Skip to main content

Thin-Walled Structural Elements: Classification, Classical and Advanced Theories, New Applications

  • Chapter
  • First Online:
Shell-like Structures

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 572))

Abstract

Thin structures were existing from the ancient time. From observations of the nature the people understood that thinner means lighter, but stiffness and stability problems arose. This was the starting point for the elaboration of theories analyzing these structures. At that time applications were limited to civil engineering. At present they are used in aerospace engineering as basic elements. Such structures are applied as a model of analysis in other branches too, e.g. mechanical engineering. With the necessity to substitute classical material by new (advanced) materials—instead of steel or concrete, now laminates, foams, nano-films, biological membranes, etc. are used. The new trends in applications demand improvements of the theoretical foundations of the plate and shell theories, since new effects (for example, transverse shear or surface effects) must be taken into account. This contribution is mainly an introduction to the CISM-Course SHELL-LIKE STRUCTURES: ADVANCED THEORIES AND APPLICATIONS. After some introduction to the history some examples concerning new applications are discussed. After that main directions in the theory of plates and shells are presented. Finally, various advanced theories are briefly introduced. Other advanced theories are presented in the following chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \(^*\)January 29 (jul.)/February 8 (greg.) 1700 in Groningen, \(\dagger \)March 17, 1782 in Basel.

  2. 2.

    \(^*\)April 15, 1707 in Basel, \(\dagger \)September 18, 1783 in St. Petersburg.

  3. 3.

    This was analyzed by Clifford Abmbrose Truesdell III (\(^*\)February 18, 1919, \(\dagger \)January 14, 2000) in Truesdell 1964.

  4. 4.

    \(^*\)November 30, 1756 in Wittenberg, \(\dagger \)April 3, 1827 Breslau.

  5. 5.

    \(^*\)April 1, 1776 in Paris, \(\dagger \)June 27, 1831 in Paris.

  6. 6.

    \(^*\)January 25, 1736 in Turin as Giuseppe Lodovico Lagrangia or Giuseppe Luigi Lagrangia, \(\dagger \)April 10, 1813 in Paris.

  7. 7.

    \(^*\)February 10, 1785 in Dijon, \(\dagger \)August 21, 1836 in Paris.

  8. 8.

    \(^*\)June 21, 1781, \(\dagger \)April 25, 1840.

  9. 9.

    \(^*\)March 12, 1824 in Königsberg, East Prussia, \(\dagger \)October 17, 1887 in Berlin.

  10. 10.

    \(^*\)November 12, 1842, Langford Grove, Maldon, \(\dagger \)June 30, 1919, Terlins Place near Witham.

  11. 11.

    \(^*\)February 22, 1878, Sion, \(\dagger \) July 7, 1909, Göttingen.

  12. 12.

    \(^*\)March 4, 1871, Polozk, \(\dagger \) July 12, 1945, Leningrad.

  13. 13.

    \(^*\)October 1, 1845, Kempen (Kȩpno), \(\dagger \)August 29, 1913, Charlottenburg.

  14. 14.

    \(^*\)April 17, 1863, Weston-super-Mare, \(\dagger \)June 5, 1940, Oxford.

  15. 15.

    \(^*\)December 22, 1878, Shpotivka, Russia, \(\dagger \)May 29, 1972, Wuppertal.

  16. 16.

    \(^*\)Mai 11, 1881, Budapest, Austria-Hungary, \(\dagger \)May 6, 1963, Aachen.

  17. 17.

    \(^*\)May 20, 1895, Kent’s Hill, Maine, \(\dagger \)November 7, 1997, Palo Alto, Texas.

  18. 18.

    \(^*\)July 22, 1900, Orenburg, Russia, \(\dagger \)January 23, 1981, Kazan, Soviet Union.

  19. 19.

    \(^*\)July 19, 1901, Mogilev, Russia, \(\dagger \)February 12, 1980, Leningrad.

  20. 20.

    \(^*\)February 24, 1906, Kareevo, Russia, \(\dagger \)August 7, 1958, Moscow.

  21. 21.

    \(^*\)January 12, 1911, Moscow, \(\dagger \)January 12, 2003, Moscow.

  22. 22.

    \(^*\)January 5, 1913, Aachen, \(\dagger \)November 1, 1996, La Jolla, California.

  23. 23.

    \(^*\)September 17, 1906, New York, \(\dagger \)November 12, 1987, Hanover, New Hampshire.

  24. 24.

    \(^*\)April 23, 1907, Sheshelety, \(\dagger \)December 2, 1977, Tbilisi.

  25. 25.

    \(^*\)May 18, 1910, Lublin, \(\dagger \)June 14, 1987, Leningrad.

  26. 26.

    \(^*\)June 16, 1914, Amsterdam, \(\dagger \)September 2, 1997, Delft.

  27. 27.

    \(^*\)March 17, 1922, Gumry.

  28. 28.

    \(^*\)March 24, 1924, Teheran, \(\dagger \)July 9, 1994, Berkeley, California.

  29. 29.

    \(^*\)November 17, 1927, Manhattan, New York, \(\dagger \)September 30, 1997, Tuscon, Arizona.

  30. 30.

    \(^*\)August 19, 1913, Volos, Greece, \(\dagger \)April 2, 2004, Stuttgart, Germany.

  31. 31.

    \(^*\)February 8, 1942, Velikiy Ustyug (Vologda region), Soviet Union, \(\dagger \)December 4, 2005, St. Petersburg, Russia.

  32. 32.

    \(^*\)August 12, 1945, Warangal, Andhra Pradesh.

References

  • Altenbach, H. (1988). Eine direkt formulierte lineare Theorie für viskoelastische Platten und Schalen. Ing.-Arch., 58, 215–228.

    Article  MATH  Google Scholar 

  • Altenbach, H. (2000). An alternative determination of transverse shear stiffnesses for sandwich and laminated plates. International Journal of Solid and Structure, 37(25), 3503–3520.

    Article  MATH  Google Scholar 

  • Altenbach, H., & Eremeyev, V. A. (2008). Analysis of the viscoelastic behavior of plates made of functionally graded materials. ZAMM, 88(5), 332–341.

    Article  MathSciNet  MATH  Google Scholar 

  • Altenbach, H., & Eremeyev, V. A. (2009). On the bending of viscoelastic plates made of polymer foams. Acta Mechanica, 204(3–4), 137–154.

    Article  MATH  Google Scholar 

  • Altenbach, H., & Eremeyev, V. A. (2011). Shell-like Structures: Non-classical Theories and Applications., Advanced Structured Materials Berlin, Heidelberg: Springer Science & Business Media.

    Book  Google Scholar 

  • Altenbach, H., & Mikhasev, G. (2014). Shell and Membrane Theories in Mechanics and Biology: From Macro- to Nanoscale Structures., Advanced Structured Materials Cham: Springer.

    MATH  Google Scholar 

  • Altenbach, H., Eremeyev, V. A., & Morozov, N. F. (2009). Linear theory of shells taking into account surface stresses. Doklady Physics, 54(12), 531–535.

    Article  Google Scholar 

  • Altenbach, H., Eremeev, V. A., & Morozov, N. F. (2010a). On equations of the linear theory of shells with surface stresses taken into account. Mechanics of Solids, 45(3), 331–342.

    Article  Google Scholar 

  • Altenbach, H., Eremeyev, V. A., & Morozov, N. F. (2012). Surface viscoelasticity and effective properties of thin-walled structures at the nanoscale. International Journal of Engineering Science, 59, 83–89.

    Article  MathSciNet  Google Scholar 

  • Altenbach, H., Altenbach, J., & Naumenko, K. (2016). Ebene Flächentragwerke (2nd ed.). Cham: Springer.

    Google Scholar 

  • Altenbach, J., Altenbach, H., & Eremeyev, V. A. (2010b). On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Archive of Applied Mechanics, 80(1), 73–92.

    Article  MATH  Google Scholar 

  • Ambarcumyan, S. A. (1991). Theory of Anisotropic Plates: Strength, Stability, and Vibrations. Washington: Hemispher Publishing.

    Google Scholar 

  • Aron, H. (1874). Das Gleichgewicht und die Bewegung einer unendlich dünnen, beliebig gekrümmten elastischen Schale. Journal für die reine und angewandte Mathematik, 78, 136–174.

    MathSciNet  Google Scholar 

  • Ashby, M. F., Evans, T., Fleck, N. A., Hutchinson, J. W., Wadley, H. N. G., & Gibson, L. J. (2000). Metal Foams: A Design Guide. Boston: Butterworth-Heinemann.

    Google Scholar 

  • Başar, Y., & Krätzig, W. B. (1985). Mechanik der Flächentragwerke. Braunschweig/Wiesbaden: Vieweg.

    Google Scholar 

  • Becchi, A., Corradi, M., Foce, F., & Pedemonte, O. (Eds.). (2003). Essays on the History of Mechanics—In Memory of Clifford Ambrose Truesdell and Edoardo Benvenuto. Basel: Birkhäuser.

    Google Scholar 

  • Christensen, R. M. (1971). Theory of Viscoelasticity. An Introduction. New York: Academic Press.

    Google Scholar 

  • Chróścielewski, J., Makowski, J., & Pietraszkiewicz, W. (2004). Statics and Dynamics of Multifolded Shells. Nonlinear therory and Finite Element Method. Warsaw: IPPT PAN.

    Google Scholar 

  • Ciarlet, P. G. (1980). A justification of the von Kármán equations. The Archive for Rational Mechanics and Analysis, 73(4), 349–389.

    Article  MathSciNet  MATH  Google Scholar 

  • Ciarlet, P. G. (1990). Plates and Junctions in Elastic Multi-Structures: An Asymptotic Analysis., Collection Recherches en Mathématiques Appliquées Paris: Masson.

    MATH  Google Scholar 

  • Cosserat, E., & Cosserat, F. (1909). Théorie des corps déformables. Paris: Herman et Fils.

    MATH  Google Scholar 

  • Donnel, L. H. (1976). Beams, Plates, and Shells., Engineering Societies Monographs Series New York: McGraw-Hill.

    Google Scholar 

  • Drozdov, A. D. (1996). Finite Elasticity and Viscoelasticity. Singapore: World Scientific.

    Book  MATH  Google Scholar 

  • Duan, H. L., Wang, J., & Karihaloo, B. L. (2008). Theory of elasticity at the nanoscale. Advances in Applied Mechanics (pp. 1–68). San Diego: Elsevier.

    Google Scholar 

  • Eremeyev, V. A., Altenbach, H., & Morozov, N. F. (2009). The influence of surface tension on the effective stiffness of nanosize plates. Doklady Physics, 54(2), 98–100.

    Article  MATH  Google Scholar 

  • Finn, R. (1986). Equilibrium Capillary Surfaces. New-York: Springer.

    Book  MATH  Google Scholar 

  • Föppl, A. (1907). Vorlesungen über technische Mechanik (Vol. 5). Leipzig: B.G. Teubner.

    MATH  Google Scholar 

  • Gibbs, J. W. (1928). On the equilibrium of heterogeneous substances. The Collected Works of J. Willard Gibbs (pp. 55–353). New York: Longmans, Green & Co.

    Google Scholar 

  • Gibson, L. J., & Ashby, M. F. (1997). Cellular Solids: Structure and Properties. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Gol’denveizer, A. L. (1962). Derivation of an approximate theory of bending of a plate by the methods of asymptotic integration of the equations of the theory of elasticity. Prikl. Matem. Mekh., 26(4), 1000–1025.

    MathSciNet  Google Scholar 

  • Gol’denveizer, A. L. (1963). Derivation of an approximate theory of shells by means of asymptotic integration of the equations of the theory of elasticity. Prikl. Matem. Mekh., 27(4), 903–924.

    MathSciNet  Google Scholar 

  • Grigolyuk, E. I., & Seleznev, I. T. (1973). Nonclassical Theories of Oscillations of Rods, Plates, and Shells., togi Nauki i Tekhniki. Ser. Mekh. Tverdogo Deformir. Tela Moscow: VINITI.

    Google Scholar 

  • Gurtin, M. E., & Murdoch, A. I. (1975a). A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 57(4), 291–323.

    Article  MathSciNet  MATH  Google Scholar 

  • Gurtin, M. E., & Murdoch, A. I. (1975b). Addenda to our paper A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 59(4), 389–390.

    Article  MathSciNet  MATH  Google Scholar 

  • Huang, D. W. (2008). Size-dependent response of ultra-thin films with surface effects. International Journal of Solids and Structures, 45(2), 568–579.

    Article  MATH  Google Scholar 

  • Jaiani, G., Podio-Guidugli, P. (2008). IUTAM Symposium on Relations of Shell, Plate, Beam and 3D Models: Proceedings of the IUTAM Symposium on the Relations of Shell, Plate, Beam, and 3D Models Dedicated to the Centenary of Ilia Vekua’s Birth, held Tbilisi, Georgia, April 23–27, 2007, Vol. 9. Springer Science & Business Media.

    Google Scholar 

  • Kienzler, R. (2002). On consistent plate theories. Archive of Applied Mechanics, 72, 229–247.

    Article  MATH  Google Scholar 

  • Kienzler, R., & Schneider, P. (2016). Direct approach versus consistent theory. In K. Naumenko & M. Aßmus (Eds.), Advances Methods of Continuum Mechanics for Materials and Structures (Vol. 60, pp. 415–433)., Advanced Structured Materials Singapore: Springer.

    Chapter  Google Scholar 

  • Kienzler, R., Altenbach, H., & Ott, I. (2003). Theories of Plates and Shells: Critical Review and New Applications., Lecture Notes in Applied and Computational Mechanics Berlin, Heidelberg: Springer.

    MATH  Google Scholar 

  • Kirchhoff, G. (1883). Vorlesungen über Mathematische Physik (3rd ed.). Leipzig: B. G. Teubner.

    MATH  Google Scholar 

  • Kirchhoff, G. R. (1850). Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. Crelles Journal für die reine und angewandte Mathematik, 40, 51–88.

    Article  MathSciNet  Google Scholar 

  • Kurrer, K.-E. (2008). The History of the Theory of Structures., From Arch Analysis to Computational Mechanics Berlin: Ernst & Sohn.

    Book  Google Scholar 

  • Lakes, R. S. (1992). The time-dependent Poisson’s ratio of viscoelastic materials can increase or decrease. Cellular Polymers, 11, 466–469.

    Google Scholar 

  • Lakes, R. S., & Wineman, A. (2006). On Poisson’s ratio in linearly viscoelastic solids. Journal of Elasticity, 85, 45–63.

    Article  MathSciNet  MATH  Google Scholar 

  • Laplace, P. S. (1805). Sur l’action capillaire. supplément à la théorie de l’action capillaire. Traité de mécanique céleste (Vol. 4, pp. 771–777)., Supplement 1, livre X Paris: Gauthier-Villars et fils.

    Google Scholar 

  • Laplace, P. S. (1806). À la théorie de l’action capillaire. supplément à la théorie de l’action capillaire. Traité de mécanique céleste (Vol. 4, pp. 909–945)., Supplement 2, Livre X Paris: Gauthier-Villars et fils.

    Google Scholar 

  • Lebedev, L. P., Cloud, M. J., & Eremeyev, V. A. (2010). Tensor Analysis with Applications in Mechanics. New Jersey: World Scientific.

    Book  MATH  Google Scholar 

  • Léwinski, T. (1987). On refined plate models based on kinematical assumptions. Ing.-Arch., 57, 133–146.

    Article  MATH  Google Scholar 

  • Libai, A., & Simmonds, J. G. (1998). The Nonlinear Theory of Elastic Shells (2nd ed.). Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Lo, K. H., Christensen, R. M., & Wu, E. M. (1977). A higher-order theory of plate deformation, part 1: Homogeneous plates. Journal of Applied Mechanics Transactions of the ASME, 44, 663–668.

    Article  MATH  Google Scholar 

  • Love, A. E. H. (1906). A Treatise on the Mathematical Theory of Elasticity (2nd ed.). Cambridge: University Press.

    MATH  Google Scholar 

  • Lu, P., He, L. H., Lee, H. P., & Lu, C. (2006). Thin plate theory including surface effects. International Journal of Solids and Structures, 43(16), 4631–4647.

    Article  MATH  Google Scholar 

  • Lurie, A. I. (1947). Statics of the Thin Elastic Shells (in Russ.). Moscow: Gostekhizdat.

    Google Scholar 

  • Lurie, A. I. (1961). On the static-geometric analogy of the theory of shells. Muschilishvili Anniversary Volume. Philadelphia: SIAM.

    Google Scholar 

  • Lurie, A. I. (2005). Theory of Elasticity., Foundations of Engineering Mechanics Berlin: Springer.

    Book  Google Scholar 

  • Maugin, G. (2013). Continuum Mechanics Through the Twentieth Century. Cham: Springer.

    Book  MATH  Google Scholar 

  • Meenen, J., & Altenbach, H. (2001). A consistent deduction of von Kármán-type plate theories from threedimensional non-linear continuum mechanics. Acta Mechanica, 147, 1–17.

    Article  MATH  Google Scholar 

  • Mindlin, R. D. (1951). Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates. Journal of Applied Mechanics Transactions of the ASME, 18, 31–38.

    MATH  Google Scholar 

  • Mushtari, K. M., & Galimov, K. Z. (1961). Nonlinear Theory of Thin Elastic Shells. Washington: NSF-NASA.

    Google Scholar 

  • Naghdi, P. M. (1972). The Theory of Shells and Plates. In S. Flügge (Ed.), Handbuch der Physik (pp. 425–640)., volume VIa/2 New York: Springer.

    Google Scholar 

  • Novozhilov, V. V. (1959). The Theory of Thin Shells. Groningen: Noordhoff.

    MATH  Google Scholar 

  • Nye, J. F. (2000). Physical Properties of Crystals, their Representation by Tensors und Matrices. Claradon: Oxford, reprint edition.

    MATH  Google Scholar 

  • Orowan, E. (1970). Surface energy and surface tension in solids and fluids. Proceedings of the Royal Society of London A, 316(1527), 473–491.

    Article  Google Scholar 

  • Panc, V. (1975). Theories of Elastic Plates. Leyden: Nordhoff Int. Publ.

    Book  MATH  Google Scholar 

  • Pietraszkiewicz, W. (1979). Finite Rotations and Langrangian Description in the Non-linear Theory of Shells. Warszawa-Poznań: Polish Scientific Publishers.

    MATH  Google Scholar 

  • Podio-Guidugli, P. (2003). A new quasilinear model for plate buckling. Journal of Elasticity, 71, 157–182.

    Article  MathSciNet  MATH  Google Scholar 

  • Podstrigach, Y. S., & Povstenko, Y. Z. (1985). Introduction to Mechanics of Surface Phenomena in Deformable Solids (in Russ.). Kiev: Naukova Dumka.

    MATH  Google Scholar 

  • Reddy, J. N. (1984). A simple higher-order theory for laminated composite plates. Journal of Applied Mechanics Transactions of the ASME, 51(4), 745–752.

    Article  MATH  Google Scholar 

  • Reddy, J. N. (2007). Theory and Analysis of Elastic Plates and Shells (2nd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Reddy, J. N. (2004). Mechanics of Laminated Composite Plates: Theory and Analysis (2nd ed.). Boca Raton: CRC Press.

    MATH  Google Scholar 

  • Reissner, E. (1944). On the theory of bending of elastic plates. Journal of Mathematics and Physics, 23, 184–191.

    Article  MathSciNet  MATH  Google Scholar 

  • Reissner, E. (1985). Reflection on the theory of elastic plates. Applied Mechanics Review, 38(11), 1453–1464.

    Article  Google Scholar 

  • Ritz, W. (1908). Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. Journal für die reine und angewandte Mathematik, 135, 1–61.

    MathSciNet  Google Scholar 

  • Rothert, H. (1973). Direkte Theorie von Linien- und Flächentragwerken bei viskoelastischen Werkstoffverhalten. Techn.-Wiss. Mitteilungen des Instituts für Konstruktiven Ingenieurbaus 73-2, Ruhr-Universität, Bochum

    Google Scholar 

  • Rusanov, A. I. (2005a). Thermodynamics of solid surfaces. Surface Science Reports, 23(6–8), 173–247.

    Google Scholar 

  • Rusanov, A. I. (2005b). Surface thermodynamics revisited. Surface Science Reports, 58(5–8), 111–239.

    Article  Google Scholar 

  • Schneider, P., & Kienzler, R. (2011). An algorithm for the automatisation of pseudo reductions of PDE systems arising from the uniform-approximation technique. In H. Altenbach & V. A. Eremeyev (Eds.), Shell-like Structures: Non-classical Theories and Applications (pp. 377–390). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  • Schneider, P., Kienzler, R., & Böhm, M. (2014). Modeling of consistent second-order plate theories for anisotropic materials. ZAMM—Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 94(1–2), 21–42.

    Article  MathSciNet  MATH  Google Scholar 

  • Steigmann, D. J., & Ogden, R. W. (1999). Elastic surface-substrate interactions. Proc. R. Soc. London, Ser. A—Math. Phys. Engg. Sci., 455(1982), 437–474.

    Article  MathSciNet  MATH  Google Scholar 

  • Strutt, J. W. (1877). The Theory of Sound (Vol. 1). London: MacMillan and Co.

    Google Scholar 

  • Timoshenko, S. P. (1953). History of Strength of Materials. New York: McGraw-Hill.

    Google Scholar 

  • Timoshenko, S. P. (1921). On the correnction for shear of the differential equation for transverse vibrations of prismatic bars. Philosophical Magazine Series 6(245), 41, 744–746.

    Article  Google Scholar 

  • Timoshenko, S. P., & Woinowsky-Krieger, S. (1985). Theory of Plates and Shells. New York: McGraw Hill.

    MATH  Google Scholar 

  • Todhunter, I., & Pearson, K. (1960). A History of the Theory of Elasticity and of the Strength of Materials: from Galilei to Lord Kelvin. New York: Dover.

    MATH  Google Scholar 

  • Truesdell, C. A. (1964). Die Entwicklung des Drallsatzes. ZAMM, 44(4/5), 149–158.

    Article  MathSciNet  MATH  Google Scholar 

  • Truesdell, C. (1978). Comments on rational continuum mechanics. In G. M. de la Penha & L. A. Medeiros (Eds.), Contemporary Developments in Continuum Mechanics and Partial Differential Equations (pp. 495–603). North-Holland, Amsterdam.

    Google Scholar 

  • Tschoegl, N. W. (1989). The Phenomenological Theory of Linear Viscoelastic Behavior. An Introduction. Berlin: Springer.

    Book  MATH  Google Scholar 

  • van der Heijden, A.M.A. (1976). On modified boundary conditions for the free edge of a shell. Ph.D. thesis, TH Delft, Delft.

    Google Scholar 

  • Vekua, I. N. (1955). On one method of calculating prismatic shells (in Russ.). Trudy Tbilis. Mat. Inst., 21, 191–259.

    MathSciNet  Google Scholar 

  • Vekua, I. N. (1985). Shell Theory: General Methods of Construction. Boston-London-Melbourne: Advanced Publishing Program. Pitman Advanced Publishing Program.

    MATH  Google Scholar 

  • Vlachoutsis, S. (1992). Shear correction factors for plates and shells. International Journal for Numerical Methods in Engineering, 33, 1537–1552.

    Article  MATH  Google Scholar 

  • Vlasov, V. Z. (1949). General Theory for Shells and its Application in Engineering (in Russ.). Moscow: Gostekhizdat.

    Google Scholar 

  • von Kármán, T. (1910). Festigkeitsprobleme im Maschinenbau. Encyklopdie der Mathematischen Wissenschaften (pp. 311–385). Leipzig: B.G. Teubner.

    Google Scholar 

  • Wang, C. M., Reddy, J. N., & Lee, K. H. (2000). Shear Deformation Theories of Beams and Plates Dynamics Relationships with Classical Solution. London: Elsevier.

    Google Scholar 

  • Wlassow, W. S. (1958). Allgemeine Schalentheorie und ihre Anwendung in der Technik. Berlin: Akademie-Verlag.

    MATH  Google Scholar 

  • Young, T. (1805). An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London, 95, 65–87.

    Article  Google Scholar 

  • Zhilin, P. A. (1976). Mechanics of deformable directed surfaces. International Journal of Solids and Structures, 12, 635–648.

    Article  MathSciNet  Google Scholar 

  • Zhilin, P. A. (1992). On the theories of Poisson and Kirchhoff from the point of view of modern plate theories (in Russ.). Mekhanika Tverdogo Tela (Mechanics of Solids), 3, 49–64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holm Altenbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

Altenbach, H., Eremeyev, V. (2017). Thin-Walled Structural Elements: Classification, Classical and Advanced Theories, New Applications. In: Altenbach, H., Eremeyev, V. (eds) Shell-like Structures. CISM International Centre for Mechanical Sciences, vol 572. Springer, Cham. https://doi.org/10.1007/978-3-319-42277-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42277-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42275-6

  • Online ISBN: 978-3-319-42277-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics