Skip to main content

Fruit Development and Ripening: Proteomic as an Approach to Study Olea europaea and Other Non-model Organisms

  • Chapter
  • First Online:
Agricultural Proteomics Volume 1

Abstract

Boosted by the development of cutting-edge “omics” technologies, powerful tools have been developed to support traditional fruit crop research. Comparative “omics” studies have been extensively applied to investigate complex biological processes, such as fruit development and ripening, pointing out unique pathways, genes and proteins involved in these processes. Due to the availability of new technologies, reduced experimental costs, and optimized protein extraction protocols for recalcitrant plant tissues, proteomics is rapidly expanding, reaching fruit species regarded as non-model plant systems. Olea europaea can be undoubtedly ranked as a non-model plant species, thus suffering from a dearth of proteomic investigation when compared to other fruit species. In this chapter, we will briefly travel through the proteomic history of olives as an example of a non-model tree crop, characterized by a proteomic investigation still in its infancy but appearing to be promising. We will highlight what has been already done and we will draw the attention of the reader especially on what can be still done.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barry CS, Giovannoni JJ (2007) Ethylene and fruit ripening. J Plant Growth Regul 26:143–159

    Article  CAS  Google Scholar 

  2. Defilippi BG, Manriquez D, Luengwilai K, González-Agüero M (2009) Aroma volatiles: biosynthesis and mechanisms of modulation during fruit ripening. Adv Bot Res 50:1–37

    Article  CAS  Google Scholar 

  3. Pech J-C, Bouzayen M, Latché A (2008) Climacteric fruit ripening: ethylene-dependent and independent regulation of ripening pathways in melon fruit. Plant Sci 175:114–120

    Article  CAS  Google Scholar 

  4. Trainotti L, Tadiello A, Casadoro G (2007) The involvement of auxin in the ripening of climacteric fruits comes of age: the hormone plays a role of its own and has an intense interplay with ethylene in ripening peaches. J Exp Bot 58:3299–3308

    Article  CAS  PubMed  Google Scholar 

  5. Ziosi V, Bonghi C, Bregoli AM, Trainotti L, Biondi S, Sutthiwal S et al (2008) Jasmonate-induced transcriptional changes suggest a negative interference with the ripening syndrome in peach fruit. J Exp Bot 59:563–573

    Article  CAS  PubMed  Google Scholar 

  6. Symons GM, Davies C, Shavrukov Y, Dry IB, Reid JB, Thomas MR (2006) Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiol 140:150–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Giovannoni J (2001) Molecular biology of fruit maturation and ripening. Annu Rev Plant Physiol Plant Mol Biol 52:725–749

    Article  CAS  PubMed  Google Scholar 

  8. Gapper NE, Giovannoni JJ, Watkins CB (2014) Understanding development and ripening of fruit crops in an ‘omics’ era. Hortic Res 1:14034

    Article  PubMed  PubMed Central  Google Scholar 

  9. Palma JM, Corpas FJ, Luís A (2011) Proteomics as an approach to the understanding of the molecular physiology of fruit development and ripening. J Proteomics 74:1230–1243

    Article  CAS  PubMed  Google Scholar 

  10. Carpentier SC, Panis B, Vertommen A, Swennen R, Sergeant K, Renaut J et al (2008) Proteome analysis of non-model plants: a challenging but powerful approach. Mass Spectrom Rev 27:354–377

    Article  CAS  PubMed  Google Scholar 

  11. Righetti PG, Esteve C, D’amato A, Fasoli E, Luisa Marina M, Concepcion Garcia M (2015) A sarabande of tropical fruit proteomics: avocado, banana, and mango. Proteomics 15:1639–1645

    Google Scholar 

  12. Rocco M, D’ambrosio C, Arena S, Faurobert M, Scaloni A, Marra M (2006) Proteomic analysis of tomato fruits from two ecotypes during ripening. Proteomics 6:3781–3791

    Google Scholar 

  13. Carpentier SC, America T (2014) Proteome analysis of orphan plant species, fact or fiction? Plant Proteomics: Meth Protocols 333–346

    Google Scholar 

  14. Coni E, Di Benedetto R, Di Pasquale M, Masella R, Modesti D, Mattei R et al (2000) Protective effect of oleuropein, an olive oil biophenol, on low density lipoprotein oxidizability in rabbits. Lipids 35:45–54

    Article  CAS  PubMed  Google Scholar 

  15. Conde C, Delrot S, Geros H (2008) Physiological, biochemical and molecular changes occurring during olive development and ripening. J Plant Physiol 165:1545–1562

    Article  CAS  PubMed  Google Scholar 

  16. Zamora R, Alaiz M, Hidalgo FJ (2001) Influence of cultivar and fruit ripening on olive (Olea europaea) fruit protein content, composition, and antioxidant activity. J Agric Food Chem 49:4267–4270

    Article  CAS  PubMed  Google Scholar 

  17. Koidis A, Boskou D (2006) The contents of proteins and phospholipids in cloudy (veiled) virgin olive oils. Eur J Lipid Sci Technol 108:323–328

    Article  CAS  Google Scholar 

  18. Hidalgo FJ, Alaiz M, Zamora R (2001) Determination of peptides and proteins in fats and oils. Anal Chem 73:698–702

    Article  CAS  PubMed  Google Scholar 

  19. Esteve C, Canas B, Moreno-Gordaliza E, Del Rio C, Garcia MC, Marina ML (2011) Identification of olive (Olea europaea) pulp proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nano-liquid chromatography tandem mass spectrometry. J Agric Food Chem 59:12093–12101

    Article  CAS  PubMed  Google Scholar 

  20. Esteve C, Del Rio C, Marina ML, Garcia MC (2011) Development of an ultra-high performance liquid chromatography analytical methodology for the profiling of olive (Olea europaea L.) pulp proteins. Anal Chim Acta 690:129–134

    Article  CAS  PubMed  Google Scholar 

  21. Boschetti E, Righetti PG (2014) Plant proteomics methods to reach low-abundance proteins. Plant Proteomics: Meth Protocols 111–129

    Google Scholar 

  22. Esteve C, D’amato A, Marina ML, Garcia MC, Citterio A, Righetti PG (2012) Identification of olive (Olea europaea) seed and pulp proteins by nLC-MS/MS via combinatorial peptide ligand libraries. J Proteomics 75:2396–2403

    Google Scholar 

  23. Capriotti AL, Cavaliere C, Foglia P, Piovesana S, Samperi R, Stampachiacchiere S et al (2013) Proteomic platform for the identification of proteins in olive (Olea europaea) pulp. Anal Chim Acta 800:36–42

    Article  CAS  PubMed  Google Scholar 

  24. Banilas G, Moressis A, Nikoloudakis N, Hatzopoulos P (2005) Spatial and temporal expressions of two distinct oleate desaturases from olive (Olea europaea L.). Plant Sci 168:547–555

    Article  CAS  Google Scholar 

  25. Palomares O, Villalba M, Quiralte J, Polo F, Rodriguez R (2005) 1, 3-β-glucanases as candidates in latex–pollen–vegetable food cross-reactivity. Clin Exp Allergy 35:345–351

    Article  CAS  PubMed  Google Scholar 

  26. Salas JNJ, Sánchez J (1999) Hydroperoxide lyase from olive (Olea europaea) fruits. Plant Sci 143:19–26

    Article  CAS  Google Scholar 

  27. Alagna F, Mariotti R, Panara F, Caporali S, Urbani S, Veneziani G et al (2012) Olive phenolic compounds: metabolic and transcriptional profiling during fruit development. BMC Plant Biol 12:162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ortega-García F, Blanco S, Peinado MÁ, Peragón J (2008) Polyphenol oxidase and its relationship with oleuropein concentration in fruits and leaves of olive (Olea europaea) cv. ‘Picual’trees during fruit ripening. Tree Physiol 28:45–54

    Article  PubMed  Google Scholar 

  29. Nesvizhskii AI, Aebersold R (2005) Interpretation of shotgun proteomic data: the protein inference problem. Mol Cell Proteomics 4:1419–1440

    Article  CAS  PubMed  Google Scholar 

  30. Bianco L, Alagna F, Baldoni L, Finnie C, Svensson B, Perrotta G (2013) Proteome regulation during Olea europaea fruit development. PLoS ONE 8:e53563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Isaacson T, Damasceno CM, Saravanan RS, He Y, Catalá C, Saladié M et al (2006) Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nat Protoc 1:769–774

    Article  CAS  PubMed  Google Scholar 

  32. Alagna F, D’agostino N, Torchia L, Servili M, Rao R, Pietrella M et al. (2009) Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development. BMC Genom 10:399

    Google Scholar 

  33. Amemiya T, Kanayama Y, Yamaki S, Yamada K, Shiratake K (2006) Fruit-specific V-ATPase suppression in antisense-transgenic tomato reduces fruit growth and seed formation. Planta 223:1272–1280

    Article  CAS  PubMed  Google Scholar 

  34. Faurobert M, Mihr C, Bertin N, Pawlowski T, Negroni L, Sommerer N et al (2007) Major proteome variations associated with cherry tomato pericarp development and ripening. Plant Physiol 143:1327–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Clark GB, Sessions A, Eastburn DJ, Roux SJ (2001) Differential expression of members of the annexin multigene family in Arabidopsis. Plant Physiol 126:1072–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Konopka-Postupolska D (2007) Annexins: putative linkers in dynamic membrane-cytoskeleton interactions in plant cells. Protoplasma 230:203–215

    Article  CAS  PubMed  Google Scholar 

  37. Proietti P, Nasini L, Famiani F (2006) Effect of different leaf-to-fruit ratios on photosynthesis and fruit growth in olive (Olea europaea L.). Photosynthetica 44:275–285

    Article  Google Scholar 

  38. Sánchez J (1995) Olive oil biogenesis. Contribution of fruit photosynthesis. In: Plant lipid metabolism. Springer, Berlin, pp 564–566

    Google Scholar 

  39. Sánchez J, Harwood JL (2002) Biosynthesis of triacylglycerols and volatiles in olives. Eur J Lipid Sci Technol 104:564–573

    Article  Google Scholar 

  40. Corrado G, Alagna F, Rocco M, Renzone G, Varricchio P, Coppola V et al (2012) Molecular interactions between the olive and the fruit fly Bactrocera oleae. BMC Plant Biol 12:1

    Article  Google Scholar 

  41. Van De Ven WT, Levesque CS, Perring TM, Walling LL (2000) Local and systemic changes in squash gene expression in response to silverleaf whitefly feeding. Plant Cell 12:1409–1423

    Article  PubMed  PubMed Central  Google Scholar 

  42. Xiong Y, Defraia C, Williams D, Zhang X, Mou Z (2009) Characterization of Arabidopsis 6-phosphogluconolactonase T-DNA insertion mutants reveals an essential role for the oxidative section of the plastidic pentose phosphate pathway in plant growth and development. Plant Cell Physiol 50:1277–1291

    Article  CAS  PubMed  Google Scholar 

  43. Konno K (2011) Plant latex and other exudates as plant defense systems: roles of various defense chemicals and proteins contained therein. Phytochemistry 72:1510–1530

    Article  CAS  PubMed  Google Scholar 

  44. Muleo R, Cavallini A, Perrotta G, Baldoni L, Morgante M, Velasco R (2012) Olive tree genomic. INTECH Open Access Publisher, Rijeka

    Google Scholar 

  45. Agrawal GK, Pedreschi R, Barkla BJ, Bindschedler LV, Cramer R, Sarkar A et al (2012) Translational plant proteomics: a perspective. J Proteomics 75:4588–4601

    Article  CAS  PubMed  Google Scholar 

  46. Armengaud J, Trapp J, Pible O, Geffard O, Chaumot A, Hartmann EM (2014) Non-model organisms, a species endangered by proteogenomics. J Proteomics 105:5–18

    Article  CAS  PubMed  Google Scholar 

  47. Parra R, Paredes MA, Sanchez-Calle IM, Gomez-Jimenez MC (2013) Comparative transcriptional profiling analysis of olive ripe-fruit pericarp and abscission zone tissues shows expression differences and distinct patterns of transcriptional regulation. BMC Genom 14:1

    Article  Google Scholar 

  48. Righetti PG, Fasoli E, D’amato A, Boschetti E (2014) The “Dark side” of food stuff proteomics: the CPLL-marshals investigate. Foods 3:217–237

    Google Scholar 

  49. Roux-Dalvai F, De Peredo AG, Simó C, Guerrier L, Bouyssié D, Zanella A et al (2008) Extensive analysis of the cytoplasmic proteome of human erythrocytes using the peptide ligand library technology and advanced mass spectrometry. Mol Cell Proteomics 7:2254–2269

    Article  CAS  PubMed  Google Scholar 

  50. Hartwig S, Czibere A, Kotzka J, Paßlack W, Haas R, Eckel J et al (2009) Combinatorial hexapeptide ligand libraries (ProteoMiner™): an innovative fractionation tool for differential quantitative clinical proteomics. Arch Physiol Biochem 115:155–160

    Article  CAS  PubMed  Google Scholar 

  51. Boschetti E, Righetti PG (2013) Low-abundance proteome discovery: state of the art and protocols. Newnes

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaetano Perrotta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bianco, L., Perrotta, G. (2016). Fruit Development and Ripening: Proteomic as an Approach to Study Olea europaea and Other Non-model Organisms. In: Salekdeh, G. (eds) Agricultural Proteomics Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-319-43275-5_3

Download citation

Publish with us

Policies and ethics