Skip to main content

Enzymes for Aerobic Degradation of Alkanes in Bacteria

  • Living reference work entry
  • First Online:
Aerobic Utilization of Hydrocarbons, Oils and Lipids

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

Alkanes are major constituents of crude oil but they are also present at low concentrations in diverse noncontaminated habitats since many living organisms produce them as chemoattractants or as agents that help to protect against water loss. Although the metabolism of these compounds poses problems (mainly to do with their hydrophobicity), many microorganisms can use them as a carbon and energy source. This chapter examines how bacteria metabolize n-alkanes aerobically, paying particular attention to the enzymes involved in the initial oxidation of the alkane molecule – the most critical step given that n-alkanes are chemically rather inert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alonso H, Kleifeld O, Yeheskel A, Ong PC, Liu YC, Stok JE, De Voss JJ, Roujeinikova A (2014) Structural and mechanistic insight into alkane hydroxylation by Pseudomonas putida AlkB. Biochem J 460:283–293

    Article  CAS  PubMed  Google Scholar 

  • Alvarez HM, Steinbuchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376

    Article  CAS  PubMed  Google Scholar 

  • Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H (2000) Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589

    Article  CAS  PubMed  Google Scholar 

  • Arp DJ (1999) Butane metabolism by butane-grown “Pseudomonas butanovora”. Microbiology 145:1173–1180

    Article  CAS  PubMed  Google Scholar 

  • Ashraf W, Mihdhir A, Murrell JC (1994) Bacterial oxidation of propane. FEMS Microbiol Lett 122:1–6

    Article  CAS  PubMed  Google Scholar 

  • Ashraf W, Murrell JC (1990) Purification and characterization of a NAD+-dependent secondary alcohol dehydrogenase from propane-grown Rhodococcus rhodochrous PNKb1. Arch Microbiol 153:163–168

    Article  CAS  Google Scholar 

  • Austin RN, Chang H-K, Zylstra GJ, Groves JT (2000) The non-heme diiron alkane monooxygenase of Pseudomonas oleovorans (AlkB) hydroxylates via a substrate radical intermediate. J Am Chem Soc 122:11747–11748

    Article  CAS  Google Scholar 

  • Baptist JN, Gholson RK, Coon MJ (1963) Hydrocarbon oxidation by a bacterial enzyme system. I Products of octane oxidation Biochim Biophys Acta 69:40–47

    CAS  PubMed  Google Scholar 

  • Beal R, Betts WB (2000) Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa. J Appl Microbiol 89:158–168

    Article  CAS  PubMed  Google Scholar 

  • Bertrand E, Sakai R, Rozhkova-Novosad E, Moe L, Fox BG, Groves JT, Austin RN (2005) Reaction mechanisms of non-heme diiron hydroxylases characterized in whole cells. J Inorg Biochem 99:1998–2006

    Article  CAS  PubMed  Google Scholar 

  • Bihari Z, Szvetnik A, Szabó Z, Blastyák A, Zombori Z, Balázs M, Kiss I (2011) Functional analysis of long-chain n-alkane degradation by Dietzia spp. FEMS Microbiol Lett 316:100–107

    Article  CAS  PubMed  Google Scholar 

  • Boles BR, Thoendel M, Singh PK (2005) Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol 57:1210–1223

    Article  CAS  PubMed  Google Scholar 

  • Britton LN (1984) Microbial degradation of aliphatic hydrocarbons. Marcel Dekker, New York

    Google Scholar 

  • Caiazza NC, Shanks RM, O’Toole GA (2005) Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. J Bacteriol 187:7351–7361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Call TP, Akhtar MK, Baganz F, Grant C (2016) Modulating the import of medium-chain alkanes in E. coli through tuned expression of FadL. J Biol Eng 10:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cameotra SS, Singh P (2009) Synthesis of rhamnolipid biosurfactant and mode of hexadecane uptake by Pseudomonas species. Microb Cell Factories 8:16

    Article  CAS  Google Scholar 

  • Coleman JP, Perry JJ (1985) Purification and characterization of the secondary alcohol dehydrogenase from propane-utilizing Mycobacterium vaccae strain JOB-5. J Gen Microbiol 131:2901–2907

    CAS  PubMed  Google Scholar 

  • Coon MJ (2005) Omega oxygenases: nonheme-iron enzymes and P450 cytochromes. Biochem Biophys Res Commun 338:378–385

    Article  CAS  PubMed  Google Scholar 

  • Coulon F, McKew BA, Osborn AM, McGenity TJ, Timmis KN (2007) Effects of temperature and biostimulation on oil-degrading microbial communities in temperate estuarine waters. Environ Microbiol 9:177–186

    Article  CAS  PubMed  Google Scholar 

  • de Smet MJ, Eggink G, Witholt B, Kingma J, Wynberg H (1983) Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. J Bacteriol 154:870–878

    PubMed  PubMed Central  Google Scholar 

  • Dubbels BL, Sayavedra-Soto LA, Arp DJ (2007) Butane monooxygenase of “Pseudomonas butanovora”: purification and biochemical characterization of a terminal-alkane hydroxylating diiron monooxygenase. Microbiology 153:1808–1816

    Article  CAS  PubMed  Google Scholar 

  • Dubbels BL, Sayavedra-Soto LA, Bottomley PJ, Arp DJ (2009) Thauera butanivorans sp. nov., a C2-C9 alkane-oxidizing bacterium previously referred to as ‘Pseudomonas butanovora’. Int J Syst Evol Microbiol 59:1576–1578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eastcott L, Shiu WY, Mackay D (1988) Environmentally relevant physical-chemical properties of hydrocarbons: a review of data and development of simple correlations. Oil Chem Pollut 4:191–216

    Article  CAS  Google Scholar 

  • Fathepure BZ (2014) Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front Microbiol 5:173

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng L, Wang W, Cheng J, Ren Y, Zhao G, Gao C, Tang Y, Liu X, Han W, Peng X, Liu R, Wang L (2007) Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci U S A 104:5602–5607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox MG, Dickinson FM, Ratledge C (1992) Long-chain alcohol and aldehyde dehydrogenase activities in Acinetobacter calcoaceticus strain HO1-N. J Gen Microbiol 138:1963–1972

    Article  CAS  PubMed  Google Scholar 

  • Frazao C, Silva G, Gomes CM, Matias P, Coelho R, Sieker L, Macedo S, Liu MY, Oliveira S, Teixeira M, Xavier AV, Rodrigues-Pousada C, Carrondo MA, Le Gall J (2000) Structure of a dioxygen reduction enzyme from Desulfovibrio gigas. Nat Struct Biol 7:1041–1045

    Article  CAS  PubMed  Google Scholar 

  • Funhoff EG, Bauer U, Garcia-Rubio I, Witholt B, van Beilen JB (2006) CYP153A6, a soluble P450 oxygenase catalyzing terminal-alkane hydroxylation. J Bacteriol 188:5220–5227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golyshin PN, Chernikova TN, Abraham WR, Lunsdorf H, Timmis KN, Yakimov MM (2002) Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol 52:901–911

    CAS  PubMed  Google Scholar 

  • Grage K, Jahns AC, Parlane N, Palanisamy R, Rasiah IA, Atwood JA, Rehm BH (2009) Bacterial polyhydroxyalkanoate granules: biogenesis, structure, and potential use as nano−/micro-beads in biotechnological and biomedical applications. Biomacromolecules 10:660–669

    Article  CAS  PubMed  Google Scholar 

  • Grant C, Deszcz D, Wei YC, Martínez-Torres RJ, Morris P, Folliard T, Sreenivasan R, Ward J, Dalby P, Woodley JM, Baganz F (2014) Identification and use of an alkane transporter plug-in for applications in biocatalysis and whole-cell biosensing of alkanes. Sci Rep 4:5844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green J, Dalton H (1989) Substrate specificity of soluble methane monooxygenase. Mechanistic implications. J Biol Chem 264:17698–17703

    CAS  PubMed  Google Scholar 

  • Hagelueken G, Wiehlmann L, Adams TM, Kolmar H, Heinz DW, Tümmler B, Schubert WD (2007) Crystal structure of the electron transfer complex rubredoxin rubredoxin reductase of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 104:12276–12281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hamamura N, Arp DJ (2000) Isolation and characterization of alkane-utilizing Nocardioides sp. strain CF8. FEMS Microbiol Lett 186:21–26

    Article  CAS  PubMed  Google Scholar 

  • Hamamura N, Storfa RT, Semprini L, Arp DJ (1999) Diversity in butane monooxygenases among butane-grown bacteria. Appl Environ Microbiol 65:4586–4593

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamamura N, Yeager CM, Arp DJ (2001) Two distinct monooxygenases for alkane oxidation in Nocardioides sp. strain CF8. Appl Environ Microbiol 67:4992–4998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara A, Baik SH, Syutsubo K, Misawa N, Smits TH, van Beilen JB, Harayama S (2004) Cloning and functional analysis of alkB genes in Alcanivorax borkumensis SK2. Environ Microbiol 6:191–197

    Article  CAS  PubMed  Google Scholar 

  • Hara A, Syutsubo K, Harayama S (2003) Alcanivorax which prevails in oil-contaminated seawater exhibits broad substrate specificity for alkane degradation. Environ Microbiol 5:746–753

    Article  CAS  PubMed  Google Scholar 

  • Harayama S, Kasai Y, Hara A (2004) Microbial communities in oil-contaminated seawater. Curr Opin Biotechnol 15:205–214

    Article  CAS  PubMed  Google Scholar 

  • Hazelbauer GL, Falke JJ, Parkinson JS (2008) Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem Sci 33:9–19

    Article  CAS  PubMed  Google Scholar 

  • Head IM, Jones DM, Roling WF (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182

    Article  CAS  PubMed  Google Scholar 

  • Holden PA, LaMontagne MG, Bruce AK, Miller WG, Lindow SE (2002) Assessing the role of Pseudomonas aeruginosa surface-active gene expression in hexadecane biodegradation in sand. Appl Environ Microbiol 68:2509–2518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hommel RK (1990) Formation and physiological role of biosurfactants produced by hydrocarbon-utilizing microorganisms. Biosurfactants in hydrocarbon utilization. Biodegradation 1:107–119

    Article  CAS  PubMed  Google Scholar 

  • Hou CT, Patel RN, Laskin AI, Barist I, Barnabe N (1983) Thermostable NAD-linked secondary alcohol dehydrogenase from propane-grown Pseudomonas fluorescens NRRL B-1244. Appl Environ Microbiol 46:98–105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hua F, Wang HQ (2013) Selective pseudosolubilization capability of Pseudomonas sp. DG17 on n-alkanes and uptake mechanisms analysis. Front Environ Sci Eng 7:539–551

    Article  CAS  Google Scholar 

  • Hua F, Wang HQ (2014) Uptake and trans-membrane transport of petroleum hydrocarbons by microorganisms. Biotechnol Biotechnol Equip 28:165–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua F, Wang HQ, Li Y, Zhao YC (2013) Trans-membrane transport of n-octadecane by Pseudomonas sp. DG17. J Microbiol 51:791–799

    Article  CAS  PubMed  Google Scholar 

  • Iida T, Sumita T, Ohta A, Takagi M (2000) The cytochrome P450ALK multigene family of an n-alkane-assimilating yeast, Yarrowia lipolytica: cloning and characterization of genes coding for new CYP52 family members. Yeast 16:1077–1087

    Article  CAS  PubMed  Google Scholar 

  • Ishige T, Tani A, Sakai Y, Kato N (2000) Long-chain aldehyde dehydrogenase that participates in n-alkane utilization and wax ester synthesis in Acinetobacter sp. strain M-1. Appl Environ Microbiol 66:3481–3486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishige T, Tani A, Takabe K, Kawasaki K, Sakai Y, Kato N (2002) Wax ester production from n-alkanes by Acinetobacter sp. strain M-1: ultrastructure of cellular inclusions and role of acyl coenzyme a reductase. Appl Environ Microbiol 68:1192–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson EL, Hyman MR (2006) Propane and n-butane oxidation by Pseudomonas putida GPo1. Appl Environ Microbiol 72:950–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Julsing MK, Schrewe M, Cornelissen S, Hermann I, Schmid A, Bühler B (2012) Outer membrane protein AlkL boosts biocatalytic oxyfunctionalization of hydrophobic substrates in Escherichia coli. Appl Environ Microbiol 78:5724–5733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalscheuer R, Stoveken T, Malkus U, Reichelt R, Golyshin PN, Sabirova JS, Ferrer M, Timmis KN, Steinbuchel A (2007) Analysis of storage lipid accumulation in Alcanivorax borkumensis: evidence for alternative triacylglycerol biosynthesis routes in bacteria. J Bacteriol 189:918–928

    Article  CAS  PubMed  Google Scholar 

  • Kasai Y, Kishira H, Sasaki T, Syutsubo K, Watanabe K, Harayama S (2002) Predominant growth of Alcanivorax strains in oil-contaminated and nutrient-supplemented sea water. Environ Microbiol 4:141–147

    Article  CAS  PubMed  Google Scholar 

  • Kohler T, Curty LK, Barja F, van Delden C, Pechere JC (2000) Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 182:5990–5996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotani T, Kawashima Y, Yurimoto H, Kato N, Sakai Y (2006) Gene structure and regulation of alkane monooxygenases in propane-utilizing Mycobacterium sp. TY-6 and Pseudonocardia sp. TY-7. J Biosci Bioeng 102:184–192

    Article  CAS  PubMed  Google Scholar 

  • Kotani T, Yamamoto T, Yurimoto H, Sakai Y, Kato N (2003) Propane monooxygenase and NAD+−dependent secondary alcohol dehydrogenase in propane metabolism by Gordonia sp. strain TY-5. J Bacteriol 185:7120–7128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotani T, Yurimoto H, Kato N, Sakai Y (2007) Novel acetone metabolism in a propane-utilizing bacterium, Gordonia sp. strain TY-5. J Bacteriol 189:886–893

    Article  CAS  PubMed  Google Scholar 

  • Kurth EG, Doughty DM, Bottomley PJ, Arp DJ, Sayavedra-Soto LA (2008) Involvement of BmoR and BmoG in n-alkane metabolism in “Pseudomonas butanovora”. Microbiology 154:139–147

    Article  CAS  PubMed  Google Scholar 

  • Lanfranconi MP, Alvarez HM, Studdert CA (2003) A strain isolated from gas oil-contaminated soil displays chemotaxis towards gas oil and hexadecane. Environ Microbiol 5:1002–1008

    Article  CAS  PubMed  Google Scholar 

  • Lea-Smith DJ, Biller SJ, Davey MP, Cotton CA, Perez Sepulveda BM, Turchyn AV, Scanlan DJ, Smith AG, Chisholm SW, Howe CJ (2015) Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle. Proc Natl Acad Sci U S A 112:13591–11356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Liu X, Yang W, Xu F, Wang W, Feng L, Bartlam M, Wang L, Rao Z (2008) Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN: unveiling the long-chain alkane hydroxylase. J Mol Biol 376:453–465

    Article  CAS  PubMed  Google Scholar 

  • Li P, Wang L, Feng L (2013) Characterization of a novel Rieske-type alkane monooxygenase system in Pusillimonas sp. strain T7-7. J Bacteriol 195:1892–1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Wang W, Wu Y, Zhou Z, Lai Q, Shao Z (2011) Multiple alkane hydroxylase systems in a marine alkane degrader, Alcanivorax dieselolei B-5. Environ Microbiol 13:1168–1178

    Google Scholar 

  • Liu H, Xu J, Liang R, Liu J (2014) Characterization of the medium- and long-chain n-alkanes degrading Pseudomonas aeruginosa strain SJTD-1 and its alkane hydroxylase genes. PLoS One 9:e105506

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu H, Sun WB, Liang RB, Huang L, Hou JL, Liu JH (2015) iTRAQ-based quantitative proteomic analysis of Pseudomonas aeruginosa SJTD-1: a global response to n-octadecane induced stress. J Proteome 123:14–28

    Article  CAS  Google Scholar 

  • Lo Piccolo L, De Pasquale C, Fodale R, Puglia AM, Quatrini P (2001) Involvement of an alkane hydroxylase system of Gordonia sp. strain SoCg in degradation of solid n-alkanes. Appl Environ Microbiol 77:1204–1213

    Article  CAS  Google Scholar 

  • Luu RA, Kootstra JD, Nesteryuk V, Brunton CN, Parales JV, Ditty JL, Parales RE (2015) Integration of chemotaxis, transport and catabolism in Pseudomonas putida and identification of the aromatic acid chemoreceptor PcaY. Mol Microbiol 96:134–147

    Article  CAS  PubMed  Google Scholar 

  • Maeng JH, Sakai Y, Ishige T, Tani Y, Kato N (1996) Diversity of dioxygenases that catalyze the first step of oxidation of long-chain n-alkanes in Acinetobacter sp. strain M-1. FEMS Microbiol Lett 141:177–182

    Article  CAS  Google Scholar 

  • Maier T, Forster HH, Asperger O, Hahn U (2001) Molecular characterization of the 56-kDa CYP153 from Acinetobacter sp. EB104. Biochem Biophys Res Commun 286:652–658

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Labbe D, Schinner F, Greer CW, Whyte LG (2003) Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl Environ Microbiol 69:3085–3092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marín MM, Smits TH, van Beilen JB, Rojo F (2001) The alkane hydroxylase gene of Burkholderia cepacia RR10 is under catabolite repression control. J Bacteriol 183:4202–4209

    Article  PubMed  PubMed Central  Google Scholar 

  • Marín MM, Yuste L, Rojo F (2003) Differential expression of the components of the two alkane hydroxylases from Pseudomonas aeruginosa. J Bacteriol 185:3232–3237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McKew BA, Coulon F, Osborn AM, Timmis KN, McGenity TJ (2007a) Determining the identity and roles of oil-metabolizing marine bacteria from the Thames estuary, UK. Environ Microbiol 9:165–176

    Article  CAS  PubMed  Google Scholar 

  • McKew BA, Coulon F, Yakimov MM, Denaro R, Genovese M, Smith CJ, Osborn AM, Timmis KN, McGenity TJ (2007b) Efficacy of intervention strategies for bioremediation of crude oil in marine systems and effects on indigenous hydrocarbonoclastic bacteria. Environ Microbiol 9:1562–1571

    Article  CAS  PubMed  Google Scholar 

  • Minerdi D, Sadeghi SJ, Di Nardo G, Rua F, Castrignanò S, Allegra P, Gilardi G (2015) CYP116B5: a new class VII catalytically self-sufficient cytochrome P450 from Acinetobacter radioresistens that enables growth on alkanes. Mol Microbiol 95:539–554

    Article  CAS  PubMed  Google Scholar 

  • Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60:151–166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nhi-Cong LT, Mikolasch A, Klenk H-P, Schauer F (2009) Degradation of the multiple branched alkane 2,6,10,14-tetramethyl-pentadecane (pristane) in Rhodococcus ruber and mycobacterium neoaurum. Int Biodeterior Biodegrad 63:201–207

    Article  CAS  Google Scholar 

  • Nhi-Cong LT, Mikolasch A, Awe S, Sheikhany H, Klenk HP, Schauer F (2010) Oxidation of aliphatic, branched chain, and aromatic hydrocarbons by Nocardia cyriacigeorgica isolated from oil-polluted sand samples collected in the Saudi Arabian Desert. J Basic Microbiol 50:241–253

    Article  CAS  Google Scholar 

  • Nie Y, Chi CQ, Fang H, Liang JL, SL L, Lai GL, Tang YQ, XL W (2014a) Diverse alkane hydroxylase genes in microorganisms and environments. Sci Rep 4:4968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nie Y, Liang J, Fang H, Tang YQ, XL W (2011) Two novel alkane hydroxylase-rubredoxin fusion genes isolated from a Dietzia bacterium and the functions of fused rubredoxin domains in long-chain n-alkane degradation. Appl Environ Microbiol 77:7279–7288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nie Y, Liang JL, Fang H, Tang YQ, XL W (2014b) Characterization of a CYP153 alkane hydroxylase gene in a gram-positive Dietzia sp. DQ12-45-1b and its “team role” with alkW1 in alkane degradation. Appl Microbiol Biotechnol 98:163–173

    Article  CAS  PubMed  Google Scholar 

  • Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noordman WH, Janssen DB (2002) Rhamnolipid stimulates uptake of hydrophobic compounds by Pseudomonas aeruginosa. Appl Environ Microbiol 68:4502–4508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohkuma M, Zimmer T, Iida T, Schunck WH, Ohta A, Takagi M (1998) Isozyme function of n-alkane-inducible cytochromes P450 in Candida maltosa revealed by sequential gene disruption. J Biol Chem 273:3948–3953

    Article  CAS  PubMed  Google Scholar 

  • Pandey G, Jain RK (2002) Bacterial chemotaxis toward environmental pollutants: role in bioremediation. Appl Environ Microbiol 68:5789–5795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parales RE, Harwood CS (2002) Bacterial chemotaxis to pollutants and plant-derived aromatic molecules. Curr Opin Microbiol 5:266–273

    Article  CAS  PubMed  Google Scholar 

  • Pedrini N, Ortiz-Urquiza A, Huarte-Bonnet C, Zhang S, Keyhani NO (2013) Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria bassiana: hydrocarbon oxidation within the context of a host-pathogen interaction. Front Microbiol 4:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Pirnik MP, Atlas RM, Bartha R (1974) Hydrocarbon metabolism by Brevibacterium erythrogenes: normal and branched alkanes. J Bacteriol 119:868–878

    CAS  PubMed  PubMed Central  Google Scholar 

  • Post-Beitenmiller D (1996) Biochemistry and molecular biology of wax production in plants. Annu Rev Plant Physiol Plant Mol Biol 47:405–430

    Article  Google Scholar 

  • Reva ON, Hallin PF, Willenbrock H, Sicheritz-Ponten T, Tümmler B, Ussery DW (2008) Global features of the Alcanivorax borkumensis SK2 genome. Environ Microbiol 10:614–625

    Article  CAS  PubMed  Google Scholar 

  • Rojo F (2005) Specificity at the end of the tunnel: understanding substrate length discrimination by the AlkB alkane hydroxylase. J Bacteriol 187:19–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojo F (2009) Degradation of alkanes by bacteria. Environ Microbiol 11:2477–2490

    Article  CAS  PubMed  Google Scholar 

  • Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants. Environ Microbiol 3:229–236

    Article  CAS  PubMed  Google Scholar 

  • Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg E (1993) Exploiting microbial growth on hydrocarbons – new markets. Trends Biotechnol 11:419–424

    Article  Google Scholar 

  • Sabirova JS, Ferrer M, Regenhardt D, Timmis KN, Golyshin PN (2006) Proteomic insights into metabolic adaptations in Alcanivorax borkumensis induced by alkane utilization. J Bacteriol 188:3763–3773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarand I, Osterberg S, Holmqvist S, Holmfeldt P, Skärfstad E, Parales RE, Shingler V (2008) Metabolism-dependent taxis towards (methyl)phenols is coupled through the most abundant of three polar localized Aer-like proteins of Pseudomonas putida. Environ Microbiol 10:1320–1334

    Article  CAS  PubMed  Google Scholar 

  • Sayavedra-Soto LA, Hamamura N, Liu CW, Kimbrel JA, Chang JH, Arp DJ (2011) The membrane-associated monooxygenase in the butane-oxidizing gram-positive bacterium Nocardioides sp. strain CF8 is a novel member of the AMO/PMO family. Environ Microbiol Rep 3:390–396

    Article  CAS  PubMed  Google Scholar 

  • Scheps D, Malca SH, Hoffmann H, Nestl BM, Hauer B (2011) Regioselective ω-hydroxylation of medium-chain n-alkanes and primary alcohols by CYP153 enzymes from Mycobacterium marinum and Polaromonas sp. strain JS666. Org Biomol Chem 9:6727–6733

    Article  CAS  PubMed  Google Scholar 

  • Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559

    Article  CAS  PubMed  Google Scholar 

  • Schmitz C, Goebel I, Wagner S, Vomberg A, Klinner U (2000) Competition between n-alkane-assimilating yeasts and bacteria during colonization of sandy soil microcosms. Appl Microbiol Biotechnol 54:126–132

    Article  CAS  PubMed  Google Scholar 

  • Schneiker S, Martins dos Santos VA, Bartels D, Bekel T, Brecht M, Buhrmester J, Chernikova TN, Denaro R, Ferrer M, Gertler C, Goesmann A, Golyshina OV, Kaminski F, Khachane AN, Lang S, Linke B, McHardy AC, Meyer F, Nechitaylo T, Puhler A, Regenhardt D, Rupp O, Sabirova JS, Selbitschka W, Yakimov MM, Timmis KN, Vorholter FJ, Weidner S, Kaiser O, Golyshin PN (2006) Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat Biotechnol 24:997–1004

    Article  CAS  PubMed  Google Scholar 

  • Sekine M, Tanikawa S, Omata S, Saito M, Fujisawa T, Tsukatani N, Tajima T, Sekigawa T, Kosugi H, Matsuo Y, Nishiko R, Imamura K, Ito M, Narita H, Tago S, Fujita N, Harayama S (2006) Sequence analysis of three plasmids harboured in Rhodococcus erythropolis strain PR4. Environ Microbiol 8:334–346

    Article  CAS  PubMed  Google Scholar 

  • Shanklin J, Achim C, Schmidt H, Fox BG, Munck E (1997) Mossbauer studies of alkane omega-hydroxylase: evidence for a diiron cluster in an integral-membrane enzyme. Proc Natl Acad Sci U S A 94:2981–2986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanklin J, Whittle E, Fox BG (1994) Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 33:12787–12794

    Article  CAS  PubMed  Google Scholar 

  • Shingler V (2003) Integrated regulation in response to aromatic compounds: from signal sensing to attractive behaviour. Environ Microbiol 5:1226–1241

    Article  CAS  PubMed  Google Scholar 

  • Singer ME, Finnerty WR (1985a) Alcohol dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecane and hexadecanol metabolism. J Bacteriol 164:1017–1024

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singer ME, Finnerty WR (1985b) Fatty aldehyde dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecanol metabolism. J Bacteriol 164:1011–1016

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sluis MK, Sayavedra-Soto LA, Arp DJ (2002) Molecular analysis of the soluble butane monooxygenase from “ Pseudomonas butanovora”. Microbiology 148:3617–3629

    Article  CAS  PubMed  Google Scholar 

  • Smith CA, Hyman MR (2004) Oxidation of methyl tert-butyl ether by alkane hydroxylase in dicyclopropylketone-induced and n-octane-grown Pseudomonas putida GPo1. Appl Environ Microbiol 70:4544–4550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smits TH, Balada SB, Witholt B, van Beilen JB (2002) Functional analysis of alkane hydroxylases from gram-negative and gram-positive bacteria. J Bacteriol 184:1733–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smits TH, Witholt B, van Beilen JB (2003) Functional characterization of genes involved in alkane oxidation by Pseudomonas aeruginosa. Antonie Van Leeuwenhoek 84:193–200

    Article  CAS  PubMed  Google Scholar 

  • Smits THM, Röthlisberger M, Witholt B, van Beilen JB (1999) Molecular screening for alkane hydroxylase genes in gram-negative and gram-positive strains. Environ Microbiol 1:307–317

    Article  CAS  PubMed  Google Scholar 

  • Solano-Serena F, Marchal R, Heiss S, Vandecasteele JP (2004) Degradation of isooctane by Mycobacterium austroafricanum IFP 2173: growth and catabolic pathway. J Appl Microbiol 97:629–639

    Article  CAS  PubMed  Google Scholar 

  • Soussan L, Pen N, Belleville MP, Marcano JS, Paolucci-Jeanjean D (2016) Alkane biohydroxylation: interests, constraints and future developments. J Biotechnol 222:117–142

    Article  CAS  PubMed  Google Scholar 

  • Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT (2000) Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406:959–964

    Article  CAS  PubMed  Google Scholar 

  • Tani A, Ishige T, Sakai Y, Kato N (2001) Gene structures and regulation of the alkane hydroxylase complex in Acinetobacter sp. strain M-1. J Bacteriol 183:1819–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tapilatu YH, Grossi V, Acquaviva M, Militon C, Bertrand JC, Cuny P (2010) Isolation of hydrocarbon-degrading extremely halophilic archaea from an uncontaminated hypersaline pond (Camargue, France). Extremophiles 14:225–231

    Article  CAS  PubMed  Google Scholar 

  • Throne-Holst M, Markussen S, Winnberg A, Ellingsen TE, Kotlar HK, Zotchev SB (2006) Utilization of n-alkanes by a newly isolated strain of Acinetobacter venetianus: the role of two AlkB-type alkane hydroxylases. Appl Microbiol Biotechnol 72:353–360

    Article  CAS  PubMed  Google Scholar 

  • Throne-Holst M, Wentzel A, Ellingsen TE, Kotlar HK, Zotchev SB (2007) Identification of novel genes involved in long-chain n-alkane degradation by Acinetobacter sp. strain DSM 17874. Appl Environ Microbiol 73:3327–3332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Beilen JB, Eggink G, Enequist H, Bos R, Witholt B (1992a) DNA sequence determination and functional characterization of the OCT-plasmid-encoded alkJKL genes of Pseudomonas oleovorans. Mol Microbiol 6:3121–3136

    Article  PubMed  Google Scholar 

  • van Beilen JB, Funhoff EG (2005) Expanding the alkane oxygenase toolbox: new enzymes and applications. Curr Opin Biotechnol 16:308–314

    Article  PubMed  CAS  Google Scholar 

  • van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74:13–21

    Article  CAS  PubMed  Google Scholar 

  • van Beilen JB, Funhoff EG, van Loon A, Just A, Kaysser L, Bouza M, Holtackers R, Rothlisberger M, Li Z, Witholt B (2006) Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Appl Environ Microbiol 72:59–65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Beilen JB, Holtackers R, Luscher D, Bauer U, Witholt B, Duetz WA (2005a) Biocatalytic production of perillyl alcohol from limonene by using a novel Mycobacterium sp. cytochrome P450 alkane hydroxylase expressed in Pseudomonas putida. Appl Environ Microbiol 71:1737–1744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Beilen JB, Li Z, Duetz WA, Smits THM, Witholt B (2003) Diversity of alkane hydroxylase systems in the environment. Oil Gas Sci Technol 58:427–440

    Article  Google Scholar 

  • van Beilen JB, Marin MM, Smits TH, Rothlisberger M, Franchini AG, Witholt B, Rojo F (2004) Characterization of two alkane hydroxylase genes from the marine hydrocarbonoclastic bacterium Alcanivorax borkumensis. Environ Microbiol 6:264–273

    Article  PubMed  CAS  Google Scholar 

  • van Beilen JB, Neuenschwander M, Smits TH, Roth C, Balada SB, Witholt B (2002a) Rubredoxins involved in alkane oxidation. J Bacteriol 184:1722–1732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Beilen JB, Panke S, Lucchini S, Franchini AG, Röthlisberger M, Witholt B (2001) Analysis of Pseudomonas putida alkane degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk-genes. Microbiology 147:1621–1630

    Article  PubMed  Google Scholar 

  • van Beilen JB, Penninga D, Witholt B (1992b) Topology of the membrane-bound alkane hydroxylase of Pseudomonas oleovorans. J Biol Chem 267:9194–9201

    PubMed  Google Scholar 

  • van Beilen JB, Smits TH, Roos FF, Brunner T, Balada SB, Rothlisberger M, Witholt B (2005b) Identification of an amino acid position that determines the substrate range of integral membrane alkane hydroxylases. J Bacteriol 187:85–91

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Beilen JB, Smits TH, Whyte LG, Schorcht S, Rothlisberger M, Plaggemeier T, Engesser KH, Witholt B (2002b) Alkane hydroxylase homologues in gram-positive strains. Environ Microbiol 4:676–682

    Article  PubMed  Google Scholar 

  • van Beilen JB, Wubbolts MG, Chen Q, Nieboer M, Witholt B (1996) Effects of two-liquid-phase systems and expression of alk genes on the physiology of alkane-oxidizing strains. In: Nakazawa T, Furukawa K, Haas D, Silver S (eds) Molecular biology of pseudomonads. ASM Press, Washington, DC, pp 35–47

    Google Scholar 

  • van Beilen JB, Wubbolts MG, Witholt B (1994) Genetics of alkane oxidation by Pseudomonas oleovorans. Biodegradation 5:161–174

    Article  PubMed  Google Scholar 

  • van den Berg B (2005) The FadL family: unusual transporters for unusual substrates. Curr Opin Struct Biol 15:401–407

    Article  PubMed  CAS  Google Scholar 

  • Vangnai AS, Arp DJ (2001) An inducible 1-butanol dehydrogenase, a quinohaemoprotein, is involved in the oxidation of butane by “Pseudomonas butanovora”. Microbiology 147:745–756

    Article  CAS  PubMed  Google Scholar 

  • Vangnai AS, Arp DJ, Sayavedra-Soto LA (2002) Two distinct alcohol dehydrogenases participate in butane metabolism by Pseudomonas butanovora. J Bacteriol 184:1916–1924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wadhams GH, Armitage JP (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5:1024–1037

    Article  CAS  PubMed  Google Scholar 

  • Waltermann M, Hinz A, Robenek H, Troyer D, Reichelt R, Malkus U, Galla HJ, Kalscheuer R, Stoveken T, von Landenberg P, Steinbuchel A (2005) Mechanism of lipid-body formation in prokaryotes: how bacteria fatten up. Mol Microbiol 55:750–763

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Wang W, Lai Q, Shao Z (2010) Gene diversity of CYP153A and AlkB alkane hydroxylases in oil-degrading bacteria isolated from the Atlantic Ocean. Environ Microbiol 12:1230–1242

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Shao Z (2012a) Diversity of flavin-binding monooxygenase genes (almA) in marine bacteria capable of degradation long-chain alkanes. FEMS Microbiol Ecol 80:523–533

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Shao Z (2012b) Genes involved in alkane degradation in the Alcanivorax hongdengensis strain A-11-3. Appl Microbiol Biotechnol 94:437–448

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Shao Z (2013) Enzymes and genes involved in aerobic alkane degradation. Front Microbiol 4:116

    PubMed  PubMed Central  Google Scholar 

  • Wang W, Shao Z (2014) The long-chain alkane metabolism network of Alcanivorax dieselolei. Nat Commun 5:5755

    Article  CAS  PubMed  Google Scholar 

  • Watkinson RJ, Morgan P (1990) Physiology of aliphatic hydrocarbon-degrading microorganisms. Biodegradation 1:79–92

    Article  CAS  PubMed  Google Scholar 

  • Wentzel A, Ellingsen TE, Kotlar HK, Zotchev SB, Throne-Holst M (2007) Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol 76:1209–1221

    Article  CAS  PubMed  Google Scholar 

  • Whyte LG, Hawari J, Zhou E, Bourbonniere L, Inniss WE, Greer CW (1998) Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl Environ Microbiol 64:2578–2584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whyte LG, Smits TH, Labbe D, Witholt B, Greer CW, Van Beilen JB (2002) Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B-16531. Appl Environ Microbiol 68:5933–5942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witholt B, de Smet MJ, Kingma J, van Beilen JB, Kok M, Lageveen RG, Eggink G (1990) Bioconversions of aliphatic compounds by Pseudomonas oleovorans in multiphase bioreactors: background and economic potential. Trends Biotechnol 8:46–52

    Article  CAS  PubMed  Google Scholar 

  • Yakimov MM, Giuliano L, Denaro R, Crisafi E, Chernikova TN, Abraham WR, Luensdorf H, Timmis KN, Golyshin PN (2004) Thalassolituus oleivorans gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol 54:141–148

    Article  CAS  PubMed  Google Scholar 

  • Yakimov MM, Giuliano L, Gentile G, Crisafi E, Chernikova TN, Abraham WR, Lunsdorf H, Timmis KN, Golyshin PN (2003) Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int J Syst Evol Microbiol 53:779–785

    Article  CAS  PubMed  Google Scholar 

  • Yakimov MM, Golyshin PN, Lang S, Moore ER, Abraham WR, Lunsdorf H, Timmis KN (1998) Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48(Pt 2):339–348

    Article  CAS  PubMed  Google Scholar 

  • Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18:257–266

    Article  CAS  PubMed  Google Scholar 

  • Yang HY, Jia RB, Chen B, Li L (2014) Degradation of recalcitrant aliphatic and aromatic hydrocarbons by a dioxin-degrader Rhodococcus sp. strain p52. Environ Sci Pollut Res Int 21:11086–11093

    Article  CAS  PubMed  Google Scholar 

  • Zimmer T, Ohkuma M, Ohta A, Takagi M, Schunck WH (1996) The CYP52 multigene family of Candida maltosa encodes functionally diverse n-alkane-inducible cytochromes P450. Biochem Biophys Res Commun 224:784–789

    Article  CAS  PubMed  Google Scholar 

  • Zulianello L, Canard C, Kohler T, Caille D, Lacroix JS, Meda P (2006) Rhamnolipids are virulence factors that promote early infiltration of primary human airway epithelia by Pseudomonas aeruginosa. Infect Immun 74:3134–3147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work in the author’s laboratory is funded by the Spanish Ministry of Economy and Competitiveness (grant BIO2015-66203-P) and the European Commission VII Framework Program (grant number 312139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Rojo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Moreno, R., Rojo, F. (2017). Enzymes for Aerobic Degradation of Alkanes in Bacteria. In: Rojo, F. (eds) Aerobic Utilization of Hydrocarbons, Oils and Lipids. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-39782-5_6-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39782-5_6-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39782-5

  • Online ISBN: 978-3-319-39782-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics