Skip to main content
Log in

Trans-membrane transport of n-octadecane by Pseudomonas sp. DG17

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The trans-membrane transport of hydrocarbons is an important and complex aspect of the process of biodegradation of hydrocarbons by microorganisms. The mechanism of transport of 14C n-octadecane by Pseudomonas sp. DG17, an alkane-degrading bacterium, was studied by the addition of ATP inhibitors and different substrate concentrations. When the concentration of n-octadecane was higher than 4.54 μmol/L, the transport of 14C n-octadecane was driven by a facilitated passive mechanism following the intra/extra substrate concentration gradient. However, when the cells were grown with a low concentration of the substrate, the cellular accumulation of n-octadecane, an energy-dependent process, was dramatically decreased by the presence of ATP inhibitors, and n-octadecane accumulation continually increased against its concentration gradient. Furthermore, the presence of non-labeled alkanes blocked 14C n-octadecane transport only in the induced cells, and the trans-membrane transport of n-octadecane was specific with an apparent dissociation constant K t of 11.27 μmol/L and V max of 0.96 μmol/min/mg protein. The results indicated that the trans-membrane transport of n-octadecane by Pseudomonas sp. DG17 was related to the substrate concentration and ATP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, W., Trond, E.E., Hans-Kristian, K., Sergey, B.Z., and Mimmi, T.H. 2007. Bacterial metabolism of long-chain n-alkanes. Appl. Microbiol. Biotechnol. 76, 1209–1221.

    Article  Google Scholar 

  • Alvarez, H.M., Mayer, F., Fabritius, D., and Steinbuchel, A. 1996. Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch. Microbiol. 165, 377–386.

    Article  CAS  PubMed  Google Scholar 

  • Alvarez, H.M., Pucci, O.H., and Steinbuchel, A. 1997. Lipid storage compounds in marine bacteria. Appl. Microbiol. Biotechnol. 47, 132–139.

    Article  CAS  Google Scholar 

  • Barabas, G., Vargha, G., and Szabo, I.M. 2001. n-Alkane uptake and utilization by Streptomyces strains. Antonie van Leeuwenhoek 79, 269–276.

    Article  CAS  PubMed  Google Scholar 

  • Bateman, J.N., Speer, B.L., Feduik, L., and Hartline, R.A. 1986. Naphthalene association and uptake in Pseudomonas putida. J. Bacteriol. 166, 155–161.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beal, R. and Betts, W.B. 2000. Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa. J. Appl. Microbiol. 89, 158–168.

    Article  CAS  PubMed  Google Scholar 

  • Bellion, E., Kent, E.M., Aud, J.C., Alikhan, M.Y., and Bolbot, J.A. 1983. Uptake of methylamine and methanol by Pseudomonas sp. strain AM1. J. Bacteriol. 154, 1168–1173.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bouchez-Naitali, M., Rakatozafy, H., Marchal, R., Leveau, J.Y., and Vandecasteele, J.P. 1999. Diversity of bacterial strains degrading hexadecane in relation to the mode of substrate uptake. J. Appl. Microbiol. 86, 421–428.

    Article  CAS  PubMed  Google Scholar 

  • Bugg, T., Foght, J.M., Pickard, M.A., and Gray, M.R. 2000. Uptake and active efflux of polycyclic aromatic hydrocarbons by Pseudomonas fluorescens LP6a. Appl. Environ. Microbiol. 66, 5387–5392.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Andres, C., Espuny, M.J., Robert, M., Mercad, M.E., Manresa, A., and Guinea, J. 1991. Cellular lipid accumulation by Pseudomonas aeruyinosa 44T1. Appl. Microbiol. Biotechnol. 35, 813–816.

    Article  Google Scholar 

  • Folsom, B.R. 1997. Characterization of 2-nitrophenol uptake system of Pseudomonas putida B2. J. Indian Microbiol. Biotechnol. 19, 123–129.

    Article  CAS  Google Scholar 

  • Fumiyasu, F., Hisako, H., and Hideto, T. 2008. Isolation and transposon mutagenesis of a Pseudomonas putida KT2442 toluene-resistant variant:involvement of an efflux system in solvent resistance. Extremophiles 2, 395–400.

    Google Scholar 

  • Gray, M.R., and Bugg, T. 2001. Selective biocatalysis in bacteria controlled by active membrane transport. Ind. Eng. Chem. Res. 40, 5126–5131.

    Article  CAS  Google Scholar 

  • Harwood, C.S. and Gibson, J. 1986. Uptake of benzoate by Rhodopseudomonas palustris grown anaerobically in light. J. Bacteriol. 165, 504–509.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hua, F. and Wang, H.Q. 2011. Uptake modes of octadecane by Pseudomonas sp. DG17 and synthesis of biosurfactant. J. Appl. Microbiol. 112, 25–37.

    Article  PubMed  Google Scholar 

  • Isken, S. and De Bont, J.A.M. 1996. Active efflux of toluene in a solvent-resistant bacterium. J. Bacteriol. 178, 6056–6058.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kahng, H.Y., Byrne, A.M., Olsen, R.H., and Kukor, J.J. 2000. Characterization and role of tbuX in utilization of toluene by Ralstonia pickettii PKO1. J. Bacteriol. 182, 1232–1242.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kallimanis, A., Frillingos, S., Drainas, C., and Koukkou, A.I. 2007. Taxonomic identification, phenanthrene uptake activity, and membrane lipid alterations of the PAH degrading Arthrobater sp. strain Sphe3. Appl. Microbiol. Biotechnol. 76, 709–717.

    Article  CAS  PubMed  Google Scholar 

  • Kennedy, R.S. and Finnerty, W.R. 1975. Microbial assimilation of hydrocarbons I. The fine-structure of a hydrocarbon oxidizing Acinetobacter sp. Arch. Microbiol. 102, 75–83.

    Article  CAS  PubMed  Google Scholar 

  • Kieboom, J., Dennis, J.J., Zylstra, G.J., and de Bont, J.A.M. 1998. Active efflux of organic solvents by Pseudomonas putida S12 is induced by solvents. J. Bacteriol. 180, 67–72.

    Google Scholar 

  • Kim, I.S., Julia, M.F., and Gray, R.M. 2002. Selective transport and accumulation of alkanes by Rhodococcus erythropolis S+14He. Biotechnol. Bioeng. 80, 650–659.

    Article  CAS  PubMed  Google Scholar 

  • Lindley, N.D. and Heydeman, M.T. 1986. Mechanism of dodecane uptake by whole cells of Cladosporium resinae. J. Gen. Microbiol. 132, 751–756.

    CAS  Google Scholar 

  • Locher, H.H., Poolman, B., Cook, A.M., and Konings, W.N. 1993. Uptake of 4-toluene sulfonate by Comamonas testosterone T-2. J. Bacteriol. 175, 1075–1080.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Merkel, S.M., Eberhard, A.E., Gibson, J., and Harwood, C.S. 1989. Involvement of coenzyme A thioesters in anaerobic metabolism of 4-hydroxybenzoate by Rhodopseudomonas palustris. J. Bacteriol. 171, 1–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyata, N., Iwahori, K., Foght, J.M., and Gray, M.R. 2004. Saturable, energy-dependent uptake of phenanthrene in aqueous phase by Mycobacterium sp. strain RJGII-135. Appl. Environ. Microbiol. 70, 363–369.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murielle, B.N. and Vandecasteele, J.P. 2008. Biosurfactants, a help in the biodegradation of hexadecane? The case of Rhodococcus and Pseudomonas strains. World J. Microbiol. Biotechnol. 24, 1901–1907.

    Article  Google Scholar 

  • Nichols, N.N. and Harwood, C.S. 1997. PcaK, a high-affinity permease for the aromatic compounds 4-hydroxybenzoate and protocatechuate from Pseudomonas putida. J. Bacteriol. 179, 5056–5061.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Puntus, I.F., Sakharovsky, V.G., Filonov, A.E., and Boronin, A.M. 2005. Surface activity and metabolism of hydrocarbon-degrading microorganisms growing on hexadecane and naphthalene. Process Biochem. 40, 2643–2648.

    Article  CAS  Google Scholar 

  • Rosenberg, E. 1993. Exploiting microbial growth on hydrocarbon: New markets. Trends Biotechnol. 11, 419–424.

    Article  Google Scholar 

  • Sharma, S.L. and Pant, A. 2000. Biodegradation and conversion of alkanes and crude oil by a marine Rhodococcus. Biodegradation 11, 289–294.

    Article  CAS  PubMed  Google Scholar 

  • Shishido, M. and Toda, M. 1996. Apparent zero-order kinetics of phenol biodegradation by substrate-inhibited microbes at low substrate concentrations. Biotechnol. Bioeng. 50, 709–717.

    Article  CAS  PubMed  Google Scholar 

  • Sikkema, J., de Bont, J.A.M., and Poolman, B. 1995. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 59, 201–222.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sonja, I., Jan, A.M., and de Bont, J.A.M. 1998. Bacteria tolerant to organic solvents. Extremophiles 2, 229–238.

    Article  Google Scholar 

  • Stahmann, K.P., Kupp, C., Feldmann, S.D., and Sahm, H. 1994. Formation and degradation of lipid bodies found in the riboflavin-producing fungus Ashbya gossypii. Appl. Microbiol. Biotechnol. 42, 121–127.

    Article  CAS  Google Scholar 

  • Swaranjit, S.C. and Pooja, S. 2009. Synthesis of rhamnolipid biosurfactant and mode of hexadecane uptake by Pseudomonas species. Microb. Cell Fact. 8, 1–7.

    Article  Google Scholar 

  • Throne-Holst, M., Markussen, S., Winnberg, A., Ellingsen, T.E., Kotlar, H.K., and Zotchev, S.B. 2006. Utilization of n-alkanes by a newly isolated strain of Acinetobacter venetianus: the role of two AlkB-type alkane hydroxylases. Appl. Microbiol. Biotechnol. 72, 353–360.

    Article  CAS  PubMed  Google Scholar 

  • Yuroff, A.S., Sabat, G., and Hickey, W.J. 2003. Transporter-mediated uptake of 2-chloro- and 2-hydroxybenzoate by Pseudomonas huttiensis strain D1. Appl. Environ. Microbiol. 69, 7401–7408.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Whitman, B.E., Lueking, D.R., and Mihelcic, J.R. 1998. Naphthalene uptake by a Pseudomonas fluorescens isolate. Can. J. Microbiol. 44, 1086–1093.

    CAS  PubMed  Google Scholar 

  • Whyte, L.G., Slagman, S.J., Pietrantonio, F., Bourbonniere, L., Koval, S.F., Lawrence, J.R., Inniss, W.E., and Greer, C.W. 1999. Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15. Appl. Environ. Microbiol. 65, 2961–2968.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Qi Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, F., Wang, H.Q., Li, Y. et al. Trans-membrane transport of n-octadecane by Pseudomonas sp. DG17. J Microbiol. 51, 791–799 (2013). https://doi.org/10.1007/s12275-013-3259-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-013-3259-6

Keywords

Navigation