Skip to main content

Selection of Recombinant Human Antibodies

  • Chapter
  • First Online:
Protein Targeting Compounds

Abstract

Since the development of therapeutic antibodies the demand of recombinant human antibodies is steadily increasing. Traditionally, therapeutic antibodies were generated by immunization of rat or mice, the generation of hybridoma clones, cloning of the antibody genes and subsequent humanization and engineering of the lead candidates. In the last few years, techniques were developed that use transgenic animals with a human antibody gene repertoire. Here, modern recombinant DNA technologies can be combined with well established immunization and hybridoma technologies to generate already affinity maturated human antibodies. An alternative are in vitro technologies which enabled the generation of fully human antibodies from antibody gene libraries that even exceed the human antibody repertoire. Specific antibodies can be isolated from these libraries in a very short time and therefore reduce the development time of an antibody drug at a very early stage.

In this review, we describe different technologies that are currently used for the in vitro and in vivo generation of human antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alimov AP, Khmelnitsky AY, Simonenko PN, Spirin AS, Chetverin AB (2000) Cell-free synthesis and affinity isolation of proteins on a nanomole scale. Biotechniques 28:338–344

    CAS  PubMed  Google Scholar 

  2. Amstutz P, Forrer P, Zahnd C, Plückthun A (2001) In vitro display technologies: novel developments and applications. Curr Opin Biotechnol 12:400–405. doi:10.1016/S0958-1669(00)00234-2

    Article  CAS  PubMed  Google Scholar 

  3. Barbas CF, Kang AS, Lerner RA, Benkovic SJ (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci U S A 88:7978–7982. doi:1896445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Batista FD, Neuberger MS (1998) Affinity dependence of the B cell response to antigen: a threshold, a ceiling, and the importance of off-rate. Immunity 8:751–759. doi:10.1016/S1074-7613(00)80580-4

    Article  CAS  PubMed  Google Scholar 

  5. Benatuil L, Perez JM, Belk J, Hsieh C-M (2010) An improved yeast transformation method for the generation of very large human antibody libraries. Protein Eng Des Sel 23:155–159. doi:10.1093/protein/gzq002

    Article  CAS  PubMed  Google Scholar 

  6. Bieberich E, Kapitonov D, Tencomnao T, Yu RK (2000) Protein–ribosome–mRNA display: affinity isolation of enzyme–ribosome–mRNA complexes and cDNA cloning in a single-tube reaction. Anal Biochem 287:294–298. doi:10.1006/abio.2000.4825

    Article  CAS  PubMed  Google Scholar 

  7. Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee SM, Lee T, Pope SH, Riordan GS, Whitlow M (1988) Single-chain antigen-binding proteins. Science 242:423–426. doi:3140379

    Article  CAS  PubMed  Google Scholar 

  8. Blaise L, Wehnert A, Steukers MPG, van den Beucken T, Hoogenboom HR, Hufton SE (2004) Construction and diversification of yeast cell surface displayed libraries by yeast mating: application to the affinity maturation of Fab antibody fragments. Gene 342:211–218. doi:10.1016/j.gene.2004.08.014

    Article  CAS  PubMed  Google Scholar 

  9. Boder ET, Midelfort KS, Wittrup KD (2000) Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc Natl Acad Sci U S A 97:10701–10705. doi:10.1073/pnas.170297297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553–557. doi:10.1038/nbt0697-553

    Article  CAS  PubMed  Google Scholar 

  11. Bowers PM, Horlick RA, Neben TY, Toobian RM, Tomlinson GL, Dalton JL, Jones HA, Chen A, Altobell L, Zhang X et al (2011) Coupling mammalian cell surface display with somatic hypermutation for the discovery and maturation of human antibodies. Proc Natl Acad Sci 108:20455–20460. doi:10.1073/pnas.1114010108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bowley DR, Labrijn AF, Zwick MB, Burton DR (2007) Antigen selection from an HIV-1 immune antibody library displayed on yeast yields many novel antibodies compared to selection from the same library displayed on phage. Protein Eng Des Sel 20:81–90. doi:10.1093/protein/gzl057

    Article  CAS  PubMed  Google Scholar 

  13. Breitling F, Dübel S, Seehaus T, Klewinghaus I, Little M (1991) A surface expression vector for antibody screening. Gene 104:147–153

    Article  CAS  PubMed  Google Scholar 

  14. Brüggemann M, Caskey HM, Teale C, Waldmann H, Williams GT, Surani MA, Neuberger MS (1989) A repertoire of monoclonal antibodies with human heavy chains from transgenic mice. Proc Natl Acad Sci U S A 86:6709–6713

    Article  PubMed  PubMed Central  Google Scholar 

  15. Buckler DR, Park A, Viswanathan M, Hoet RM, Ladner RC (2008) Screening isolates from antibody phage-display libraries. Drug Discov Today 13:318–324. doi:S1359-6446(07)00426-6

    Article  CAS  PubMed  Google Scholar 

  16. Chao G, Lau WL, Hackel BJ, Sazinsky SL, Lippow SM, Wittrup KD (2006) Isolating and engineering human antibodies using yeast surface display. Nat Protoc 1:755–768. doi:10.1038/nprot.2006.94

    Article  CAS  PubMed  Google Scholar 

  17. Cheng K, Ivanova N, Scheres SHW, Pavlov MY, Carazo JM, Hebert H, Ehrenberg M, Lindahl M (2010) tmRNA·SmpB complex mimics native aminoacyl-tRNAs in the A site of stalled ribosomes. J Struct Biol 169:342–348. doi:10.1016/j.jsb.2009.10.015

    Article  CAS  PubMed  Google Scholar 

  18. Chen J, Trounstine M, Alt FW, Young F, Kurahara C, Loring JF, Huszar D (1993) Immunoglobulin gene rearrangement in B cell deficient mice generated by targeted deletion of the JH locus. Int Immunol 5:647–656

    Article  CAS  PubMed  Google Scholar 

  19. Chen J, Trounstine M, Kurahara C, Young F, Kuo CC, Xu Y, Loring JF, Alt FW, Huszar D (1993) B cell development in mice that lack one or both immunoglobulin kappa light chain genes. EMBO J 12:821–830

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen M-T, Lin S, Shandil I, Andrews D, Stadheim TA, Choi B-K (2012) Generation of diploid Pichia pastoris strains by mating and their application for recombinant protein production. Microb Cell Factories 11:91. doi:10.1186/1475-2859-11-91

    Article  CAS  Google Scholar 

  21. Clackson T, Hoogenboom HR, Griffiths AD, Winter G (1991) Making antibody fragments using phage display libraries. Nature 352:624–628. doi:1907718

    Article  CAS  PubMed  Google Scholar 

  22. Cline J, Braman JC, Hogrefe HH (1996) PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Res 24:3546–3551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Contreras-Martínez LM, DeLisa MP (2007) Intracellular ribosome display via SecM translation arrest as a selection for antibodies with enhanced cytosolic stability. J Mol Biol 372:513–524. doi:10.1016/j.jmb.2007.06.070

    Article  PubMed  CAS  Google Scholar 

  24. Dangaj D, Lanitis E, Zhao A, Joshi S, Cheng Y, Sandaltzopoulos R, Ra H-J, Danet-Desnoyers G, Powell DJ, Scholler N (2013) Novel recombinant human B7-H4 antibodies overcome tumoral immune escape to potentiate T-cell antitumor responses. Cancer Res 73:4820–4829. doi:10.1158/0008-5472.CAN-12-3457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dong J, Thompson AA, Fan Y, Lou J, Conrad F, Ho M, Pires-Alves M, Wilson BA, Stevens RC, Marks JD (2010) A single-domain llama antibody potently inhibits the enzymatic activity of botulinum neurotoxin by binding to the non-catalytic α-exosite binding region. J Mol Biol 397:1106–1118. doi:10.1016/j.jmb.2010.01.070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Douthwaite JA, Groves MA, Dufner P, Jermutus L (2006) An improved method for an efficient and easily accessible eukaryotic ribosome display technology. Protein Eng Des Sel 19:85–90. doi:10.1093/protein/gzj003

    Article  CAS  PubMed  Google Scholar 

  27. Dueñas M, Borrebaeck CA (1995) Novel helper phage design: intergenic region affects the assembly of bacteriophages and the size of antibody libraries. FEMS Microbiol Lett 125:317–321

    Article  PubMed  Google Scholar 

  28. Evans MS, Ugrinov KG, Frese M-A, Clark PL (2005) Homogeneous stalled ribosome nascent chain complexes produced in vivo or in vitro. Nat Methods 2:757–762. doi:10.1038/nmeth790

    Article  CAS  PubMed  Google Scholar 

  29. Fedorov AN, Baldwin TO (1995) Contribution of cotranslational folding to the rate of formation of native protein structure. Proc Natl Acad Sci 92:1227–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fedorov AN, Baldwin TO (1998) Protein folding and assembly in a cell-free expression system. Methods Enzymol 290:1–17

    Article  CAS  PubMed  Google Scholar 

  31. Feldhaus MJ, Siegel RW, Opresko LK, Coleman JR, Feldhaus JMW, Yeung YA, Cochran JR, Heinzelman P, Colby D, Swers J et al (2003) Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat Biotechnol 21:163–170. doi:10.1038/nbt785

    Article  CAS  PubMed  Google Scholar 

  32. Ferrara F, Naranjo LA, Kumar S, Gaiotto T, Mukundan H, Swanson B, Bradbury ARM (2012) Using phage and yeast display to select hundreds of monoclonal antibodies: application to antigen 85, a tuberculosis biomarker. PLoS ONE 7:e49535. doi:10.1371/journal.pone.0049535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Finlay WJ, Cunningham O, Lambert MA, Darmanin-Sheehan A, Liu X, Fennell BJ, Mahon CM, Cummins E, Wade JM, O’Sullivan CM et al (2009) Affinity maturation of a humanized rat antibody for anti-RAGE therapy: comprehensive mutagenesis reveals a high level of mutational plasticity both inside and outside the complementarity-determining regions. J Mol Biol 388:541–558. doi:10.1016/j.jmb.2009.03.019

    Article  CAS  PubMed  Google Scholar 

  34. Fishwild DM, O’Donnell SL, Bengoechea T, Hudson DV, Harding F, Bernhard SL, Jones D, Kay RM, Higgins KM, Schramm SR et al (1996) High-avidity human IgG kappa monoclonal antibodies from a novel strain of minilocus transgenic mice. Nat Biotechnol 14:845–851. doi:9631008

    Article  CAS  PubMed  Google Scholar 

  35. Flisikowska T, Thorey IS, Offner S, Ros F, Lifke V, Zeitler B, Rottmann O, Vincent A, Zhang L, Jenkins S et al (2011) Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. PLoS ONE 6:e21045. doi:10.1371/journal.pone.0021045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Foote J, Eisen HN (2000) Breaking the affinity ceiling for antibodies and T cell receptors. Proc Natl Acad Sci 97:10679–10681. doi:10.1073/pnas.97.20.10679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Foote J, Eisen HN (1995) Kinetic and affinity limits on antibodies produced during immune responses. Proc Natl Acad Sci U S A 92:1254–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Frenken LG, van der Linden RH, Hermans PW, Bos JW, Ruuls RC, de Geus B, Verrips CT (2000) Isolation of antigen specific llama VHH antibody fragments and their high level secretion by Saccharomyces cerevisiae. J Biotechnol 78:11–21

    Article  CAS  PubMed  Google Scholar 

  39. Frenzel A, Frode D, Meyer T, Schirrmann T, Hust M (2012) Generating recombinant antibodies for research, diagnostics and therapy using phage display. Curr Biotechnol 1:33–41

    Article  CAS  Google Scholar 

  40. Frenzel A, Kügler J, Wilke S, Schirrmann T, Hust M (2014) Construction of human antibody gene libraries and selection of antibodies by phage display. Methods Mol Biol 1060:215–243. doi:10.1007/978-1-62703-586-6_12

    Article  PubMed  CAS  Google Scholar 

  41. Fuchs P, Breitling F, Dübel S, Seehaus T, Little M (1991) Targeting recombinant antibodies to the surface of Escherichia coli: fusion to a peptidoglycan associated lipoprotein. Biotechnol Nat Publ Co 9:1369–1372

    Article  CAS  Google Scholar 

  42. Fujino Y, Fujita R, Wada K, Fujishige K, Kanamori T, Hunt L, Shimizu Y, Ueda T (2012) Robust in vitro affinity maturation strategy based on interface-focused high-throughput mutational scanning. Biochem Biophys Res Commun 428:395–400. doi:10.1016/j.bbrc.2012.10.066

    Article  CAS  PubMed  Google Scholar 

  43. Gersuk GM, Corey MJ, Corey E, Stray JE, Kawasaki GH, Vessella RL (1997) High-affinity peptide ligands to prostate-specific antigen identified by polysome selection. Biochem Biophys Res Commun 232:578–582. doi:10.1006/bbrc.1997.6331

    Article  CAS  PubMed  Google Scholar 

  44. Glanville J, Zhai W, Berka J, Telman D, Huerta G, Mehta GR, Ni I, Mei L, Sundar PD, Day GMR et al (2009) Precise determination of the diversity of a combinatorial antibody library gives insight into the human immunoglobulin repertoire. Proc Natl Acad Sci U S A 106:20216–20221. doi:10.1073/pnas.0909775106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Glockshuber R, Schmidt T, Plueckthun A (1992) The disulfide bonds in antibody variable domains: effects on stability, folding in vitro, and functional expression in Escherichia coli. Biochemistry (Mosc) 31:1270–1279. doi:10.1021/bi00120a002

    Article  CAS  Google Scholar 

  46. Lin-Goerke JL, Robbins DJ, Burczak JD (1997) PCR-based random mutagenesis using manganese and reduced dNTP concentration. Biotechniques 23:409–412

    CAS  PubMed  Google Scholar 

  47. Graff CP, Chester K, Begent R, Wittrup KD (2004) Directed evolution of an anti-carcinoembryonic antigen scFv with a 4-day monovalent dissociation half-time at 37 C. Protein Eng Des Sel 17:293–304. doi:10.1093/protein/gzh038

    Article  CAS  PubMed  Google Scholar 

  48. Green LL (2014) Transgenic mouse strains as platforms for the successful discovery and development of human therapeutic monoclonal antibodies. Curr Drug Discov Technol 11:74–84

    Article  CAS  PubMed  Google Scholar 

  49. Griffiths AD, Malmqvist M, Marks JD, Bye JM, Embleton MJ, McCafferty J, Baier M, Holliger KP, Gorick BD, Hughes-Jones NC (1993) Human anti-self antibodies with high specificity from phage display libraries. EMBO J 12:725–734

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Griffiths AD, Williams SC, Hartley O, Tomlinson IM, Waterhouse P, Crosby WL, Kontermann RE, Jones PT, Low NM, Allison TJ (1994) Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J 13:3245–3260. doi:8045255

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Grosse-Hovest L, Müller S, Minoia R, Wolf E, Zakhartchenko V, Wenigerkind H, Lassnig C, Besenfelder U, Müller M, Lytton SD et al (2004) Cloned transgenic farm animals produce a bispecific antibody for T cell-mediated tumor cell killing. Proc Natl Acad Sci U S A 101:6858–6863. doi:10.1073/pnas.0308487101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Groves MA, Osbourn JK (2005) Applications of ribosome display to antibody drug discovery. Expert Opin Biol Ther 5:125–135. doi:10.1517/14712598.5.1.125

    Article  CAS  PubMed  Google Scholar 

  53. Groves M, Lane S, Douthwaite J, Lowne D, Gareth Rees D, Edwards B, Jackson RH (2006) Affinity maturation of phage display antibody populations using ribosome display. J Immunol Methods 313:129–139. doi:10.1016/j.jim.2006.04.002

    Article  CAS  PubMed  Google Scholar 

  54. De Haard HJ, van Neer N, Reurs A, Hufton SE, Roovers RC, Henderikx P, de Bruïne AP, Arends JW, Hoogenboom HR (1999) A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J Biol Chem 274:18218–18230. doi:10373423

    Article  PubMed  Google Scholar 

  55. Hallborn J, Carlsson R (2002) Automated screening procedure for high-throughput generation of antibody fragments. BioTechniques (Suppl):30–7. doi:12514927

    Google Scholar 

  56. Hanes J, Jermutus L, Schaffitzel C, Plückthun A (1999) Comparison of Escherichia coli and rabbit reticulocyte ribosome display systems. FEBS Lett 450:105–110. doi:10.1016/S0014-5793(99)00475-5

    Article  CAS  PubMed  Google Scholar 

  57. Hanes J, Jermutus L, Weber-Bornhauser S, Bosshard HR, Plückthun A (1998) Ribosome display efficiently selects and evolves high-affinity antibodies in vitro from immune libraries. Proc Natl Acad Sci 95:14130–14135. doi:10.1073/pnas.95.24.14130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hanes J, Plückthun A (1997) In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci U S A 94:4937–4942. doi:9144168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hanes J, Schaffitzel C, Knappik A, Plückthun A (2000) Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat Biotechnol 18:1287–1292. doi:10.1038/82407

    Article  CAS  PubMed  Google Scholar 

  60. Han S-Y, Han Z-L, Lin Y, Zheng S-P (2010) Construction of high efficiency Pichia pastoris surface display system based on Flo1 protein*: construction of high efficiency Pichia pastoris surface display system based on Flo1 protein. Prog Biochem Biophys 37:200–207. doi:10.3724/SP.J.1206.2009.00484

    Article  Google Scholar 

  61. Hawlisch H, Müller M, Frank R, Bautsch W, Klos A, Köhl J (2001) Site-specific anti-C3a receptor single-chain antibodies selected by differential panning on cellulose sheets. Anal Biochem 293:142–145. doi:11373092

    Article  CAS  PubMed  Google Scholar 

  62. Hayashi N, Welschof M, Zewe M, Braunagel M, Dübel S, Breitling F, Little M (1994) Simultaneous mutagenesis of antibody CDR regions by overlap extension and PCR. Biotechniques 17:310, 312, 314–315. doi:7980934

    CAS  PubMed  Google Scholar 

  63. He M, Khan F (2005) Ribosome display: next-generation display technologies for production of antibodies in vitro. Expert Rev Proteomic 2:421–430. doi:10.1586/14789450.2.3.421

    Article  CAS  Google Scholar 

  64. He M, Menges M, Groves MAT, Corps E, Liu H, Brüggemann M, Taussig MJ (1999) Selection of a human anti-progesterone antibody fragment from a transgenic mouse library by ARM ribosome display. J Immunol Methods 231:105–117. doi:10.1016/S0022-1759(99)00144-1

    Article  CAS  PubMed  Google Scholar 

  65. He M, Taussig MJ (1997) Antibody-ribosome-mRNA (ARM) complexes as efficient selection particles for in vitro display and evolution of antibody combining sites. Nucleic Acids Res 25:5132–5134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. He M, Taussig MJ (2005) Ribosome display of antibodies: expression, specificity and recovery in a eukaryotic system. J Immunol Methods 297:73–82. doi:10.1016/j.jim.2004.11.022

    Article  CAS  PubMed  Google Scholar 

  67. Hoet RM, Cohen EH, Kent RB, Rookey K, Schoonbroodt S, Hogan S, Rem L, Frans N, Daukandt M, Pieters H et al (2005) Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nat Biotechnol 23:344–348. doi:nbt1067

    Article  CAS  PubMed  Google Scholar 

  68. Holt LJ, Herring C, Jespers LS, Woolven BP, Tomlinson IM (2003) Domain antibodies: proteins for therapy. Trends Biotechnol 21:484–490

    Article  CAS  PubMed  Google Scholar 

  69. Hoogenboom HR, Griffiths AD, Johnson KS, Chiswell DJ, Hudson P, Winter G (1991) Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res 19:4133–4137. doi:1908075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hudson PJ, Souriau C (2003) Engineered antibodies. Nat Med 9:129–134. doi:10.1038/nm0103-129

    Article  CAS  PubMed  Google Scholar 

  71. Huse WD, Sastry L, Iverson SA, Kang AS, Alting-Mees M, Burton DR, Benkovic SJ, Lerner RA (1989) Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 246:1275–1281. doi:2531466

    Article  CAS  PubMed  Google Scholar 

  72. Hust M, Dübel S (2004) Mating antibody phage display with proteomics. Trends Biotechnol 22:8–14

    Article  CAS  PubMed  Google Scholar 

  73. Hust M, Dübel S, Schirrmann T (2007) Selection of recombinant antibodies from antibody gene libraries. Methods Mol Biol 408:243–255

    Article  CAS  PubMed  Google Scholar 

  74. Hust M, Maiss E, Jacobsen H-J, Reinard T (2002) The production of a genus-specific recombinant antibody (scFv) using a recombinant potyvirus protease. J Virol Methods 106:225–233

    Article  CAS  PubMed  Google Scholar 

  75. Hust M, Meyer T, Voedisch B, Rülker T, Thie H, El-Ghezal A, Kirsch MI, Schütte M, Helmsing S, Meier D et al (2011) A human scFv antibody generation pipeline for proteome research. J Biotechnol 152:159–170. doi:10.1016/j.jbiotec.2010.09.945

    Article  CAS  PubMed  Google Scholar 

  76. Irving RA, Coia G, Roberts A, Nuttall SD, Hudson PJ (2001) Ribosome display and affinity maturation: from antibodies to single V-domains and steps towards cancer therapeutics. J Immunol Methods 248:31–45. doi:10.1016/S0022-1759(00)00341-0

    Article  CAS  PubMed  Google Scholar 

  77. Jackson AM, Boutell J, Cooley N, He M (2004) Cell-free protein synthesis for proteomics. Brief Funct Genomic Proteomic 2:308–319. doi:10.1093/bfgp/2.4.308

    Article  CAS  PubMed  Google Scholar 

  78. Jäger V, Büssow K, Wagner A, Weber S, Hust M, Frenzel A, Schirrmann T (2013) High level transient production of recombinant antibodies and antibody fusion proteins in HEK293 cells. BMC Biotechnol 13:52. doi:10.1186/1472-6750-13-52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Jakobovits A, Moore AL, Green LL, Vergara GJ, Maynard-Currie CE, Austin HA, Klapholz S (1993) Germ-line transmission and expression of a human-derived yeast artificial chromosome. Nature 362:255–258. doi:10.1038/362255a0

    Article  CAS  PubMed  Google Scholar 

  80. Jakobovits A, Vergara GJ, Kennedy JL, Hales JF, McGuinness RP, Casentini-Borocz DE, Brenner DG, Otten GR (1993) Analysis of homozygous mutant chimeric mice: deletion of the immunoglobulin heavy-chain joining region blocks B-cell development and antibody production. Proc Natl Acad Sci U S A 90:2551–2555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jermutus L, Honegger A, Schwesinger F, Hanes J, Plückthun A (2001) Tailoring in vitro evolution for protein affinity or stability. Proc Natl Acad Sci 98:75–80. doi:10.1073/pnas.98.1.75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Karimi R, Pavlov MY, Buckingham RH, Ehrenberg M (1999) Novel roles for classical factors at the interface between translation termination and initiation. Mol Cell 3:601–609. doi:10.1016/S1097-2765(00)80353-6

    Article  CAS  PubMed  Google Scholar 

  83. Keck Z, Xia J, Wang Y, Wang W, Krey T, Prentoe J, Carlsen T, Li AY-J, Patel AH, Lemon SM et al (2012) Human monoclonal antibodies to a novel cluster of conformational epitopes on HCV E2 with resistance to neutralization escape in a genotype 2a isolate. PLoS Pathog 8:e1002653. doi:10.1371/journal.ppat.1002653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kehoe JW, Velappan N, Walbolt M, Rasmussen J, King D, Lou J, Knopp K, Pavlik P, Marks JD, Bertozzi CR et al (2006) Using phage display to select antibodies recognizing post-translational modifications independently of sequence context. Mol Cell Proteomic MCP 5:2350–2363. doi:10.1074/mcp.M600314-MCP200

    Article  CAS  PubMed  Google Scholar 

  85. Keiler KC, Waller PRH, Sauer RT (1996) Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271:990–993. doi:10.1126/science.271.5251.990

    Article  CAS  PubMed  Google Scholar 

  86. Kieke MC, Cho BK, Boder ET, Kranz DM, Wittrup KD (1997) Isolation of anti-T cell receptor scFv mutants by yeast surface display. Protein Eng 10:1303–1310

    Article  CAS  PubMed  Google Scholar 

  87. Kim H-Y, Stojadinovic A, Izadjoo MJ (2014) Affinity maturation of monoclonal antibodies by multi-site-directed mutagenesis. Methods Mol Biol 1131:407–420. doi:10.1007/978-1-62703-992-5_24

    Article  CAS  PubMed  Google Scholar 

  88. Knappik A, Ge L, Honegger A, Pack P, Fischer M, Wellnhofer G, Hoess A, Wölle J, Plückthun A, Virnekäs B (2000) Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J Mol Biol 296:57–86. doi:10656818

    Article  CAS  PubMed  Google Scholar 

  89. Kobayashi N, Oyama H, Kato Y, Goto J, Söderlind E, Borrebaeck CAK (2010) Two-step in vitro antibody affinity maturation enables estradiol-17beta assays with more than 10-fold higher sensitivity. Anal Chem 82:1027–1038. doi:10.1021/ac902283n

    Article  CAS  PubMed  Google Scholar 

  90. Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497. doi:1172191

    Article  PubMed  Google Scholar 

  91. Koide A, Koide S (2012) Affinity maturation of single-domain antibodies by yeast surface display. Methods Mol Biol 911:431–443. doi:10.1007/978-1-61779-968-6_26

    CAS  PubMed  Google Scholar 

  92. Konthur Z, Hust M, Dübel S (2005) Perspectives for systematic in vitro antibody generation. Gene 364:19–29

    Article  CAS  PubMed  Google Scholar 

  93. De Kruif J, Logtenberg T (1996) Leucine zipper dimerized bivalent and bispecific scFv antibodies from a semi-synthetic antibody phage display library. J Biol Chem 271:7630–7634

    Article  PubMed  Google Scholar 

  94. Kuroiwa Y, Kasinathan P, Choi YJ, Naeem R, Tomizuka K, Sullivan EJ, Knott JG, Duteau A, Goldsby RA, Osborne BA et al (2002) Cloned transchromosomic calves producing human immunoglobulin. Nat Biotechnol 20:889–894. doi:10.1038/nbt727

    Article  CAS  PubMed  Google Scholar 

  95. Kuroiwa Y, Kasinathan P, Matsushita H, Sathiyaselan J, Sullivan EJ, Kakitani M, Tomizuka K, Ishida I, Robl JM (2004) Sequential targeting of the genes encoding immunoglobulin-mu and prion protein in cattle. Nat Genet 36:775–780. doi:10.1038/ng1373

    Article  CAS  PubMed  Google Scholar 

  96. Kuroiwa Y, Kasinathan P, Sathiyaseelan T, Jiao J, Matsushita H, Sathiyaseelan J, Wu H, Mellquist J, Hammitt M, Koster J et al (2009) Antigen-specific human polyclonal antibodies from hyperimmunized cattle. Nat Biotechnol 27:173–181. doi:10.1038/nbt.1521

    Article  CAS  PubMed  Google Scholar 

  97. Lee H-W, Lee S-H, Park K-J, Kim J-S, Kwon M-H, Kim Y-S (2006) Construction and characterization of a pseudo-immune human antibody library using yeast surface display. Biochem Biophys Res Commun 346:896–903. doi:10.1016/j.bbrc.2006.05.202

    Article  CAS  PubMed  Google Scholar 

  98. Lee M-S, Kwon M-H, Kim KH, Shin H-J, Park S, Kim H-I (2004) Selection of scFvs specific for HBV DNA polymerase using ribosome display. J Immunol Methods 284:147–157. doi:10.1016/j.jim.2003.10.009

    Article  CAS  PubMed  Google Scholar 

  99. Liang M, Dübel S, Li D, Queitsch I, Li W, Bautz EK (2001) Baculovirus expression cassette vectors for rapid production of complete human IgG from phage display selected antibody fragments. J Immunol Methods 247:119–130

    Article  CAS  PubMed  Google Scholar 

  100. Li F, Su P, Lin C, Li H, Cheng J, Shi D (2010) Ribosome display and selection of human anti-placental growth factor scFv derived from ovarian cancer patients. Protein Pept Lett 17:585–590

    Article  CAS  PubMed  Google Scholar 

  101. Lloyd C, Lowe D, Edwards B, Welsh F, Dilks T, Hardman C, Vaughan T (2009) Modelling the human immune response: performance of a 1011 human antibody repertoire against a broad panel of therapeutically relevant antigens. Protein Eng Des Sel PEDS 22:159–168. doi:10.1093/protein/gzn058

    Article  CAS  PubMed  Google Scholar 

  102. Lonberg N, Huszar D (1995) Human antibodies from transgenic mice. Int Rev Immunol 13:65–93. doi:7494109

    Article  CAS  PubMed  Google Scholar 

  103. Lou J, Geren I, Garcia-Rodriguez C, Forsyth CM, Wen W, Knopp K, Brown J, Smith T, Smith LA, Marks JD (2010) Affinity maturation of human botulinum neurotoxin antibodies by light chain shuffling via yeast mating. Protein Eng Des Sel 23:311–319. doi:10.1093/protein/gzq001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Macdonald LE, Karow M, Stevens S, Auerbach W, Poueymirou WT, Yasenchak J, Frendewey D, Valenzuela DM, Giallourakis CC, Alt FW et al (2014) Precise and in situ genetic humanization of 6 Mb of mouse immunoglobulin genes. Proc Natl Acad Sci 111:5147–5152. doi:10.1073/pnas.1323896111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Makeyev EV, Kolb VA, Spirin AS (1996) Enzymatic activity of the ribosome-bound nascent polypeptide. FEBS Lett 378:166–170. doi:10.1016/0014-5793(95)01438-1

    Article  CAS  PubMed  Google Scholar 

  106. Marcellini M, De Luca N, Riccioni T, Ciucci A, Orecchia A, Lacal PM, Ruffini F, Pesce M, Cianfarani F, Zambruno G et al (2006) Increased melanoma growth and metastasis spreading in mice overexpressing placenta growth factor. Am J Pathol 169:643–654. doi:10.2353/ajpath.2006.051041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Matsuura T, Plückthun A (2003) Selection based on the folding properties of proteins with ribosome display. FEBS Lett 539:24–28. doi:10.1016/S0014-5793(03)00178-9

    Article  CAS  PubMed  Google Scholar 

  108. Matsuura T, Yanagida H, Ushioda J, Urabe I, Yomo T (2007) Nascent chain, mRNA, and ribosome complexes generated by a pure translation system. Biochem Biophys Res Commun 352:372–377. doi:10.1016/j.bbrc.2006.11.050

    Article  CAS  PubMed  Google Scholar 

  109. Mattheakis LC, Bhatt RR, Dower WJ (1994) An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc Natl Acad Sci 91:9022–9026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. May R, Monk P, Cohen E, Manuel D, Dempsey F, Davis N, Dodd A, Corkill D, Woods J, Joberty-Candotti C et al (2012) Preclinical development of CAT-354, an IL-13 neutralizing antibody, for the treatment of severe uncontrolled asthma. Br J Pharmacol 166:177–193. doi:10.1111/j.1476-5381.2011.01659.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mazor Y, Van Blarcom T, Mabry R, Iverson BL, Georgiou G (2007) Isolation of engineered, full-length antibodies from libraries expressed in Escherichia coli. Nat Biotechnol 25:563–565. doi:nbt1296

    Article  CAS  PubMed  Google Scholar 

  112. McCafferty J, Griffiths AD, Winter G, Chiswell DJ (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348:552–554

    Article  CAS  PubMed  Google Scholar 

  113. Mendez MJ, Green LL, Corvalan JR, Jia XC, Maynard-Currie CE, Yang XD, Gallo ML, Louie DM, Lee DV, Erickson KL et al (1997) Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nat Genet 15:146–156. doi:10.1038/ng0297-146

    Article  CAS  PubMed  Google Scholar 

  114. Mendicino M, Ramsoondar J, Phelps C, Vaught T, Ball S, LeRoith T, Monahan J, Chen S, Dandro A, Boone J et al (2011) Generation of antibody- and B cell-deficient pigs by targeted disruption of the J-region gene segment of the heavy chain locus. Transgenic Res 20:625–641. doi:10.1007/s11248-010-9444-z

    Article  CAS  PubMed  Google Scholar 

  115. Moghaddam A, Borgen T, Stacy J, Kausmally L, Simonsen B, Marvik OJ, Brekke OH, Braunagel M (2003) Identification of scFv antibody fragments that specifically recognise the heroin metabolite 6-monoacetylmorphine but not morphine. J Immunol Methods 280:139–155. doi:12972195

    Article  CAS  PubMed  Google Scholar 

  116. Murphy AJ, Macdonald LE, Stevens S, Karow M, Dore AT, Pobursky K, Huang TT, Poueymirou WT, Esau L, Meola M et al (2014) Mice with megabase humanization of their immunoglobulin genes generate antibodies as efficiently as normal mice. Proc Natl Acad Sci U S A 111:5153–5158. doi:10.1073/pnas.1324022111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Muyldermans S (2001) Single domain camel antibodies: current status. J Biotechnol 74:277–302

    CAS  PubMed  Google Scholar 

  118. Nelson FK, Friedman SM, Smith GP (1981) Filamentous phage DNA cloning vectors: a noninfective mutant nonh a nonpolar deletion in gene III. Virology 108:338–350. doi:10.1016/0042-6822(81)90442-6

    Article  CAS  PubMed  Google Scholar 

  119. Ohashi H, Shimizu Y, Ying B-W, Ueda T (2007) Efficient protein selection based on ribosome display system with purified components. Biochem Biophys Res Commun 352:270–276. doi:10.1016/j.bbrc.2006.11.017

    Article  CAS  PubMed  Google Scholar 

  120. Oldenburg KR, Vo KT, Michaelis S, Paddon C (1997) Recombination-mediated PCR-directed plasmid construction in vivo in yeast. Nucleic Acids Res 25:451–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Orr BA, Carr LM, Wittrup KD, Roy EJ, Kranz DM (2003) Rapid method for measuring ScFv thermal stability by yeast surface display. Biotechnol Prog 19:631–638. doi:10.1021/bp0200797

    Article  CAS  PubMed  Google Scholar 

  122. Osborn MJ, Ma B, Avis S, Binnie A, Dilley J, Yang X, Lindquist K, Ménoret S, Iscache A-L, Ouisse L-H et al (1950) High-affinity IgG antibodies develop naturally in Ig-knockout rats carrying germline human IgH/Igκ/Igλ loci bearing the rat CH region. J Immunol 190:1481–1490. doi:10.4049/jimmunol.1203041

    Article  CAS  Google Scholar 

  123. Parmley SF, Smith GP (1988) Antibody-selectable filamentous fd phage vectors: affinity purification of target genes. Gene 73:305–318

    Article  CAS  PubMed  Google Scholar 

  124. Pelat T, Hust M, Hale M, Lefranc M-P, Dübel S, Thullier P (2009) Isolation of a human-like antibody fragment (scFv) that neutralizes ricin biological activity. BMC Biotechnol 9:60. doi:10.1186/1472-6750-9-60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Pelat T, Hust M, Laffly E, Condemine F, Bottex C, Vidal D, Lefranc M-P, Dübel S, Thullier P (2007) High-affinity, human antibody-like antibody fragment (single-chain variable fragment) neutralizing the lethal factor (LF) of Bacillus anthracis by inhibiting protective antigen-LF complex formation. Antimicrob Agents Chemother 51:2758–2764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Perruchini C, Pecorari F, Bourgeois J-P, Duyckaerts C, Rougeon F, Lafaye P (2009) Llama VHH antibody fragments against GFAP: better diffusion in fixed tissues than classical monoclonal antibodies. Acta Neuropathol (Berl) 118:685–695. doi:10.1007/s00401-009-0572-6

    Article  CAS  Google Scholar 

  127. Persson MA, Caothien RH, Burton DR (1991) Generation of diverse high-affinity human monoclonal antibodies by repertoire cloning. Proc Natl Acad Sci U S A 88:2432–2436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Peske F, Rodnina MV, Wintermeyer W (2005) Sequence of steps in ribosome recycling as defined by kinetic analysis. Mol Cell 18:403–412. doi:10.1016/j.molcel.2005.04.009

    Article  CAS  PubMed  Google Scholar 

  129. Pini A, Viti F, Santucci A, Carnemolla B, Zardi L, Neri P, Neri D (1998) Design and use of a phage display library. Human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel. J Biol Chem 273:21769–21776. doi:9705314

    Article  CAS  PubMed  Google Scholar 

  130. Piper E, Brightling C, Niven R, Oh C, Faggioni R, Poon K, She D, Kell C, May RD, Geba GP et al (2013) A phase II placebo-controlled study of tralokinumab in moderate-to-severe asthma. Eur Respir J 41:330–338. doi:10.1183/09031936.00223411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Piper E, Brightling C, Niven R, Oh C, Faggioni R, Poon K, She D, Kell C, May R, Geba G et al (2011) Phase 2 randomized, double-blind, placebo-controlled study of tralokinumab, an anti-IL-13 monoclonal antibody, in moderate to severe asthma. Eur Respir J 38:3425

    Google Scholar 

  132. Pisarev AV, Hellen CUT, Pestova TV (2007) Recycling of eukaryotic posttermination ribosomal complexes. Cell 131:286–299. doi:10.1016/j.cell.2007.08.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ponsel D, Neugebauer J, Ladetzki-Baehs K, Tissot K (2011) High affinity, developability and functional size: the holy grail of combinatorial antibody library generation. Molecules 16:3675–3700. doi:10.3390/molecules16053675

    Article  CAS  PubMed  Google Scholar 

  134. Poole E, Tate W (2000) Release factors and their role as decoding proteins: specificity and fidelity for termination of protein synthesis. Biochim Biophys Acta BBA Gene Struct Expr 1493:1–11. doi:10.1016/S0167-4781(00)00162-7

    Article  CAS  Google Scholar 

  135. Proba K, Wörn A, Honegger A, Plückthun A (1998) Antibody scFv fragments without disulfide bonds, made by molecular evolution. J Mol Biol 275:245–253. doi:10.1006/jmbi.1997.1457

    Article  CAS  PubMed  Google Scholar 

  136. Rakestraw JA, Aird D, Aha PM, Baynes BM, Lipovsek D (2011) Secretion-and-capture cell-surface display for selection of target-binding proteins. Protein Eng Des Sel 24:525–530. doi:10.1093/protein/gzr008

    Article  CAS  PubMed  Google Scholar 

  137. Rakonjac J, Jovanovic G, Model P (1997) Filamentous phage infection-mediated gene expression: construction and propagation of the gIII deletion mutant helper phage R408d3. Gene 198:99–103

    Article  CAS  PubMed  Google Scholar 

  138. Ramachandiran V, Kramer G, Hardesty B (2000) Expression of different coding sequences in cell-free bacterial and eukaryotic systems indicates translational pausing on Escherichia coli ribosomes. FEBS Lett 482:185–188. doi:10.1016/S0014-5793(00)02017-2

    Article  CAS  PubMed  Google Scholar 

  139. Ramsoondar J, Mendicino M, Phelps C, Vaught T, Ball S, Monahan J, Chen S, Dandro A, Boone J, Jobst P et al (2011) Targeted disruption of the porcine immunoglobulin kappa light chain locus. Transgenic Res 20:643–653. doi:10.1007/s11248-010-9445-y

    Article  CAS  PubMed  Google Scholar 

  140. Richt JA, Kasinathan P, Hamir AN, Castilla J, Sathiyaseelan T, Vargas F, Sathiyaseelan J, Wu H, Matsushita H, Koster J et al (2007) Production of cattle lacking prion protein. Nat Biotechnol 25:132–138. doi:10.1038/nbt1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Robin G, Martineau P (2012) Synthetic customized scFv libraries. Methods Mol Biol 907:109–122. doi:10.1007/978-1-61779-974-7_6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Rondot S, Koch J, Breitling F, Dübel S (2001) A helper phage to improve single-chain antibody presentation in phage display. Nat Biotechnol 19:75–78. doi:10.1038/83567

    Article  CAS  PubMed  Google Scholar 

  143. Rothe A, Nathanielsz A, Hosse RJ, Oberhäuser F, Strandmann EP, Engert A, Hudson PJ, Power BE (2007) Selection of human anti-CD28 scFvs from a T-NHL related scFv library using ribosome display. J Biotechnol 130:448–454. doi:10.1016/j.jbiotec.2007.05.012

    Article  CAS  PubMed  Google Scholar 

  144. Rothe C, Urlinger S, Löhning C, Prassler J, Stark Y, Jäger U, Hubner B, Bardroff M, Pradel I, Boss M et al (2008) The human combinatorial antibody library HuCAL GOLD combines diversification of all six CDRs according to the natural immune system with a novel display method for efficient selection of high-affinity antibodies. J Mol Biol 376:1182–1200. doi:10.1016/j.jmb.2007.12.018

    Article  CAS  PubMed  Google Scholar 

  145. Ryabova LA, Desplancq D, Spirin AS, Plückthun A (1997) Functional antibody production using cell-free translation: effects of protein disulfide isomerase and chaperones. Nat Biotechnol 15:79–84. doi:10.1038/nbt0197-79

    Article  CAS  PubMed  Google Scholar 

  146. Ryckaert S, Pardon E, Steyaert J, Callewaert N (2010) Isolation of antigen-binding camelid heavy chain antibody fragments (nanobodies) from an immune library displayed on the surface of Pichia pastoris. J Biotechnol 145:93–98. doi:10.1016/j.jbiotec.2009.10.010

    Article  CAS  PubMed  Google Scholar 

  147. Schaffitzel C, Hanes J, Jermutus L, Plückthun A (1999) Ribosome display: an in vitro method for selection and evolution of antibodies from libraries. J Immunol Methods 231:119–135

    Article  CAS  PubMed  Google Scholar 

  148. Schimmele B, Gräfe N, Plückthun A (2005) Ribosome display of mammalian receptor domains. Protein Eng Des Sel 18:285–294. doi:10.1093/protein/gzi030

    Article  CAS  PubMed  Google Scholar 

  149. Schirrmann T, Al-Halabi L, Dübel S, Hust M (2008) Production systems for recombinant antibodies. Front Biosci 13:4576–4594. doi:3024

    Article  CAS  PubMed  Google Scholar 

  150. Schirrmann T, Meyer T, Schütte M, Frenzel A, Hust M (2011) Phage display for the generation of antibodies for proteome research, diagnostics and therapy. Mol Basel Switz 16:412–426. doi:10.3390/molecules16010412

    CAS  Google Scholar 

  151. Schreuder MP, Brekelmans S, van den Ende H, Klis FM (1993) Targeting of a heterologous protein to the cell wall of Saccharomyces cerevisiae. Yeast Chichester Engl 9:399–409. doi:10.1002/yea.320090410

    Article  CAS  Google Scholar 

  152. Shaheen HH, Prinz B, Chen M-T, Pavoor T, Lin S, Houston-Cummings NR, Moore R, Stadheim TA, Zha D (2013) A dual-mode surface display system for the maturation and production of monoclonal antibodies in glyco-engineered Pichia pastoris. PLoS ONE 8:e70190. doi:10.1371/journal.pone.0070190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T, Nishikawa K, Ueda T (2001) Cell-free translation reconstituted with purified components. Nat Biotechnol 19:751–755. doi:10.1038/90802

    Article  CAS  PubMed  Google Scholar 

  154. Simmons LC, Reilly D, Klimowski L, Raju TS, Meng G, Sims P, Hong K, Shields RL, Damico LA, Rancatore P et al (2002) Expression of full-length immunoglobulins in Escherichia coli: rapid and efficient production of aglycosylated antibodies. J Immunol Methods 263:133–147. doi:12009210

    Article  CAS  PubMed  Google Scholar 

  155. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317

    Article  CAS  PubMed  Google Scholar 

  156. Soltes G, Hust M, Ng KKY, Bansal A, Field J, Stewart DIH, Dübel S, Cha S, Wiersma EJ (2007) On the influence of vector design on antibody phage display. J Biotechnol 127:626–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Stafford RL, Matsumoto ML, Yin G, Cai Q, Fung JJ, Stephenson H, Gill A, You M, Lin S-H, Wang WD et al (2014) In vitro Fab display: a cell-free system for IgG discovery. Protein Eng Des Sel 27:97–109. doi:10.1093/protein/gzu002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Steinwand M, Droste P, Frenzel A, Hust M, Dübel S, Schirrmann T (2014) The influence of antibody fragment format on phage display based affinity maturation of IgG. MAbs 6:204–218. doi:10.4161/mabs.27227

    Article  PubMed  PubMed Central  Google Scholar 

  159. Stemmer WPC (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370:389–391. doi:10.1038/370389a0

    Article  CAS  PubMed  Google Scholar 

  160. Sumida T, Doi N, Yanagawa H (2009) Bicistronic DNA display for in vitro selection of Fab fragments. Nucleic Acids Res 37:e147–e147. doi:10.1093/nar/gkp776

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Sun L, Lu X, Li C, Wang M, Liu Q, Li Z, Hu X, Li J, Liu F, Li Q et al (2009) Generation, characterization and epitope mapping of two neutralizing and protective human recombinant antibodies against influenza A H5N1 viruses. PLoS ONE 4:e5476. doi:10.1371/journal.pone.0005476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Sun Y, Ning B, Liu M, Gao X, Fan X, Liu J, Gao Z (2012) Selection of diethylstilbestrol-specific single-chain antibodies from a non-immunized mouse ribosome display library. PLoS ONE 7:e33186. doi:10.1371/journal.pone.0033186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Takahashi F, Ebihara T, Mie M, Yanagida Y, Endo Y, Kobatake E, Aizawa M (2002) Ribosome display for selection of active dihydrofolate reductase mutants using immobilized methotrexate on agarose beads. FEBS Lett 514:106–110. doi:10.1016/S0014-5793(02)02334-7

    Article  CAS  PubMed  Google Scholar 

  164. Tang J, Wang L, Markiv A, Jeffs SA, Dreja H, McKnight A, He M, Kang AS (2012) Accessing of recombinant human monoclonal antibodies from patient libraries by eukaryotic ribosome display. Hum Antib 21:1–11. doi:10.3233/HAB-2011-0257

    CAS  Google Scholar 

  165. Tanino T, Noguchi E, Kimura S, Sahara H, Hata Y, Fukuda H, Kondo A (2007) Effect of cultivation conditions on cell-surface display of Flo1 fusion protein using sake yeast. Biochem Eng J 33:232–237. doi:10.1016/j.bej.2006.11.001

    Article  CAS  Google Scholar 

  166. Thie H, Toleikis L, Li J, von Wasielewski R, Bastert G, Schirrmann T, Esteves IT, Behrens CK, Fournes B, Fournier N et al (2011) Rise and fall of an anti-MUC1 specific antibody. PLoS ONE 6:e15921. doi:10.1371/journal.pone.0015921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Thie H, Voedisch B, Dübel S, Hust M, Schirrmann T (2009) Affinity maturation by phage display. Methods Mol Biol 525:309–322. doi:10.1007/978-1-59745-554-1_16

    Article  CAS  PubMed  Google Scholar 

  168. Thom G, Cockroft AC, Buchanan AG, Candotti CJ, Cohen ES, Lowne D, Monk P, Shorrock-Hart CP, Jermutus L, Minter RR (2006) Probing a protein–protein interaction by in vitro evolution. Proc Natl Acad Sci 103:7619–7624. doi:10.1073/pnas.0602341103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Tiller T, Schuster I, Deppe D, Siegers K, Strohner R, Herrmann T, Berenguer M, Poujol D, Stehle J, Stark Y et al (2013) A fully synthetic human Fab antibody library based on fixed VH/VL framework pairings with favorable biophysical properties. MAbs 5:445–470. doi:10.4161/mabs.24218

    Article  PubMed  PubMed Central  Google Scholar 

  170. Tillotson BJ, Cho YK, Shusta EV (2013) Cells and cell lysates: a direct approach for engineering antibodies against membrane proteins using yeast surface display. Methods 60:27–37. doi:10.1016/j.ymeth.2012.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Tkaczyk C, Hua L, Varkey R, Shi Y, Dettinger L, Woods R, Barnes A, MacGill RS, Wilson S, Chowdhury P et al (2012) Identification of anti-alpha toxin monoclonal antibodies that reduce the severity of Staphylococcus aureus dermonecrosis and exhibit a correlation between affinity and potency. Clin Vaccine Immunol CVI 19:377–385. doi:10.1128/CVI.05589-11

    Article  CAS  PubMed  Google Scholar 

  172. Tomizuka K, Shinohara T, Yoshida H, Uejima H, Ohguma A, Tanaka S, Sato K, Oshimura M, Ishida I (2000) Double trans-chromosomic mice: maintenance of two individual human chromosome fragments containing Ig heavy and kappa loci and expression of fully human antibodies. Proc Natl Acad Sci U S A 97:722–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Traxlmayr MW, Obinger C (2012) Directed evolution of proteins for increased stability and expression using yeast display. Arch Biochem Biophys 526:174–180. doi:10.1016/j.abb.2012.04.022

    Article  CAS  PubMed  Google Scholar 

  174. Trott M, Weiβ S, Antoni S, Koch J, von Briesen H, Hust M, Dietrich U (2014) Functional characterization of two scFv-Fc antibodies from an HIV controller selected on soluble HIV-1 Env complexes: a neutralizing V3- and a trimer-specific gp41 antibody. PLoS ONE 9:e97478. doi:10.1371/journal.pone.0097478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Van den Beucken T, Pieters H, Steukers M, van der Vaart M, Ladner RC, Hoogenboom HR, Hufton SE (2003) Affinity maturation of Fab antibody fragments by fluorescent-activated cell sorting of yeast-displayed libraries. FEBS Lett 546:288–294. doi:10.1016/S0014-5793(03)00602-1

    Article  PubMed  CAS  Google Scholar 

  176. Velikovsky CA, Deng L, Tasumi S, Iyer LM, Kerzic MC, Aravind L, Pancer Z, Mariuzza RA (2009) Structure of a lamprey variable lymphocyte receptor in complex with a protein antigen. Nat Struct 38 Mol Biol 16:725–730. doi:10.1038/nsmb.1619

    Article  CAS  Google Scholar 

  177. Von Behring E, Kitasato S (1890) Über das Zustandekommen der Diphtherie-Immunität und der Tetanus-Immunität bei Thieren. Dtsch Med Wochenzeitschrift 16:1113–1114

    Article  Google Scholar 

  178. Walker LM, Bowley DR, Burton DR (2009) Efficient recovery of high-affinity antibodies from a single-chain Fab yeast display library. J Mol Biol 389:365–375. doi:10.1016/j.jmb.2009.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Wang KC, Patel CA, Wang J, Wang J, Wang X, Luo PP, Zhong P (2010) Yeast surface display of antibodies via the heterodimeric interaction of two coiled-coil adapters. J Immunol Methods 354:11–19. doi:10.1016/j.jim.2010.01.006

    Article  CAS  PubMed  Google Scholar 

  180. Wang Q, Li L, Chen M, Qi Q, Wang PG (2008) Construction of a novel Pichia pastoris cell-surface display system based on the cell wall protein Pir1. Curr Microbiol 56:352–357. doi:10.1007/s00284-007-9089-1

    Article  CAS  PubMed  Google Scholar 

  181. Wang X-B, Zhou B, Yin C-C, Lin Q, Huang H-L (2004) A new approach for rapidly reshaping single-chain antibody in vitro by combining DNA shuffling with ribosome display. J Biochem (Tokyo) 136:19–28. doi:10.1093/jb/mvh083

    Article  CAS  Google Scholar 

  182. Wang XX, Cho YK, Shusta EV (2007) Mining a yeast library for brain endothelial cell-binding antibodies. Nat Methods 4:143–145. doi:10.1038/nmeth993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Wang XX, Shusta EV (2005) The use of scFv-displaying yeast in mammalian cell surface selections. J Immunol Methods 304:30–42. doi:10.1016/j.jim.2005.05.006

    Article  CAS  PubMed  Google Scholar 

  184. Wang Z, Mathias A, Stavrou S, Neville DM (2005) A new yeast display vector permitting free scFv amino termini can augment ligand binding affinities. Protein Eng Des Sel 18:337–343. doi:10.1093/protein/gzi036

    Article  PubMed  CAS  Google Scholar 

  185. Weaver-Feldhaus JM, Lou J, Coleman JR, Siegel RW, Marks JD, Feldhaus MJ (2004) Yeast mating for combinatorial Fab library generation and surface display. FEBS Lett 564:24–34. doi:10.1016/S0014-5793(04)00309-6

    Article  CAS  PubMed  Google Scholar 

  186. Weaver-Feldhaus JM, Miller KD, Feldhaus MJ, Siegel RW (2005) Directed evolution for the development of conformation-specific affinity reagents using yeast display. Protein Eng Des Sel PEDS 18:527–536. doi:10.1093/protein/gzi060

    Article  CAS  PubMed  Google Scholar 

  187. Wills-Karp M, Luyimbazi J, Xu X, Schofield B, Neben TY, Karp CL, Donaldson DD (1998) Interleukin-13: central mediator of allergic asthma. Science 282:2258–2261. doi:10.1126/science.282.5397.2258

    Article  CAS  PubMed  Google Scholar 

  188. Winter G, Milstein C (1991) Man-made antibodies. Nature 349:293–299. doi:1987490

    Article  CAS  PubMed  Google Scholar 

  189. Yan X-H, Xu Z-R (2005) Production of human single-chain variable fragment (scFv) antibody specific for digoxin by ribosome display. Indian J Biochem Biophys 42:350–357

    CAS  PubMed  Google Scholar 

  190. Yau KYF, Groves MAT, Li S, Sheedy C, Lee H, Tanha J, MacKenzie CR, Jermutus L, Hall JC (2003) Selection of hapten-specific single-domain antibodies from a non-immunized llama ribosome display library. J Immunol Methods 281:161–175. doi:10.1016/j.jim.2003.07.011

    Article  CAS  PubMed  Google Scholar 

  191. Yeung YA, Wittrup KD (2002) Quantitative screening of yeast surface-displayed polypeptide libraries by magnetic bead capture. Biotechnol Prog 18:212–220. doi:10.1021/bp010186l

    Article  CAS  PubMed  Google Scholar 

  192. Yim SS, Bang HB, Kim YH, Lee YJ, Jeong GM, Jeong KJ (2014) Rapid isolation of antibody from a synthetic human antibody library by repeated Fluorescence-Activated Cell Sorting (FACS). PLoS ONE 9:e108225. doi:10.1371/journal.pone.0108225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Ying B-W, Taguchi H, Ueda H, Ueda T (2004) Chaperone-assisted folding of a single-chain antibody in a reconstituted translation system. Biochem Biophys Res Commun 320:1359–1364. doi:10.1016/j.bbrc.2004.06.095

    Article  CAS  PubMed  Google Scholar 

  194. Zaccolo M, Williams DM, Brown DM, Gherardi E (1996) An approach to random mutagenesis of DNA using mixtures of triphosphate derivatives of nucleoside analogues. J Mol Biol 255:589–603. doi:10.1006/jmbi.1996.0049

    Article  CAS  PubMed  Google Scholar 

  195. Zahnd C, Spinelli S, Luginbühl B, Amstutz P, Cambillau C, Plückthun A (2004) Directed in vitro evolution and crystallographic analysis of a peptide-binding single chain antibody fragment (scFv) with low picomolar affinity. J Biol Chem 279:18870–18877. doi:10.1074/jbc.M309169200

    Article  CAS  PubMed  Google Scholar 

  196. Zhao L, Ning B, Bai J, Chen X, Peng Y, Sun S, Li G, Fan X, Liu Y, Liu J et al (2013) Selection of bisphenol A – single-chain antibodies from a non-immunized mouse library by ribosome display. Anal Biochem. doi:10.1016/j.ab.2013.10.037

    Google Scholar 

  197. Zhao X-L, Chen W-Q, Yang Z-H, Li J-M, Zhang S-J, Tian L-F (2009) Selection and affinity maturation of human antibodies against rabies virus from a scFv gene library using ribosome display. J Biotechnol 144:253–258. doi:10.1016/j.jbiotec.2009.09.022

    Article  CAS  PubMed  Google Scholar 

  198. Zielonka S, Weber N, Becker S, Doerner A, Christmann A, Christmann C, Uth C, Fritz J, Schäfer E, Steinmann B et al (2014) Shark attack: high affinity binding proteins derived from shark vNAR domains by stepwise in vitro affinity maturation. J Biotechnol 191:236–245. doi:10.1016/j.jbiotec.2014.04.023

    Article  CAS  PubMed  Google Scholar 

  199. Zou YR, Takeda S, Rajewsky K (1993) Gene targeting in the Ig kappa locus: efficient generation of lambda chain-expressing B cells, independent of gene rearrangements in Ig kappa. EMBO J 12:811–820

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support by the FP7 collaborative projects AffinityProteome (contract 222635) and AFFINOMICS (contract 241481). (contract 222635) and AFFINOMICS (contract 241481). Parts of this article are updated and revised version of [39, 40, 150].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Frenzel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tomszak, F., Weber, S., Zantow, J., Schirrmann, T., Hust, M., Frenzel, A. (2016). Selection of Recombinant Human Antibodies. In: Böldicke, T. (eds) Protein Targeting Compounds. Advances in Experimental Medicine and Biology, vol 917. Springer, Cham. https://doi.org/10.1007/978-3-319-32805-8_3

Download citation

Publish with us

Policies and ethics