Skip to main content

Reproductive Biology

  • Chapter
  • First Online:
The Kiwifruit Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Although dioecy in Actinidia creates difficulties for plant breeders, such as determining the breeding values for fruit characters of males, there is a counterbalancing huge fecundity, with multi-carpellate, multi-ovulate pistillate flowers, which, when adequately pollinized, result in fruits containing numerous seeds. A single cross can generate a very large family. It would appear that, with dioecy, polyploidy and reticulate evolution, Actinidia has successfully increased resource availability to each gender and, with obligate outcrossing, has maintained extensive genetic diversity. Its adaptation to various natural habitats and its mode of growth have allowed the genus to make its fleshy, flavoursome fruits available to many seed dispersers, while its numerous seeds ensured colonization of wider habitats. The challenge for breeders, geneticists and horticulturalists is to domesticate germplasm recently propagated from wild populations and move selection away from that provided by abiotic and biotic agents in natural habitats towards selection of cultivars producing products widely appreciated and valued by human consumers. Here we review the current state of knowledge about the reproductive biology of the genus Actinidia, in particular of A. chinensis var. chinensis and A. chinensis var. deliciosa, collectively known as kiwifruit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akagi T, Henry IM, Tao R, Comai L (2014) A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons. Science 346(6209):646–650

    Article  CAS  PubMed  Google Scholar 

  • d’Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Simon M et al (2008) Mutations in AtPS1 (Arabidopsis parallel spindle 1) lead to the production of diploid pollen grains. PLoS Genet 4:e1000274

    Google Scholar 

  • d’Erfurth I, Cromer L, Jolivet S, Girard C, Horlow C, Sun Y et al (2010) The cyclin-A CYCA1; 2/TAM is required for the meiosis I to meiosis II transition and cooperates with OSD1 for the prophase to first meiotic division transition. PLoS Genet 6:e1000989

    Google Scholar 

  • Bawa KS (1980) Evolution of dioecy in flowering plants. Annu Rev Ecol Syst 11:15–39

    Article  Google Scholar 

  • Biasi R, Falasca G, Speranza A, De Stradis A, Scoccianti V, Franceschetti M et al (2001) Biochemical and ultrastructural features related to male sterility in the dioecious species Actinidia deliciosa. Plant Physiol Biochem 39:395–406

    Article  CAS  Google Scholar 

  • Bickel AM, Freeman DC (1993) Effects of pollen vector and plant geometry on floral sex ratio in monoecious plants. Am Midl Nat 130(2):239–247

    Article  Google Scholar 

  • Bretagnolle F, Thompson JD (1995) Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytol 129:1–22

    Article  Google Scholar 

  • Brownfield L, Köhler C (2011) Unreduced gamete formation in plants: mechanisms and prospects. J Exp Bot 62(5):1659–1668

    Article  CAS  PubMed  Google Scholar 

  • Brundell DJ (1975) Flower development of the Chinese gooseberry (Actinidia chinensis Planch.) I. development of the flowering shoot. NZ J Bot 13:473–483

    Article  Google Scholar 

  • Burleigh JG, Bansal MS, Wehe A, Eulenstein O (2009) Locating large-scale gene duplication events through reconciled trees: implications for identifying ancient polyploidy events in plants. J Comput Biol 16:1071–1083

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth D (1984) Androdioecy and the evolution of dioecy. Biol J Linn Soc 22(4):333–348

    Article  Google Scholar 

  • Charlesworth B, Charlesworth D (1978) A model for the evolution of dioecy and gynodioecy. Am Naturalist 112:975–997

    Article  Google Scholar 

  • Charlesworth D, Charlesworth B (1990) Inbreeding depression with heterozygote advantage and its effect on selection for modifiers changing the outcrossing rate. Evol 44:870–888

    Article  Google Scholar 

  • Charlesworth D, Guttman DS (1999) The evolution of dioecy and plant sex chromosome systems. In: Ainsworth CC (ed) Sex determination in plants. Bios Scientific Publishers, Oxford, pp 25–49

    Google Scholar 

  • Charnov EL, Bull JJ, Maynard Smith J (1976) Why be an hermaphrodite? Nature 263:125–126

    Article  Google Scholar 

  • Chu J-H, Lin Y-S, Wu H-Y (2007) Evolution and dispersal of three closely related macaque species, Macaca mulatta, M. cyclopis and M. fuscata, in the eastern Asia. Mol Phylogenet Evol 43(2):418–429

    Article  CAS  PubMed  Google Scholar 

  • Cigliano RA, Sanseverino W, Cremona G, Consiglio FM, Conicella C (2011) Evolution of Parallel Spindles Like genes in plants and highlights of unique domain architecture. BMC Evol Biol 11:78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coimbra S, Duarte C (2003) Arabinogalactan proteins may facilitate the movement of pollen tubes from the stigma to the ovules in Actinidia deliciosa and Amaranthus hypochondriacus. Euphytica 133:171–178

    Article  CAS  Google Scholar 

  • Coimbra S, Torrão L, Abreu I (2004) Programmed cell death induces male sterility in Actinidia deliciosa female flowers. Plant Physiol Biochem 42:537–541

    Article  CAS  PubMed  Google Scholar 

  • Corlett RT (1998) Frugivory and seed dispersal by vertebrates in the Oriental (Indomalayan) Region. Biol Rev 73:413–448

    Article  CAS  PubMed  Google Scholar 

  • Cromer L, Heyman J, Touati S, Harashima H, Araou E, Girard C et al (2012) OSD1 promotes meiotic progression via APC/C inhibition and forms a regulatory network with TDM and CYCA1; 2/TAM. PLoS Genet 8(7):e1002865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowhurst RN, Gleave AP, MacRae EA, Ampomah-Dwamena C, Atkinson RG, Beuning LL et al (2008) Analysis of expressed sequence tags from Actinidia: applications of a cross species EST database for gene discovery in the areas of flavour, health, color, and ripening. BMC Genom 9:351

    Article  CAS  Google Scholar 

  • Cui Z, Huang H, Xiao X (2002) Actinidia in China. China Agricultural Science and Technology Press, Beijing

    Google Scholar 

  • d’Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Mercier R (2009) Turning meiosis into mitosis. PLoS Biol 7:e100124

    Google Scholar 

  • De Storme N, Geelen D (2011) The Arabidopsis mutant jason produces unreduced first division restitution male gametes through a parallel/fused spindle mechanism in meiosis II. Plant Physiol 155:1403–1415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Storme N, Mason A (2014) Plant speciation through chromosome instability and ploidy change: cellular mechanisms, molecular factors and evolutionary relevance. Curr Plant Biol 1:10–33

    Article  Google Scholar 

  • Dickison WC (1972) Observations on the floral morphology of some species of Saurauia, Actinidia, and Clematoclethera. J Elisha Mitchell Sci Soc 88:43–54

    Google Scholar 

  • Dufay M, Champelovier P, Käfer J, Henry JP, Mousset S, Marais GAB (2014) An angiosperm-wide analysis of the gynodioecy-dioecy pathway. Ann Bot 114:539–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falasca G, D’Angeli S, Biasi R, Fattorini L, Matteucci M, Canini A et al (2013) Tapetum and middle layer control male fertility in Actinidia deliciosa. Ann Bot 112:1045–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fawcett JA, Maere S, Van de Peer Y (2009) Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proc Natl Acad Sci USA 106:5737–5742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferradás Y, López M, Rey M, González MV (2014) Programmed cell death in kiwifruit stigmatic arms and its relationship to the effective pollination period and the progamic phase. Ann Bot 114:35–45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Field MH (2012) The first British record of Actinidia faveolata C. Reid and E.M. Reid (Actinidiaceae family). Quat Int 271:65–69

    Article  Google Scholar 

  • Fooden J, Qian G, Wang Z, Wang Y (1985) The stumptail macaques of China. Amer J Primatol 8:11–30

    Article  Google Scholar 

  • Fraser LG, Harvey CF (1988) Preparation of protoplasts from microspore tetrads of kiwifruit, Actinidia deliciosa (Actinidiaceae). Scientia Hort 37:111–121

    Article  Google Scholar 

  • Fraser LG, Tsang GK, Datson PM, De Silva HN, Harvey CF, Gill GP et al (2009) A gene-rich linkage map in the dioecious species Actinidia chinensis (kiwifruit) reveals putative X/Y sex-determining chromosomes. BMC Genom 10:102

    Article  CAS  Google Scholar 

  • Fromhage L, Kokko H (2010) Spatial seed and pollen games: dispersal, sex allocation, and the evolution of dioecy. J Evol Biol 23:1947–1956

    Article  PubMed  Google Scholar 

  • Givnish TJ (1980) Ecological constraints on the evolution of breeding systems in seed plants: dioecy and dispersal in gymnosperms. Evol 34(5):959–972

    Article  Google Scholar 

  • González MV, Coque M, Herrero M (1996) Pollen-pistil interaction in kiwifruit (Actinidia deliciosa; Actinidiaceae). Am J Bot 83(2):148–154

    Article  Google Scholar 

  • Green SA, Chen X, Nieuwenhuizen NJ, Matich AJ, Wang MY, Bunn BJ et al (2012) Identification, functional characterization, and regulation of the enzyme responsible for floral (E)-nerolidol biosynthesis in kiwifruit (Actinidia chinensis). J Exp Bot 63(5):1951–1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harlan JR, de Wet JMJ (1975) On Ö. Winge and a prayer: the origins of polyploidy. Bot Rev 41:361–390

    Article  Google Scholar 

  • Harvey CF, Fraser LG (1988) Floral biology of two species of Actinidia (Actinidiaceae). II. Early embryology. Bot Gaz 149:37–44

    Article  Google Scholar 

  • Harvey CF, Fraser LG, Pavis SE, Considine JA (1987) Floral biology of two species of Actinidia (Actinidiaceae). I. The stigma, pollination, and fertilization. Bot Gaz 148:426–432

    Article  Google Scholar 

  • He Z, Huang H, Zhong Y (2003) Cytogenetic study of diploid Actinidia chinensis—karyotype, morphology of sex chromosomes at primary differentiation stage and evolutionary significance. Acta Hortic 610:379–385

    Article  Google Scholar 

  • He Z-C, Li J-Q, Cai Q, Wang Q (2005) The cytology of Actinidia, Saurauia and Clematoclethra (Actinidiaceae). Bot J Linn Soc 147(3):369–374

    Article  Google Scholar 

  • Hepler PK, Vidali L, Cheung AY (2001) Polarized cell growth in higher plants. Annu Rev Cell Dev Biol 17:159–187

    Article  CAS  PubMed  Google Scholar 

  • Herendeen PS, Magallón-Puebla S, Lupia R, Crane PR, Kobylinskya J (1999) A preliminary conspectus of the Allon flora from the Late Cretaceous (Late Santonian) of central Georgia, USA. Ann Miss Bot Gard 86:407–471

    Article  Google Scholar 

  • Ho T-Y, Ross MD (1974) Maintenance of males and females in hermaphrodite populations. Hered 32:113–118

    Article  Google Scholar 

  • Howpage D, Vithanage V, Spooner-Hart R (1998) Pollen tube distribution in the kiwifruit (Actinidia deliciosa A. Chev. C.F.Liang) pistil in relation to its reproductive process. Ann Bot 81(6):697–703

    Article  Google Scholar 

  • Hu X-S, Ennos RA (1997) On estimation of the ratio of pollen to seed flow among plant populations. Hered 79:541–552

    Article  Google Scholar 

  • Huang H-W (2014) The genus Actinidia, a world monograph. Science Press, Beijing

    Google Scholar 

  • Huang H-W, Ferguson AR (2007) Genetic resources of kiwifruit: domestication and breeding. Hortic Rev 33:1–121

    Article  Google Scholar 

  • Huang S, Ding J, Deng D, Tang W, Sun H, Liu D et al (2013) Draft genome of the kiwifruit Actinidia chinensis. Nature Comm 4:2640

    Google Scholar 

  • Hubbell SP (1979) Tree dispersion, abundance, and diversity in a tropical dry forest. Science 203:1299–1309

    Article  CAS  PubMed  Google Scholar 

  • Jakobsen MK, Poulsen LR, Schulz A, Fleurat-Lessard P, Møller A, Husted S et al (2005) Pollen development and fertilization in Arabidopsis is dependent on the MALE GAMETOGENESIS IMPAIRED ANTHERS gene encoding a Type V P-type ATPase. Genes Dev 19:2757–2769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao YN, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE et al (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100

    Article  CAS  PubMed  Google Scholar 

  • Jiao YN, Leebens-Mack J, Ayyampalayam S, Bowers JE, McKain MR, McNeal J et al (2012) A genome triplication associated with early diversification of the core eudicots. Genome Biol 13:R3

    Article  PubMed  PubMed Central  Google Scholar 

  • Jofuku KD, den Boer BGW, Van Montagu M, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6(9):1211–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jofuku KD, Omidyar PK, Gee Z, Okamuro JK (2005) Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proc Natl Acad Sci USA 102(8):3117–3122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jongedijk E, Ramanna MS (1988) Synaptic mutants in potato, Solanum tuberosum L. I. expression and identity of genes for desynapsis. Genome 30:664–670

    Article  Google Scholar 

  • Kaufmann K, Melzer R, Theißen G (2005) MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 347(2):183–198

    Article  CAS  PubMed  Google Scholar 

  • Keller JA, Herendeen PS, Crane PR (1996) Fossil flowers and fruits of the Actinidiaceae from the Campanian (late Cretaceous) of Georgia. Am J Bot 83(4):528–541

    Article  Google Scholar 

  • Kovar-Eder J, Kvaček Z, Martinetto E, Roiron P (2006) Late Miocene to Early Pliocene vegetation of southern Europe (7–4 Ma) as reflected in the megafossil plant record. Palaeoecology 238:321–339

    Article  Google Scholar 

  • Langham RJ, Walsh J, Dunn M, Ko C, Goff SA, Freeling M (2004) Genomic duplication, fractionation and the origin of regulatory novelty. Genetics 166(2):935–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latta RG, Linhart YB, Fleck D, Elliot M (1998) Direct and indirect estimates of seed versus pollen movement within a population of ponderosa pine. Evol 52:61–67

    Article  Google Scholar 

  • Levin DA (1983) Polyploidy and novelty in flowering plants. Am Nat 122:1–25

    Article  Google Scholar 

  • Levin DA, Kerster HW (1974) Gene flow in seed plants. Evol Biol 7:139–220

    Google Scholar 

  • Li N, Zhang D-S, Liu H-S, Yin C-S, X-x Li, Liang W-Q et al (2006) The rice Tapetum Degeneration Retardation gene is required for tapetum degradation and anther development. Plant Cell 18:2999–3014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J-Q, Li X-W, Soejarto DD (2007) Actinidiaceae. In: Wu Z-Y, Raven PH, Hong D-Y (eds) Flora of China, vol 12 (Hippocastanaceae through Theaceae). Science Press, Beijing, Missouri Botanical Garden Press, St Louis, pp 334–360

    Google Scholar 

  • Li D, Liu Y, Zhong C, Huang H (2010) Morphological and cytotype variation of wild kiwifruit (Actinidia chinensis complex) along an altitudinal and longitudinal gradient in central west China. Bot J Linn Soc 164(1):72–83

    Article  Google Scholar 

  • Liu Y, Li D, Yan L, Huang H (2015) The microgeographical patterns of morphological and molecular variation of a mixed ploidy population in the species complex A. chinensis. PLoS ONE 10(2):e0117596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lloyd DG (1974) Theoretical sex ratios of dioecious and gynodioecious angiosperms. Hered 32:11–34

    Article  Google Scholar 

  • Lloyd DG (1975) The maintenance of gynodioecy and androdioecy in angiosperms. Genetica 45:325–339

    Article  Google Scholar 

  • Lloyd DG (1979) Some reproductive factors affecting the selection of self-fertilization in plants. Am Nat 113:67–79

    Article  Google Scholar 

  • Lloyd DG, Bawa KS (1984) Modification of the gender of seed plants in varying conditions. Evol Biol 17:255–338

    Article  Google Scholar 

  • Lucas PW, Corlett RT (1998) Seed dispersal by long-tailed macaques. Am J Primatol 45:29–44

    Article  CAS  PubMed  Google Scholar 

  • Mai DH (2007) The floral change in the Tertiary of the Rhön mountains (Germany). Acta Palaeobotanica 47(1):135–143

    Google Scholar 

  • Manchester SR (1994) Fruits and seeds of the Middle Eocene nut beds flora, Clarno formation, Oregon. Palaeontogr Am 58:1–205

    Google Scholar 

  • Mason AS, Pires JC (2015) Unreduced gametes: meiotic mishap or evolutionary mechanism? Trends Genet 31(1):5–10

    Article  CAS  PubMed  Google Scholar 

  • Matich AJ, Young H, Allen JM, Wang MY, Fielder S, McNeilage MA et al (2003) Actinidia arguta: volatile compounds in fruit and flowers. Phytochemistry 63:285–301

    Article  CAS  PubMed  Google Scholar 

  • Maynard Smith J (1978) The evolution of sex. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • McNeilage MA (1991a) Gender variation in Actinidia deliciosa, the kiwifruit. Sex Plant Reprod 4:267–273

    Google Scholar 

  • McNeilage MA (1991b) Sex expression in fruiting male vines of kiwifruit. Sex Plant Reprod 4:274–278

    Google Scholar 

  • McNeilage MA, Considine JA (1989) Chromosome studies in some Actinidia taxa and implications for breeding. NZ J Bot 27:71–81

    Article  Google Scholar 

  • McNeilage MA, Steinhagen S (1998) Flower and fruit characters in a kiwifruit hermaphrodite. Euphytica 101(1):69–72

    Article  Google Scholar 

  • Mercier R, Armstrong SJ, Horlow C, Jackson NP, Makaroff CA, Vezon D et al (2003) The meiotic protein SWI1 is required for axial element formation and recombination initiation in Arabidopsis. Development 130:3309–3318

    Article  CAS  PubMed  Google Scholar 

  • Messina R (1993) Microsporogenesis in male-fertile cv. Matua and male-sterile Hayward of Actinidia deliciosa var. deliciosa (kiwifruit). Adv Hort Sci 7:77–81

    Google Scholar 

  • Mok DW, Peloquin SJ (1975) The inheritance of three mechanisms of diplandroid (2n pollen) formation in diploid potatoes. Heredity 35:295–302

    Article  Google Scholar 

  • Motamayor JC, Vezon D, Bajon C, Sauvanet A, Grandjean O, Marchand M et al (2000) Switch (swi1), an Arabidopsis thaliana mutant affected in the female meiotic switch. Sex Plant Reprod 12:209–218

    Article  Google Scholar 

  • Myers JR, Gritton ET, Struckmeyer BE (1984) Production of 2n pollen and further characterization of the calyx carpellaris (cc) trait in the pea. Crop Sci 24:1063–1069

    Article  Google Scholar 

  • Nieuwenhuizen NJ, Wang MY, Matich AJ, Green SA, Chen X, Yauk Y-K et al (2009) Two terpene synthases are responsible for the major sesquiterpenes emitted from the flowers of kiwifruit (Actinidia deliciosa). J Exp Bot 60(11):3203–3219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieuwenhuizen NJ, Green S, Atkinson RG (2010) Floral sesquiterpenes and their synthesis in dioecious kiwifruit. Plant Signal Behav 5:61–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parrott WA, Smith RR (1986) Recurrent selection for 2n pollen formation in red clover. Crop Sci 26:1132–1135

    Article  Google Scholar 

  • Porcher E, Kelly JK, Cheptou PO, Eckert CG, Johnston MO, Kalisz S (2009) The genetic consequences of fluctuating inbreeding depression and the evolution of plant selfing rates. J Evol Biol 22:708–717

    Article  CAS  PubMed  Google Scholar 

  • Porta H, Rocha-Sosa M (2002) Plant lipoxygenases. Physiological and molecular features. Plant Physiol 130:15–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prince VE, Pickett FB (2002) Splitting pairs: the diverging fates of duplicated genes. Nat Rev Genet 3:827–837

    Article  CAS  PubMed  Google Scholar 

  • Qu W, Zhang Y, Manry D, Southwick CH (1993) Rhesus monkeys (Macaca mulatta) in the Taihang mountains, Jiyuan county, Henan, China. Int J Primatol 14:607–621

    Article  Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29:467–501

    Article  Google Scholar 

  • Renner SS (2014) The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. Am J Bot 101(10):1588–1596

    Article  PubMed  Google Scholar 

  • Renner SS, Ricklefs RE (1995) Dioecy and its correlates in the flowering plants. Am J Bot 82(5):596–606

    Article  Google Scholar 

  • Rhoades MM, Dempsey E (1966) Induction of chromosome doubling at meiosis by the elongate gene in maize. Genetics 54:505–522

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson AC, Boldingh HL, McAtee PA, Gunaseelan K, Luo Z, Atkinson RG et al (2011) Fruit development of the diploid kiwifruit, Actinidia chinensis ‘Hort16A’. BMC Plant Biol 11:182

    Article  PubMed  PubMed Central  Google Scholar 

  • Ross MD (1978) The evolution of gynodioecy and subdioecy. Evolution 32(1):174–188

    Article  Google Scholar 

  • Ross MD (1982) Five evolutionary pathways to subdioecy. Am Nat 119(3):297–318

    Article  Google Scholar 

  • Ross MD, Weir BS (1976) Maintenance of males and females in hermaphrodite populations and the evolution of dioecy. Evolution 30:425–441

    Article  Google Scholar 

  • Schmid R (1978) Reproductive anatomy of Actinidia chinensis (Actinidiaceae). Botanischer Jahrbücher Syst Pflanzengesch Pflanzengeogr 100:149–195

    Google Scholar 

  • Schönenberger J, Friis EM (2001) Fossil flowers of Ericalean affinity from the late cretaceous of southern Sweden. Am J Bot 88(3):467–480

    Article  PubMed  Google Scholar 

  • Schönenberger J, von Balthazar M, Takahashi M, Xiao X, Crane PR, Herendeen PS (2012) Glandulocalyx upatoiensis, a fossil flower of Ericales (Actinidiaceae/Clethraceae) from the late Cretaceous (Santonian) of Georgia, USA. Ann Bot 109:921–936

    Article  PubMed  PubMed Central  Google Scholar 

  • Schranz ME, Mohammadin S, Edger PP (2012) Ancient whole genome duplications, novelty and diversification: the WGD radiation lag-time model. Curr Opin Plant Biol 15(2):147–153

    Article  PubMed  Google Scholar 

  • Scoccianti V, Ovidi E, Taddei AR, Tiezzi A, Crinelli R, Gentilini L et al (2003) Involvement of the ubiquitin/proteasome pathway in the organisation and polarised growth of kiwifruit pollen tubes. Sex Plant Reprod 16:123–133

    Article  CAS  Google Scholar 

  • Seal AG, Ferguson AR, de Silva HN, Zhang J-L (2012) The effect of 2n gametes on sex ratios in Actinidia. Sex Plant Reprod 25:197–203

    Article  PubMed  Google Scholar 

  • Sedgley M, Scholefield PB (1980) Stigma secretion in the watermelon before and after pollination. Bot Gaz 141:428–434

    Article  Google Scholar 

  • Shi T, Huang H, Barker MS (2010) Ancient genome duplications during the evolution of kiwifruit (Actinidia) and related Ericales. Ann Bot 106:497–504

    Article  PubMed  PubMed Central  Google Scholar 

  • Siddiqi I, Ganesh G, Grossniklaus U, Subbiah V (2000) The dyad gene is required for progression through female meiosis in Arabidopsis. Development 127:197–207

    CAS  PubMed  Google Scholar 

  • Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14(9):348–352

    Article  PubMed  Google Scholar 

  • Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C et al (2009) Polyploidy and angiosperm diversification. Am J Bot 96:336–348

    Article  PubMed  Google Scholar 

  • Speranza A, Scoccianti V, Crinelli R, Calzoni GL, Magnani M (2001) Inhibition of proteasome activity strongly affects kiwifruit pollen germination. Involvement of the ubiquitin/proteasome pathway as a major regulator. Plant Physio 126:1150–1161

    Article  CAS  Google Scholar 

  • Spigler RB, Ashman T-L (2012) Gynodioecy to dioecy: are we there yet? Ann Bot 109:531–543

    Article  PubMed  PubMed Central  Google Scholar 

  • Testolin R, Cipriani G, Costa G (1995) Sex segregation ratio and gender expression in the genus Actinidia. Sex Plant Reprod 8:129–132

    Google Scholar 

  • Testolin R, Huang W-G, Cipriani G (1999) Towards a linkage map in kiwifruit (Actinidia chinensis Planch.) based on microsatellites and saturated with AFLP markers. Acta Hort 498:79–84

    Article  Google Scholar 

  • Vamosi JC, Otto SP, Barrett SCH (2003) Phylogenetic analysis of the ecological correlates of dioecy in angiosperms. J Evol Biol 16:1006–1018

    Article  CAS  PubMed  Google Scholar 

  • Vamosi JC, Zhang Y, Wilson WG (2007) Animal dispersal dynamics promoting dioecy over hermaphroditism. Am Nat 170:485–491

    Article  PubMed  Google Scholar 

  • Vanneste K, Baele G, Maere S, Van de Peer Y (2014) Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous-Paleogene boundary. Genome Res 24(8):1334–1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varkonyi-Gasic E, Moss SM, Voogd C, Wu R, Lough RH, Wang Y-Y et al (2011) Identification and characterization of flowering genes in kiwifruit: sequence conservation and role in kiwifruit flower development. BMC Plant Biol 11:72–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veilleux R (1985) Diploid and polyploid gametes in crop plants: mechanisms of formation and utilization in plant breeding. Plant Breed Rev 3:252–288

    Google Scholar 

  • Vekemans D, Proost S, Vanneste K, Coenen H, Viaene T, Reulens P, Maere S, Van de Peer Y, Geuten K (2012) Gamma paleohexaploidy in the stem lineage of core eudicots: significance for MADS-box gene and species diversification. Mol Biol Evol 29:3793–3806

    Article  CAS  PubMed  Google Scholar 

  • Vorsa N, Bingham ET (1979) Cytology of 2n gamete formation in diploid alfalfa, Medicago sativa. Can J Genet Cytol 21:525–530

    Article  Google Scholar 

  • Walton EF, Fowke PJ, Weis K, McLeay PL (1997) Shoot axillary bud morphogenesis in kiwifruit (Actinidia deliciosa). Ann Bot 80:13–21

    Article  Google Scholar 

  • Wang X-Y, Paterson AH (2011) Gene conversion in angiosperm genomes with an emphasis on genes duplicated by polyploidization. Genes 2:1–20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang P, Sun X (1994) Last glacial maximum in China: comparison between land and sea. Catena 23(3–4):341–353

    Google Scholar 

  • Wang Y, Magnard J-L, McCormick S, Yang M (2004) Progression through meiosis I and meiosis II in Arabidopsis anthers is regulated by an A-type cyclin predominately expressed in prophase I. Plant Physiol 136:4127–4135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westergaard M (1958) The mechanism of sex determination in dioecious plants. Adv Genet 9:217–281

    Article  CAS  PubMed  Google Scholar 

  • Würschum T, Groβ-Hardt R, Laux T (2006) APETALA2 regulates the stem cell niche in the Arabidopsis shoot meristem. Plant Cell 18(2):295–307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan G, Ferguson AR, McNeilage MA, Murray BG (1997) Numerically unreduced (2n) gametes and sexual polyploidization in Actinidia. Euphytica 96:267–272

    Article  Google Scholar 

  • Yang C, Vizcay-Barrena G, Conner K, Wilson ZA (2007) MALE STERILITY 1 is required for tapetal development and pollen wall biosynthesis. Plant Cell 19:3530–3548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Chen K, Bowen J, Allan A, Espley R, Karunairetnam S, Ferguson I (2006) Differential expression within the LOX gene family in ripening kiwifruit. J Exp Bot 57(14):3825–3836

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Yin X-R, Shen J-Y, Chen K-S, Ferguson IB (2009) Volatiles production and lipoxygenase gene expression in kiwifruit peel and flesh during fruit ripening. J Am Soc Hortic Sci 134(4):472–477

    Google Scholar 

  • Zheng Z, Yuan B, Petit-Maire N (1998) Palaeoenvironments in China during the last glacial maximum and the holocene optimum. Episodes 21(3):152–158

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lena G. Fraser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fraser, L.G., McNeilage, M.A. (2016). Reproductive Biology. In: Testolin, R., Huang, HW., Ferguson, A. (eds) The Kiwifruit Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-32274-2_6

Download citation

Publish with us

Policies and ethics