem 36(8):1271–1282

    Article  CAS  Google Scholar 

  • Park SJ, Jin JS (2001) Effect of silane coupling agent on interphase and performance of glass fibers/unsaturated polyester composites. J Colloid Interface Sci 242:174–179

    Article  CAS  Google Scholar 

  • Park JM, Quang ST, Hwang BS, DeVries KL (2006) Interfacial evaluation of modified jute and hemp fibers/polypropylene (PP)-maleic anhydride polypropylene copolymers (PP-MAPP) composites using micromechanical technique and nondestructive acoustic emission. Compos Sci Technol 66(15):2686–2699

    Article  CAS  Google Scholar 

  • Pervaiz M, Sain MM (2003) Sheet-molded polyolefin natural fiber composites for automotive applications. Macromol Mater Eng 288:553–557

    Article  CAS  Google Scholar 

  • Petinakis E, Yu L, Edward G, Dean K, Liu H, Scully AD (2009) Effect of matrix-particle interfacial adhesion on the mechanical properties of poly(lactic acid)/wood-flour micro-composites. J Polym Environ 17(2):83–94

    Article  CAS  Google Scholar 

  • Pickering KL, Efendy MGA, Le TM (2015) A review of recent developments in natural fibre composites and their mechanical performance. Compos A doi:10.1016/j.compositesa.08:038

  • Poth U (2001) Drying oils and related products. Ullmann’s encyclopedia of industrial chemistry

    Google Scholar 

  • Prakobna K, Galland S, Berglund LA (2015) High-performance and moisture-stable cellulose-starch nanocomposites based on bioinspired core-shell nanofibers. Biocomolecules 16:904–912

    CAS  Google Scholar 

  • Qiu R, Ren X, Fifield LS, Simmons KL, Li K (2011) Hemp-fiber-reinforced unsaturated polyester composites: optimization of processing and improvement of interfacial adhesion. J Appl Polym Sci 15; 121(2):862–8

    Google Scholar 

  • Qiu R, Ren X, Li K (2012a) Effect of fiber modification with a novel compatibilizer on the mechanical properties and water absorption of hemp-fiber-reinforced unsaturated polyester composites. Polym Eng Sci 52(6):1342–1347

    Article  CAS  Google Scholar 

  • Qiu R, Ren X, Li K (2012) Effects of sizes, shapes and orientation of bamboo fibers on properties of bamboo-unsaturated polyester composites. In: Abstracts of papers of the american chemical society 2012 Mar 25 (vol 243). 1155 16TH ST, NW, Washington, DC 20036 USA: Amer Chemical Soc

    Google Scholar 

  • Rahman MR, Huque MM, Islam MN, Hasan M (2009) Mechanical properties of polypropylene composites reinforced with chemically treated Abaca. Compos Part A Appl Sci 40:511–517

    Article  CAS  Google Scholar 

  • Rahman MA, Parvin F, Hasan M, Hoque ME (2015) Introduction to manufacturing of natural fibre-reinforced polymer composites. In: Salit MS, Jawaid M, Yusoff NB, Hoque ME (eds) Manufacturing of natural fibre reinforced polymer composites. Springer, Switzerland, pp 17–43

    Chapter  Google Scholar 

  • Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova 26:863–871

    Article  CAS  Google Scholar 

  • Rayung M, Ibrahim NA, Zainuddin N, Saad WZ, Razak NIA, Chieng BW (2014) The effect of fiber bleaching treatment on the properties of poly(lactic acid)/oil palm empty fruit bunch fiber composites. Int J Mol Sci 15:14728–14742

    Article  CAS  Google Scholar 

  • Reddy N (2015) A review on completely biodegradable composites developed using soy-based matrices. Reinf Plast Compos 0(0):1–19

    Google Scholar 

  • Ren X, Li K (2013) Investigation of vegetable-oil-based coupling agents for kenaf-fiber-reinforced unsaturated polyester composites. J Appl Polym Sci 15; 128(2):1101–9

    Google Scholar 

  • Ren X, Soucek MD (2014) Soya-based coatings and adhesives. Soy-based Chem Mater 207–254

    Google Scholar 

  • Ren X, Qiu R, Li K (2012a) Modifications of kenaf fibers with N-methylol acrylamide for production of kenaf-unsaturated polyester composites. J Appl Polym Sci 125(4):2846–2853

    Article  CAS  Google Scholar 

  • Ren X, Qiu R, Fifield LS, Simmons KL, Li K (2012b) Effects of surface treatments on mechanical properties and water resistance of kenaf fiber-reinforced unsaturated polyester composites. J Adhes Sci Technol 26(18–19):2277–2289

    CAS  Google Scholar 

  • Ren X, Li C, Li K (2013) Investigation of acrylamide-modified melamine-formaldehyde resins as a compatibilizer for kenaf-unsaturated polyester composites. Polym Eng Sci 53(8):1605–1613

    Article  CAS  Google Scholar 

  • Ren X, Meng L, Soucek MD (2016) Environmentally friendly coatings. Biobased Environmentally Benign Coat 183–224

    Google Scholar 

  • Romhany G, Karger-Kocsis J, Czigany T (2003) Tensile fracture and failure behavior of thermoplastic starch with unidirectional and cross-ply flax fiber reinforcements. Macromol Mater Eng 288(9):699–707

    Article  CAS  Google Scholar 

  • Rong MZ, Zhang MQ, Liu Y, Yang GC, Zeng HM (2001) The effect of fiber treatment on the mechanical properties of unifirectional sisal-reinforced epoxy composites. Compos Sci Tech 61(10):1437–1447

    Article  CAS  Google Scholar 

  • Rouison D, Sain M, Couturier M (2006) Resin transfer molding of hemp fiber composites: optimization of the process and mechanical properties of the mateirals. Compos Sci Technol 66(7–8):895–906

    Article  CAS  Google Scholar 

  • Rowell RM (1992) Property enhancement of wood composites. In: Rowell RM, Vigo T, Kinzig B (eds) Composite applications—the role of matrix, fibre and interface. VCH Publishers, New York, Chapter 4

    Google Scholar 

  • Roy I, Visakh PM (eds) (2015) Polyhydroxyalkanoate (PHA) based blends, composites and nanocomposites. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064

    Article  CAS  Google Scholar 

  • Roy D, Cambre JN, Sumerlin BS (2010) Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 35:278–301

    Article  CAS  Google Scholar 

  • Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Technol 18(4):351–363

    Article  CAS  Google Scholar 

  • Sanadi AR, Caulfield DF, Jacobson RE, Rowell RM (1995) Renewable agricultural fibers as reinforcing filers in plastics: mechanical properties of kenaf fiber-polypropylene composites. Ind Eng Chem Res 34(5):1889–1896

    Article  CAS  Google Scholar 

  • Sanchez-Garcia MD, Lagaron JM (2010) On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid. Cellulose 17(5):987–1004

    Article  CAS  Google Scholar 

  • Satyanarayana KG (2004) Steam explosion—a boon for value addition to renewable resources. Metal News 22:35–40

    Google Scholar 

  • Satyanarayana KG, Arizaga GGC, Wypych F (2009) Biodegradable composites based on lignocellulosic fiber—an overview. Prog Polym Sci 34:982–1021

    Article  CAS  Google Scholar 

  • Savenkova L, Gercberga Z, Nikolaeva V, Dzene A, Bibers I, Kalnin M (2000) Mechanical properties and biodegradation characteristics of PHB-based films. Process Biochem 35(6):573–579

    Article  CAS  Google Scholar 

  • Shanks R, Hodzic A, Wong S (2004) Thermoplastic biopolyester natural fiber composites. J Appl Polym Sci 91:2114–2121

    Article  CAS  Google Scholar 

  • Sheu D-S, Chen W-M, Yang J-Y, Chang R-C (2009) Thermophilic bacterium Caldimonas taiwanensis produces poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from starch and valerate as carbon sources. Enzyme Microbial Technol 44(5):289–294

    Article  CAS  Google Scholar 

  • Singha AS, Rana AK (2012) A study on benzoylation and graft copolymerization of lignocellulosic cannabis indica fiber. J Polym Environ 20(2):361–371

    Article  CAS  Google Scholar 

  • Soucek MD, Ren X (2015) UV-curable coating technologies. Photocured Mater 15–48

    Google Scholar 

  • Srebrenkoska V, Gaceva GB, Dimeski D (2009) Preparation and recycling of polymer eco-composites I. Comparison of the conventional molding techniques for preparation of polymer eco-composites. Maced J Chem Chem Eng 28(1):99–109

    CAS  Google Scholar 

  • Stevens ES (2003) What makes green plastics green? Biocycle 44(3):24–27

    CAS  Google Scholar 

  • Sue HJ, Wang S, Jane JL (1997) Morphology and mechanical behaviour of engineering soy plastics. Polymer 38(20):5035–5040

    Article  CAS  Google Scholar 

  • Thakur VK (ed) (2015) Cellulose-based graft copolymers: structure and chemistry. CRC Press, Boca Raton

    Google Scholar 

  • Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohyd Polym 109:102–117

    Article  CAS  Google Scholar 

  • Tibolla H, Pelissari FM, Menegalli FC (2014) Cellulose nanofibers produced from banana peel by chemical treatment and enzymatic treatment. LWT-Food Sci Technol 59(2):1311–1318

    Article  CAS  Google Scholar 

  • Tokoro R, Vu DM, Okubo K, Tanaka T, Fujii T, Fujiura T (2008) How to improve mechanical properties of polylactic acid with bamboo fibers. J Mater Sci 43(2):775–787

    Article  CAS  Google Scholar 

  • Trejo-O’reilly J, Cavaill´e J, Paillet M, Gandini A, Herrera-Franco P, Cauich J (2000) Interfacial properties of regenerated cellulose fiber/polystyrene composite materials. Effect of the coupling agent’s structure on the micromechanical behavior. Polym Compos 21:65–71

    Google Scholar 

  • Tserki V, Zafeiropoulos NE, Simon F, Panayiotou C (2005) A study of the effect of acetylation and propionylation surface treatments on natural fibres. Compos Part A Appl Sci 36:1110–1118

    Article  CAS  Google Scholar 

  • Tsujimoto T, Takayama T, Uyama H (2015) Biodegradable shape memory polymeric material from epoxidized soybean oil and polycaprolactone. Polymers 7(10):2165–2174

    Article  CAS  Google Scholar 

  • Ugbolue SCO (1983) The relation between yarn and fabric properties in plain-knitted structures. J Text Inst 74(5):272–280

    Article  Google Scholar 

  • Valadez-Gonzalez A, Cervantes-Uc JM, Olayo R, Herrera-Franco PJ (1999a) Chemical modification of henequen fibers with an organosilane coupling agent. Compos B Eng 30(3):321–331

    Article  Google Scholar 

  • Valadez-Gonzalez A, Cervantes-Uc JM, Olayo R, Herrera-Franco PJ (1999b) Effect of fiber surface treatment on the fiber-matrix bond strength of natural fiber reinforced composites. Compos B Eng 30(3):309–320

    Article  Google Scholar 

  • Van de Weyenberg I, Truong TC, Vangrimde B, Verpoest I (2006) Improving the properties of UD flax fibre reinforced composites by applying an alkaline fibre treatment. Compos Part A Appl S 37:1368–1376

    Article  CAS  Google Scholar 

  • Vroman I, Tighzert L (2009) Biodegradable polymers. Materials 2(2):307–344

    Article  CAS  Google Scholar 

  • Wang S, Sue HJ, Jane J (1996) Effects of polyhydric alcohols on the mechanical properties of soy protein plastics. J Macromol Sci Part A Pure Appl Chem A 33(5):557–569

    Article  Google Scholar 

  • Wang B, Panigrahi S, Tabil L, Crerar W (2007) J Reinf Plast Compos 26(5):447–463

    Google Scholar 

  • Wanjale SD, Jog JP (2011) Polyolefin-based natural fiber composites. In: Kalia S, Kaith BS, Kaur I (eds) Cellulose fibers: bio- and nano-polymer. Springer-Verlag, Heidelberg, pp 377–394

    Chapter  Google Scholar 

  • Witt U, Einig T, Yamamoto M, Kleeberg I, Deckwer WD, Muller RJ (2001) Biodegradation of aliphatic-aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates. Chemosphere 44(2):289–299

    Article  CAS  Google Scholar 

  • Wong S, Shanks R, Hodzic A (2002) Properties of poly(3-hydroxybutyric acid) composites with flax fibres modified by plasticiser absorption. Macromol Mater Eng 287(10):647–655

    Article  CAS  Google Scholar 

  • Xie F, Pollet E, Hally PJ, Averous L (2013) Starch-based nano-biocomposites. Prog Polym Sci 38(10–11):1590–1628

    Article  CAS  Google Scholar 

  • Xu J, Guo B-H (2010) Poly(butylene succinate) and its copolymers: Research, development and industrialization. Biotechnol J 5(11):1149–1163

    Article  CAS  Google Scholar 

  • Xu JY, Liu ZS, Erhan SZ, Carriere CJ (2004) Cross-linkers control the viscoelastic properties of soybean oil-based biomaterials. J Am Oil Chem Soc 81(8):813–816

    Article  CAS  Google Scholar 

  • Yang HS, Wolcott MP, Kim HS, Kim S, Kim HJ (2006) Properties of lignocellulosic material filled polypropylene bio-composites made with different manufacturing processes. Polym Test 25:668–676

    Article  CAS  Google Scholar 

  • Yao F, Wu Q, Lei Y, Guo W, Xu Y (2008) Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stabil 93:90–98

    Article  CAS  Google Scholar 

  • Yoo ES, Im SS (1999) Melting behavior of poly(butylene succinate) during heating scan by DSC. J Polym Sci Pol Phys 37(13):1357–1366

    Article  CAS  Google Scholar 

  • Yu T, Li Y, Ren J (2009) Preparation and properties of short natural fiber reinforced poly(lactic acid) composites. Trans Nonferrous Met Soc China 19:S651–S655

    Article  CAS  Google Scholar 

  • Yu T, Ren J, Li S, Yuan H, Li Y (2010) Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites. Compos Part A Appl Sci 41(4):499–505

    Article  CAS  Google Scholar 

  • Zhang L, Cool LR, Wesdemiotis C, Weiss RA, Cavicchi KA (2013) Syntheses of quaternary ammonium-containing, trithiocarbonate RAFT agents and hemi-telechelic cationomers. Polym Chem 5(4):1180–1190

    Article  Google Scholar 

  • Zhang L, Brostowitz NR, Cavicchi KA, Weiss RA (2014a) Perspective: ionomer research and applications. Macromol React Eng 8(2):81–99

    Article  CAS  Google Scholar 

  • Zhang L, Tang Q, Weiss RA, Cavicchi KA (2014b) Synthesis and characterization of quaternary phosphonium-containing, trithiocarbonate RAFT agents. Polym Chem 5(18):5492–5500

    Article  CAS  Google Scholar 

  • Zhang W, Vinueza NR, Datta P, Michielsen S (2015) Functional dye as a comonomer in a water-soluble polymer. J Polym Sci Polym Chem 53(13):1594–1599

    Article  CAS  Google Scholar 

  • Zhong J, Zhang L, Yu J, Tan T, Zhang X (2010) Studies of different kinds of fiber pretreating on the properties of PLA/sweet sorghum fiber composites. J Appl Polym Sci 117(3):1385–1393

    CAS  Google Scholar 

  • Zhong J, Li H, Yu J, Tan T (2011) Effects of natural fiber surface modification on mechanical properties of poly (lactic acid)(PLA)/sweet sorghum fiber composites. Polymer-Plastics Technol Eng 50(15):1583–1589

    Article  CAS  Google Scholar 

  • Zhou D, Yao L, Liang F, Zhao D, Jiang M, Zhang W, Wu H, Luo R, Zhang B, Qiu Y (2010) Tensile and shear properties of three dimensional orthogonal woven basalt/kevlar hybrid composites. Fiber Compos 1:17–20

    Google Scholar 

  • Zimniewska M, Wladyka-Przybylak M, Mankowski J (2011) Cellulosic bast fibers, their structure and properties suitable for composite applications. In: Kalia S, Kaith BS, Kaur I (eds) Cellulose fibers: bio- and nano-polymer. Springer-Verlag, Heidelberg, pp 97–120

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zhang, L., Zhong, J., Ren, X. (2017). Natural Fiber-Based Biocomposites. In: Jawaid, M., Sapuan, S., Alothman, O. (eds) Green Biocomposites. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-46610-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46610-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46609-5

  • Online ISBN: 978-3-319-46610-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics