Skip to main content

Advertisement

Log in

Targeted disruption of the porcine immunoglobulin kappa light chain locus

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Inactivation of the endogenous pig immunoglobulin (Ig) loci, and replacement with their human counterparts, would produce animals that could alleviate both the supply and specificity issues of therapeutic human polyclonal antibodies (PAbs). Platform genetics are being developed in pigs that have all endogenous Ig loci inactivated and replaced by human counterparts, in order to address this unmet clinical need. This report describes the deletion of the porcine kappa (κ) light chain constant (Cκ) region in pig primary fetal fibroblasts (PPFFs) using gene targeting technology, and the generation of live animals from these cells via somatic cell nuclear transfer (SCNT) cloning. There are only two other targeted loci previously published in swine, and this is the first report of a targeted disruption of an Ig light chain locus in a livestock species. Pigs with one targeted Cκ allele (heterozygous knockout or ±) were bred together to generate Cκ homozygous knockout (−/−) animals. Peripheral blood mononuclear cells (PBMCs) and mesenteric lymph nodes (MLNs) from Cκ −/− pigs were devoid of κ-containing Igs. Furthermore, there was an increase in lambda (λ) light chain expression when compared to that of wild-type littermates (Cκ +/+). Targeted inactivation of the Ig heavy chain locus has also been achieved and work is underway to inactivate the pig lambda light chain locus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Brown JP, Wei W, Sedivy JM (1997) Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277:831–834

    Article  PubMed  CAS  Google Scholar 

  • Butler JE, Brown WR (1994) The immunoglobulins and immunoglobulin genes of swine. Vet Immunol Immunopathol 43:5–12

    Article  PubMed  CAS  Google Scholar 

  • Butler JE, Sun J, Weber P, Ford SP, Rehakova Z, Sinkora J, Lager K (2001) Antibody repertoire development in fetal and neonatal piglets. IV. Switch recombination, primarily in fetal thymus, occurs independent of environmental antigen and is only weakly associated with repertoire diversification. J Immunol 167:3239–3249

    PubMed  CAS  Google Scholar 

  • Butler JE, Wertz N, Sun J, Wang H, Chardon P, Piumi F, Wells K (2004) Antibody repertoire development in fetal and neonatal pigs. VII. Characterization of the preimmune kappa light chain repertoire. J Immunol 173:6794–6805

    PubMed  CAS  Google Scholar 

  • Butler JE, Wertz N, Sun J, Wang H, Lemke C, Chardon P, Piumi F, Wells K (2005) The pre-immune variable kappa repertoire of swine is selectively generated from certain subfamilies of Vkappa2 and one Jkappa gene. Vet Immunol Immunopathol 108:127–137

    Article  PubMed  CAS  Google Scholar 

  • Butler JE, Lager KM, Splichal I, Francis D, Kacskovics I, Sinkora M, Wertz N, Sun J, Zhao Y, Brown WR, DeWald R, Dierks S, Muyldermans S, Lunney JK, McCray PB, Rogers CS, Welsh MJ, Navarro P, Klobasa F, Habe F, Ramsoondar J (2009a) The piglet as a model for B cell and immune system development. Vet Immunol Immunopathol 128:147–170

    Article  PubMed  CAS  Google Scholar 

  • Butler JE, Zhao Y, Sinkora M, Wertz N, Kacskovics I (2009b) Immunoglobulins, antibody repertoire and B cell development. Dev Comp Immunol 33:321–333

    Article  PubMed  CAS  Google Scholar 

  • Cohn M, Langman RE (1990) The protection: the unit of humoral immunity selected by evolution. Immunol Rev 115:11–147

    Article  PubMed  CAS  Google Scholar 

  • Dai Y, Vaught TD, Boone J, Chen SH, Phelps CJ, Ball S, Monahan JA, Jobst PM, McCreath KJ, Lamborn AE, Cowell-Lucero JL, Wells KD, Colman A, Polejaeva IA, Ayares DL (2002) Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs. Nat Biotechnol 20:251–255

    Article  PubMed  CAS  Google Scholar 

  • Eguchi-Ogawa T, Wertz N, Sun XZ, Puimi F, Uenishi H, Wells K, Chardon P, Tobin GJ, Butler JE (2010) Antibody repertoire development in fetal and neonatal piglets. XI. The relationship of variable heavy chain gene usage and the genomic organization of the variable heavy chain locus. J Immunol 184:3734–3742

    Article  PubMed  CAS  Google Scholar 

  • Hood L, Gray WR, Sanders BG, Dreyer WJ (1967) Light chain evolution. Cold Spring Harb Symp Quant Biol 32:133–146

    CAS  Google Scholar 

  • Ishida I, Tomizuka K, Yoshida H, Tahara T, Takahashi N, Ohguma A, Tanaka S, Umehashi M, Maeda H, Nozaki C, Halk E, Lonberg N (2002) Production of human monoclonal and polyclonal antibodies in TransChromo animals. Cloning Stem Cells 4:91–102

    Article  PubMed  CAS  Google Scholar 

  • Jung D, Giallourakis C, Mostoslavsky R, Alt FW (2006) Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus. Annu Rev Immunol 24:541–570

    Article  PubMed  CAS  Google Scholar 

  • Kuroiwa Y, Kasinathan P, Choi YJ, Naeem R, Tomizuka K, Sullivan EJ, Knott JG, Duteau A, Goldsby RA, Osborne BA, Ishida I, Robl JM (2002) Cloned transchromosomic calves producing human immunoglobulin. Nat Biotechnol 20:889–894

    Article  PubMed  CAS  Google Scholar 

  • Kuroiwa Y, Kasinathan P, Matsushita H, Sathiyaselan J, Sullivan EJ, Kakitani M, Tomizuka K, Ishida I, Robl JM (2004) Sequential targeting of the genes encoding immunoglobulin-mu and prion protein in cattle. Nat Genet 36:775–780

    Article  PubMed  CAS  Google Scholar 

  • Kuroiwa Y, Kasinathan P, Sathiyaseelan T, Jiao JA, Matsushita H, Sathiyaseelan J, Wu H, Mellquist J, Hammitt M, Koster J, Kamoda S, Tachibana K, Ishida I, Robl JM (2009) Antigen-specific human polyclonal antibodies from hyperimmunized cattle. Nat Biotechnol 27:173–181

    Article  PubMed  CAS  Google Scholar 

  • Lai L, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL, Im GS, Samuel M, Bonk A, Rieke A, Day BN, Murphy CN, Carter DB, Hawley RJ, Prather RS (2002) Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295:1089–1092

    Article  PubMed  CAS  Google Scholar 

  • Lewis S, Rosenberg N, Alt F, Baltimore D (1982) Continuing kappa-gene rearrangement in a cell line transformed by Abelson murine leukemia virus. Cell 30:807–816

    Article  PubMed  CAS  Google Scholar 

  • Lonberg N (2005) Human antibodies from transgenic animals. Nat Biotechnol 23:1117–1125

    Article  PubMed  CAS  Google Scholar 

  • McCreath KJ, Howcroft J, Campbell KH, Colman A, Schnieke AE, Kind AJ (2000) Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 405:1066–1069

    Article  PubMed  CAS  Google Scholar 

  • Mendez MJ, Green LL, Corvalan JR, Jia XC, Maynard-Currie CE, Yang XD, Gallo ML, Louie DM, Lee DV, Erickson KL, Luna J, Roy CM, Abderrahim H, Kirschenbaum F, Noguchi M, Smith DH, Fukushima A, Hales JF, Klapholz S, Finer MH, Davis CG, Zsebo KM, Jakobovits A (1997) Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nat Genet 15:146–156

    Article  PubMed  CAS  Google Scholar 

  • Phelps CJ, Koike C, Vaught TD, Boone J, Wells KD, Chen SH, Ball S, Specht SM, Polejaeva IA, Monahan JA, Jobst PM, Sharma SB, Lamborn AE, Garst AS, Moore M, Demetris AJ, Rudert WA, Bottino R, Bertera S, Trucco M, Starzl TE, Dai Y, Ayares DL (2003) Production of alpha 1,3-galactosyltransferase-deficient pigs. Science 299:411–414

    Article  PubMed  CAS  Google Scholar 

  • Ramsoondar JJ, Machaty Z, Costa C, Williams BL, Fodor WL, Bondioli KR (2003) Production of alpha 1,3-galactosyltransferase-knockout cloned pigs expressing human alpha 1,2-fucosylosyltransferase. Biol Reprod 69:437–445

    Article  PubMed  CAS  Google Scholar 

  • Ramsoondar J, Vaught T, Ball S, Mendicino M, Monahan J, Jobst P, Vance A, Duncan J, Wells K, Ayares D (2009) Production of transgenic pigs that express porcine endogenous retrovirus small interfering RNAs. Xenotransplantation 16:164–180

    Article  PubMed  Google Scholar 

  • Robl JM, Wang Z, Kasinathan P, Kuroiwa Y (2007) Transgenic animal production and animal biotechnology. Theriogenology 67:127–133

    Article  PubMed  CAS  Google Scholar 

  • Rogers CS, Hao Y, Rokhlina T, Samuel M, Stoltz DA, Li Y, Petroff E, Vermeer DW, Kabel AC, Yan Z, Spate L, Wax D, Murphy CN, Rieke A, Whitworth K, Linville ML, Korte SW, Engelhardt JF, Welsh MJ, Prather RS (2008) Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. J Clin Invest 118:1571–1577

    Article  PubMed  CAS  Google Scholar 

  • Sinkora M, Butler JE (2009) The ontogeny of the porcine immune system. Dev Comp Immunol 33:273–283

    Article  PubMed  CAS  Google Scholar 

  • Sinkora J, Rehakova Z, Samankova L, Haverson K, Butler JE, Zwart R, Boersma W (2001) Characterization of monoclonal antibodies recognizing immunoglobulin kappa and lambda chains in pigs by flow cytometry. Vet Immunol Immunopathol 80:79–91

    Article  PubMed  CAS  Google Scholar 

  • Takeda S, Zou YR, Bluethmann H, Kitamura D, Muller U, Rajewsky K (1993) Deletion of the immunoglobulin kappa chain intron enhancer abolishes kappa chain gene rearrangement in cis but not lambda chain gene rearrangement in trans. EMBO J 12:2329–2336

    PubMed  CAS  Google Scholar 

  • Zou YR, Takeda S, Rajewsky K (1993) Gene targeting in the Ig kappa locus: efficient generation of lambda chain-expressing B cells, independent of gene rearrangements in Ig kappa. EMBO J 12:811–820

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank J. MacPherson, B. Gragg, W. Lucero, T. Akers, H. Bishop, and C. Steger for technical contributions to embryo transfer, animal husbandry, and sample procurement; staff at the Virginia Maryland Regional Veterinary College for physical examination of piglets, necropsy report consulting, and histology processing, especially K. Gragg, A. Richardson, and J. Jones for administrative assistance. This work was supported in part by grants from the Defense Advanced Research Projects Agency (DARPA) and the National Institute of Standards and Technology’s (NIST) Advanced Technology Program (ATP) and the National Institutes of Health. We also acknowledge the National Science Foundation (NSF) and National Porkboard for their support in this research.

Competing Interests Statement

J.R., M.M., C.P., T.V., S.B., Y.D., J.M., S.C., A.D., J.Boone, P.J., A.V., I.P., K.W., and D.A. are or were employees of Revivicor, Inc.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Ayares or K. Wells.

Additional information

Ramsoondar and Mendicino contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramsoondar, J., Mendicino, M., Phelps, C. et al. Targeted disruption of the porcine immunoglobulin kappa light chain locus. Transgenic Res 20, 643–653 (2011). https://doi.org/10.1007/s11248-010-9445-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-010-9445-y

Navigation