Skip to main content
Log in

Protective effect of oleuropein, an olive oil biophenol, on low density lipoprotein oxidizability in rabbits

  • Published:
Lipids

Abstract

On the basis of the results obtained with pilot studies conducted in vitro on human low density lipoprotein (LDL) and on cell cultures (Caco-2), which had indicated the ability of certain molecules present in olive oil to inhibit prooxidative processes, an in vivo study was made of laboratory rabbits fed special diets. Three different diets were prepared: a standard diet for rabbits (diet A), a standard diet for rabbits modified by the addition of 10% (w/w) extra virgin olive oil (diet B), a modified standard diet for rabbits (diet C) differing from diet B only in the addition of 7 mg kg−1 of oleuropein. A series of biochemical parameters was therefore identified, both in the rabbit plasma and the related isolated LDL, before and after Cu-induced oxidation. The following, in particular, were selected: (i) biophenols, vitamins E and C, uric acid, and total, free, and ester cholesterol in the plasma; (ii) proteins, triglycerides, phospholipids, and total, free, and ester cholesterol in the native LDL (for the latter, the dimensions were also measured); (iii) lipid hydroperoxides, aldehydes, conjugated dienes, and relative electrophoretic mobility (REM) in the oxidized LDL (ox-LDL). In an attempt to summarize the results obtained, it can be said that this investigation has not only verified the antioxidant efficacy of extra virgin olive oil biophenols and, in particular, of oleuropein, but has also revealed a series of thus far unknown effects of the latter on the plasmatic lipid situation. In fact, the addition of oleuropein in diet C increased the ability of LDL to resist oxidation (less conjugated diene formation) and, at the same time, reduced the plasmatic levels of total, free, and ester cholesterol (−15, −12, and −17%, respectively), giving rise to a redistribution of the lipidic components of LDL (greater phospholipid and cholesterol amounts) with an indirect effect on their dimesions (bigger by about 12%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EDRF:

endothelial release factor

4-HNE:

4-hydroxy-2(E)-nonenal

HPLC:

high-performance liquid chromatography

LDL:

low density lipoprotein

MDA:

malondialdehyde

ox-LDL:

oxidized LDL

PBS:

phosphate-buffered saline

PGGE:

polyacrylamide gradient gel electrophoresis

REM:

relative electrophoretic mobility

References

  1. Witzum, J.L. (1994) The Oxidative Hypothesis of Atherosclerosis, Lancet 344, 793–795.

    Article  Google Scholar 

  2. Berliner, J.A., Mohamad, N., Fogelman, A.M., Frank, J.S., Demer, L.L., Edwards, P.A., Watson A.D., and Lusis A.J. (1995) Atherosclerosis: Basic Mechanisms. Oxidation, Inflammation, and Genetics, Circulation 91, 2488–2496.

    PubMed  CAS  Google Scholar 

  3. Esterbauer, H., Gebicki, J., Puhl, H., and Jürgens, G. (1992) The Role of Lipid Peroxidation and Antioxidants in Oxidative Modification of LDL, Free Radical Biol. Med. 13, 341–390.

    Article  CAS  Google Scholar 

  4. Esterbauer, H., Schmidt, R., and Hayn, M. (1997) Relationships Among Oxidation of Low-Density Lipoprotein, Antioxidant Protection, and Atherosclerosis, Adv. Pharmacol. 38, 425–456.

    PubMed  CAS  Google Scholar 

  5. Holvoet, P., and Collen, D. (1998) Oxidation of Low Density Lipoproteins in the Pathogenesis of Atherosclerosis, Atherosclerosis 137 (Suppl.), S33-S38.

    Article  PubMed  CAS  Google Scholar 

  6. Ross, R. (1993) The Pathogenesis of Atherosclerosis: A Perspective for the 1990s, Nature 362, 801–809.

    Article  PubMed  CAS  Google Scholar 

  7. Witzum, J.L., and Steinberg, D. (1991) Role of Oxidized Low-Density Lipoproteins in Atherogenesis, J. Clin. Invest. 88, 1785–1792.

    Google Scholar 

  8. Quinn, M.T., Parthasarathy, S., Fong, L.G., and Steinberg, D. (1987) Oxidatively Modified Low Density Lipoproteins: A Potential Role in Recruitment and Retention of Monocyte/Macrophages During Atherogenesis, Proc. Natl. Acad. Sci. USA 84, 2995–2998.

    Article  PubMed  CAS  Google Scholar 

  9. Berliner, J., Territo, M., Sevanian, A., Ramin, S., Kim, J.A., Bamshad, B., Esterson, M., and Fogelman, A.M. (1990) Minimally Modified Low Density Lipoprotein Stimulates Monocytes Endothelial Interaction, J. Clin. Invest. 85, 1260–1266.

    PubMed  CAS  Google Scholar 

  10. Rice-Evans, C., Miller, N., and Paganga, G. (1996) Structure-Antioxidant Activity Relationships of Flavonoids and Phenolic Acids, Free Radical Biol. Med. 20, 933–956.

    Article  CAS  Google Scholar 

  11. Machlin, L., and Bendich, A. (1987) Free Radical Tissue Damage: Protective Role of Antioxidant Nutrients, FASEB J. 1, 444–445.

    Google Scholar 

  12. Martin, A., Wu, D., Meydani, S.N., Blumberg, J.B., and Meydani, M. (1998) Vitamin E Protects Human Aortic Endothelial Cells from Cytotoxic Injury Induced by Oxidized LDL in vitro, J. Nutr. Biochem. 9, 201–208.

    Article  CAS  Google Scholar 

  13. Jialal, I., and Grundy, S.M. (1992) The Effect of Dietary Supplementation with α-Tocopherol in the Oxidative Modification of LDL, J. Lipid Res. 33, 899–906.

    PubMed  CAS  Google Scholar 

  14. Abbey, M., Nestel, P.J., and Baghurst, P.A. (1993) Antioxidant Vitamins and Low Density Lipoprotein Oxidation, Am. J. Clin. Nutr. 58, 525–532.

    PubMed  CAS  Google Scholar 

  15. Sato, K., Niki, E., and Shimasaki, H. (1990) Free Radical-Mediated Chain Oxidation of Low Density Lipoprotein and Its Synergistic Inhibition by Vitamin E and Vitamin C, Arch. Biochem. Biophys. 279, 402–405.

    Article  PubMed  CAS  Google Scholar 

  16. Jang, M., Cai, L., Udeani, G.O., Slowing, K.V., Thomas, C.F., Beecher, C.W.W., Fong, H.H.S., Farnsworth, N.R., Kinghorn, A.D., Mehta, R.G., Moon, R.C., and Pezzuto, J.M. (1997) Cancer Chemopreventive Activity of Resveratrol, a Natural Product Derived from Grapes, Science 275, 218–220.

    Article  PubMed  CAS  Google Scholar 

  17. Tijburg, L.B.M., Wiseman, S., Meijer, G.W., and Weststrate, J.A. (1997) Effects of Green Tea, Black Tea and Lipophilic Antioxidants on LDL Oxidability and Atherosclerosis of Hypercholesterolaemic Rabbits, Atherosclerosis 135, 37–47.

    Article  PubMed  Google Scholar 

  18. Serafini, M., Maiani, G., and Ferro-Luzzi, A. (1998) Alcohol-Free Red Wine Enhances Plasma Antioxidant Capacity in Humans, J. Nutr. 128, 1003–1007.

    PubMed  CAS  Google Scholar 

  19. Baldioli, M., Servili, M., Perretti, G., and Montedoro, G.F. (1996) Antioxidant Activity of Tocopherols and Phenolic Compounds in Virgin Olive Oil, J. Am. Oil. Chem. Soc. 73, 1589–1593.

    Article  CAS  Google Scholar 

  20. Montedoro, G., Servili, M., Baldioli, M., and Miniati, E. (1992) Simple and Hydrolyzable Phenolic Compounds in Virgin Olive Oil. 1. Their Extraction, Separation, and Quantitative and Semiquantitative Evaluation by HPLC, J. Agric. Food Chem. 40, 1571–1576.

    Article  CAS  Google Scholar 

  21. Graciani Constante, E., and Vasquez Rocero, A. (1980) Estudio de los componentes del aceite de oliva por cromatografia liquida de alta eficacia (HPLC). II. Cromatografia en fase inversa, Grasa Aceites 31, 237–243.

    CAS  Google Scholar 

  22. Papadopoulos, G., and Boskou, D. (1991) Antioxidant Effect of Natural Phenols on Olive Oil, J. Am. Oil Chem. Soc. 68, 669–671.

    CAS  Google Scholar 

  23. Wiseman, S.A., Mathot, J.N.N.J., de Fouw, N.J., and Tijburg, L.B.M. (1996) Dietary Non-Tocopherol Antioxidants Present in Extra Virgin Olive Oil Increase the Resistance of Low Density Lipoproteins to Oxidation in Rabbits, Atherosclerosis 120, 15–23.

    Article  PubMed  CAS  Google Scholar 

  24. Nardini, M., Natella, F., Gentili, V., Di Felice, M., and Scaccini, C. (1997) Effect of Caffeic Acid Dietary Supplementation on the Antioxidant Defense System in Rat: An in vivo Study, Arch. Biochem. Biophys. 342, 157–160.

    Article  PubMed  CAS  Google Scholar 

  25. Visioli, F., and Galli, C. (1994) Oleuropein Protects Low Density Lipoproteins from Oxidation, Life Sci. 55, 1965–1971.

    Article  PubMed  CAS  Google Scholar 

  26. Masella, R., Cantafora, A., Modesti, D., Cardilli, A., Gennaro, L., Bocca, A., and Coni, E. (1999) Antioxidant Activity of 3,4-DHPEA-EA and Protocatecuic Acid: A Comparative Assessment with Other Olive Oil Biophenols, Redox Rep. 4, 113–121.

    Article  PubMed  CAS  Google Scholar 

  27. Giovannini, C., Straface, E., Modesti, D., Coni, E., Cantafora, A., De Vincenzi, M., Malorni, W., and Masella, R. (1999) Tyrosol, the Major Olive Oil Biophenol, Protects Against Oxidized-LDL-Induced Injury in Caco-2 Cells, J. Nutr. 129, 1269–1277.

    PubMed  CAS  Google Scholar 

  28. Italian Legislative Decree n. 116 (1992) Suppl. Ord. G.U. n. 40, 18.2.1992.

  29. Havel, R.J., Eder, H.A., and Bragdon, J.K. (1955) The Distribution and Chemical Composition of Ultracentrifugally Separated Lipoproteins in Human Serum, J. Clin. Invest. 34, 1345–1353.

    Article  PubMed  CAS  Google Scholar 

  30. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  31. Papadopoulos, G.F., and Tsimidou, M. (1992) Rapid Method for the Isolation of Phenolic Compounds from Virgin Olive Oil Using Solid Phase Extraction, XVI International Conference Group Polyphenols, July, 13–16.

  32. Cavina, G., Gallinella, B., Porrà, R., Pecora, P., and Suraci, C. (1988) Carotenoids, Retinoids and α-Tocopherol in Human Serum: Identification and Determination by Reversed-Phase HPLC, J. Pharmaceut. Biomed. Anal. 6, 259–269.

    Article  CAS  Google Scholar 

  33. Ross, M.A. (1994) Determination of Ascorbic Acid and Uric Acid in Plasma by High-Performance Liquid Chromatography, J. Chromatogr. B 657, 197–200.

    CAS  Google Scholar 

  34. Krauss, R.M., and Burke, D.J. (1982) Identification of Multiple Subclasses of Plasma Low Density Lipoproteins in Normal Humans, J. Lipid Res. 23, 97–104.

    PubMed  CAS  Google Scholar 

  35. Coresh, J., Kwiterovich, P.O., Smith, J.H., and Bachorik, P.S. (1993) Association of Plasma Triglyceride Concentration and LDL Particle Diameter, Density, and Chemical Composition with Premature Coronary Artery Disease in Men and Women, J. Lipid Res. 34, 1687–1697.

    PubMed  CAS  Google Scholar 

  36. Esterbauer, H., Striegl, G., Puhl, H., and Dieber-Rotheneder, M. (1989) Continuous Monitoring of in vitro Oxidation of Human Low Density Lipoprotein, Free Radical Res. Com. 6, 67–75.

    CAS  Google Scholar 

  37. Puhl, H., Waeg, G., and Esterbauer, H. (1994) Methods to Determine Oxidation of Low Density Lipoproteins, Methods Enzymol. 233, 425–441.

    PubMed  CAS  Google Scholar 

  38. El-Saadani, M., Esterbauer, H., El-Sayed, M., Goher, M., Nassar, A.Y., and Yurgens, G. (1989) A Spectrophotometric Assay for Lipid Peroxides in Serum Lipoproteins Using a Commercially Available Reagent, J. Lipid Res. 30, 627–630.

    PubMed  CAS  Google Scholar 

  39. Morel, D.W., Hessler, J.R., and Chisolm, G.M. (1976) Low Density Lipoprotein Cytotoxicity Induced by Free Radical Peroxidation of Lipids, J. Lipid Res. 24, 1070–1076.

    Google Scholar 

  40. Hollman, P.C.H., Van der Gaag, M., Mengelers, M.J.B., Van Trijp, J.M.P., De Vries, J.H.M., and Katan, M.B. (1996) Absorption and Disposition Kinetics of the Dietary Antioxidant Quercetin in Man, Free Radical Biol. Med. 21, 703–707.

    Article  CAS  Google Scholar 

  41. Servili, M., Baldioli, M., Miniati, E., and Montedoro, G. (1996) Antioxidant Activity of New Phenolic Compounds Extracted from Virgin Olive Oil and Their Interaction with α-Tocopherol and β-Carotene, Riv. It. Sost. Grasse 73, 55–59.

    CAS  Google Scholar 

  42. Esterbauer, H., Dieber-Rotheneder, M., Striegl, G., and Waeg, G. (1991) Role of Vitamin E in Preventing the Oxidation of Low Density Lipoprotein, Am. J. Clin. Nutr. 53, 314S-321S.

    PubMed  CAS  Google Scholar 

  43. Tribble, D.L. (1995) Lipoprotein Oxidation in Dyslipidemia: Insights into General Mechanisms Affecting Lipoprotein Oxidative Behaviour, Curr. Opin. Lipidol. 6, 196–208.

    Article  PubMed  CAS  Google Scholar 

  44. Smith, L.L. (1991) Another Cholesterol Hypothesis: Cholesterol as an Antioxidant, Free Radical Biol. Med. 11, 47–61.

    Article  CAS  Google Scholar 

  45. Dejager, S., Bruckert, E., and Chapman, M.J. (1993) Dense Low Density Lipoprotein Subspecies with Diminished Oxidative Resistance Predominate in Combined Hyperlipidemia, J. Lipid Res. 34, 295–308.

    PubMed  CAS  Google Scholar 

  46. Hirano, T., Naito, H., Kurokawa, M., Ebara, T., Nagano, S., Adachi, M., and Yoshino, G. (1996) High Prevalence of Small LDL Particles in Non-Insulin-Dependent Diabetic Patients with Nephropathy, Atherosclerosis 123, 57–72.

    Article  PubMed  CAS  Google Scholar 

  47. Chapman, M.J., Guèrin, M., and Bruckert, E. (1998) Atherogenic, Dense Low-Density Lipoproteins. Pathophysiology and New Therapeutic Approaches, Eur. Heart J. 19 (Suppl. A), A24-A30.

    PubMed  CAS  Google Scholar 

  48. Bourne, G.H. (1985) World Review of Nutrition and Dietetics, Vol. 46, Karger, Basel, pp. 219–251.

    Google Scholar 

  49. Nenster, M.S., Gudmundsen, O., Malterud, K.E., Berg, T., and Drevon, C.A. (1994) Effect of Cholesterol Feeding of Susceptibility of Lipoprotein to Oxidative Modification, Biochim. Biophys. Acta 1213, 207–214.

    Google Scholar 

  50. Chang, Y.H., Abdalla, D.S.P., and Sevanian, A. (1997) Characterization of Cholesterol Oxidation Products Formed by Oxidative Modification of Low Density Lipoprotein, Free Radical Biol. Med. 23, 202–214.

    Article  CAS  Google Scholar 

  51. McLaughin, P.J., and Weihrauch, J.L. (1979) Vitamin E Content of Foods, J. Am. Diet. Assoc. 75, 647–665.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Coni.

About this article

Cite this article

Coni, E., Di Benedetto, R., Di Pasquale, M. et al. Protective effect of oleuropein, an olive oil biophenol, on low density lipoprotein oxidizability in rabbits. Lipids 35, 45–54 (2000). https://doi.org/10.1007/s11745-000-0493-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-000-0493-2

Keywords

Navigation