Skip to main content

Bioreactor Technology for Sustainable Production of Plant Cell-Derived Products

  • Living reference work entry
  • First Online:
Bioprocessing of Plant In Vitro Systems

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

The successful cultivation of plant cell and tissue cultures for the production of valuable chemical components requires the selection of an appropriate bioreactor. Selection criteria are determined based on a number of factors that are intrinsic to particular plant cell or tissue cultures and are influenced by the process objectives. Due to the specific properties of plant cell and tissue cultures, bioreactor systems may differ significantly from those used for microorganism or animal cell cultures. Furthermore, the differences from one plant culture to another can be immense; it is obvious that the optimal bioreactor system for a plant suspension cell culture is different to one for a plant tissue culture in many ways.

General considerations are presented, and based on these key points, selection criteria are used to establish a “bioreactor chooser” tool. The particular details of the most relevant bioreactor types for plant cell and tissue cultures are listed and described.

To produce valuable products, the process also needs to be scaled up to an economically justifiable size, which is usually done either by scaling up the size of the bioreactor itself or by bioreactor parallelization. Therefore, the most significant influencing factors are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

2G12:

Human monoclonal antibody 2G12

DAF-Fc:

Decay-accelerating factor-fragment crystallizable region

DPP4-Fc:

Dipeptidyl peptidase-4 fragment crystallizable region

FDA:

Federal Drug Administration

GAD65:

Glutamate decarboxylase 65

GMP:

Good manufacturing practice

HA:

Hemagglutinin

HCPS:

Hantavirus cardiopulmonary syndrome

hG-CSF:

Human granulocyte colony-stimulating factor

hGM-CSF:

Human granulocyte-macrophage colony-stimulating factor

ICAM-1-IgA2:

Intercellular adhesion molecule 1-Immunoglobulin A2

ICH:

International Conference on Harmonization

IL-12:

Interleukin 12

MERS:

Middle East respiratory syndrome

OUR:

Oxygen uptake rate

QbD:

Quality by design

RITA:

Récipient à immersion temporaire automatique

Reference

  1. Steingroewer J, Bley T, Georgiev V, Ivanov I, Lenk F, Marchev A, Pavlov A (2013) Bioprocessing of differentiated plant in vitro systems. Eng Life Sci 13:26–38. doi:10.1002/elsc.201100226

    Article  CAS  Google Scholar 

  2. Santos RB, Abranches R, Fischer R, Sack M, Holland T (2016) Putting the spotlight back on plant suspension cultures. Front Plant Sci 7:1–12. doi:10.3389/fpls.2016.00297

    Article  Google Scholar 

  3. Sack M, Hofbauer A, Fischer R, Stoger E (2015) The increasing value of plant-made proteins. Curr Opin Biotechnol 32:163–170. doi:10.1016/j.copbio.2014.12.008

    Article  CAS  Google Scholar 

  4. Doran PM (2010) Bioreactors, stirred tank for culture of plant cells. Encycl Ind Biotechnol 1–35. doi: 10.1002/9780470054581.eib150

    Google Scholar 

  5. Ramachandra Rao S, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153. doi:10.1016/S0734-9750(02)00007-1

    Article  CAS  Google Scholar 

  6. Harborne JB (1999) Classes and functions of secondary products from plants. In: Walton NJ, Brown DE (eds) Chemicals from plants. Imperial Collage Press, London

    Google Scholar 

  7. DiCosmo F, Misawa M (1995) Plant cell and tissue culture: alternatives for metabolite production. Biotechnol Adv 13:425–453. doi:10.1016/0734-9750(95)02005-N

    Article  CAS  Google Scholar 

  8. Bhatia S, Bera T (2015) Classical and nonclassical techniques for secondary metabolite production in plant cell culture. In: Bhatia S (ed) Modern applications of plant biotechnology in pharmaceutical sciences. Elsevier, Amsterdam

    Google Scholar 

  9. Oksman-Caldentey KM, Inzé D (2004) Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci 9:433–440. doi:10.1016/j.tplants.2004.07.006

    Article  CAS  Google Scholar 

  10. Bourgaud F, Gravot A, Milesi S, Gontier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161:839–851. doi:10.1016/S0168-9452(01)00490-3

    Article  CAS  Google Scholar 

  11. Imseng N, Schillberg S, Schürch C, Schmid D, Schütte K, Gorr G, Eibl D, Eibl R (2014) Suspension culture of plant cells under heterotrophic conditions. In: Meyer H-P, Schmidhalter DR (eds) Industrial scale suspension culture. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  12. Rittershaus E, Ulrich J, Weiss A, Westphal K (1989) Large scale industrial fermentation: design, installation and initial operation of a fermenation unit. Bioengineering 5:8–10

    CAS  Google Scholar 

  13. Lehmann N, Dittler I, Lämsä M, Ritala A, Rischer H, Eibl D, Oksman-Caldentey K-M, Eibl R (2014) Disposable bioreactors for cultivation of plant cell cultures. In: Paek KY, Murthy HN, Zhong JJ (eds) Production of biomass and bioactive compounds using bioreactor technology. Springer, Dordrecht

    Google Scholar 

  14. Schürch C, Blum P, Zülli F (2008) Potential of plant cells in culture for cosmetic application. Phytochem Rev 7:599–605. doi:10.1007/s11101-007-9082-0

    Article  Google Scholar 

  15. Xu J, Zhang N (2014) On the way to commercializing plant cell culture platform for biopharmaceuticals: present status and prospect. Pharm Bioprocess 2:499–518. doi:10.4155/pbp.14.32

    Article  Google Scholar 

  16. Maxmen A (2012) Drug-making plant blooms. Nature 485:160–160. doi:10.1038/485160a

    Article  CAS  Google Scholar 

  17. Tekoah Y, Shulman A, Kizhner T, Ruderfer I, Fux L, Nataf Y, Bartfeld D, Ariel T, Gingis-Velitski S, Hanania U, Shaaltiel Y (2015) Large-scale production of pharmaceutical proteins in plant cell culture-the protalix experience. Plant Biotechnol J 13:1199–1208. doi:10.1111/pbi.12428

    Article  CAS  Google Scholar 

  18. Shaaltiel Y, Gingis-Velitski S, Tzaban S, Fiks N, Tekoah Y, Aviezer D (2015) Plant-based oral delivery of β-glucocerebrosidase as an enzyme replacement therapy for Gaucher’s disease. Plant Biotechnol J 13:1033–1040. doi:10.1111/pbi.12366

    Article  CAS  Google Scholar 

  19. Shaaltiel Y, Bartfeld D, Hashmueli S, Baum G, Brill-Almon E, Galili G, Dym O, Boldin-Adamsky SA, Silman I, Sussman JL, Futerman AH, Aviezer D (2007) Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnol J 5:579–590. doi:10.1111/j.1467-7652.2007.00263.x

    Article  CAS  Google Scholar 

  20. Liew PS, Hair-Bejo M (2015) Farming of plant-based veterinary vaccines and their applications for disease prevention in animals. Adv Virol 2015:1–12. doi:10.1155/2015/936940

    Article  Google Scholar 

  21. Bhatia S (2015) History and scope of plant biotechnology. In: Bhatia S (ed) Modern applications of plant biotechnology in pharmaceutical sciences. Elsevier, Amsterdam

    Google Scholar 

  22. Huang T-K, McDonald KA (2009) Bioreactor engineering for recombinant protein production in plant cell suspension cultures. Biochem Eng J 45:168–184. doi:10.1016/j.bej.2009.02.008

    Article  CAS  Google Scholar 

  23. Huang T-K, McDonald KA (2012) Bioreactor systems for in vitro production of foreign proteins using plant cell cultures. Biotechnol Adv 30:398–409. doi:10.1016/j.biotechadv.2011.07.016

    Article  CAS  Google Scholar 

  24. Chen Q, Davis KR (2016) The potential of plants as a system for the development and production of human biologics. F1000Res 5:912. doi:10.12688/f1000research.8010.1

    Article  Google Scholar 

  25. Merlin M, Gecchele E, Capaldi S, Pezzotti M, Avesani L (2014) Comparative evaluation of recombinant protein production in different biofactories: the green perspective. Biomed Res Int. doi:10.1155/2014/136419

    Google Scholar 

  26. Takeyama N, Kiyono H, Yuki Y (2015) Plant-based vaccines for animals and humans: recent advances in technology and clinical trials. Ther Adv Vaccines 3:139–154. doi:10.1177/2051013615613272

    Article  Google Scholar 

  27. Bendandi M, Marillonnet S, Kandzia R, Thieme F, Nickstadt A, Herz S, Fröde R, Inogés S, Lòpez-Dìaz de Cerio A, Soria E, Villanueva H, Vancanneyt G, McCormick A, Tusé D, Lenz J, Butler-Ransohoff J-E, Klimyuk V, Gleba Y (2010) Rapid, high-yield production in plants of individualized idiotype vaccines for non-Hodgkin’s lymphoma. Ann Oncol Off J Eur Soc Med Oncol 21:2420–2427. doi:10.1093/annonc/mdq256

    Article  CAS  Google Scholar 

  28. Xu J, Dolan MC, Medrano G, Cramer CL, Weathers PJ (2012) Green factory: plants as bioproduction platforms for recombinant proteins. Biotechnol Adv 30:1171–1184. doi:10.1016/j.biotechadv.2011.08.020

    Article  CAS  Google Scholar 

  29. Ashkenazi A, Chamow SM (1995) Immunoadhesins: an alternative to human monoclonal antibodies. Methods 8:104–115. doi:10.1006/meth.1995.9996

    Article  CAS  Google Scholar 

  30. Wycoff K, Maclean J, Belle A, Yu L, Tran Y, Roy C, Hayden F (2015) Anti-infective immunoadhesins from plants. Plant Biotechnol J 13:1078–1093. doi:10.1111/pbi.12441

    Article  CAS  Google Scholar 

  31. Company Homepage. http://www.nbms.co.kr. Accessed 31 Mar 2017

  32. Merseburger T, Pahl I, Müller D, Tanner M (2013) A risk analysis for production processes with disposable bioreactors. In: Eibl R, Eibl D (eds) Disposable bioreactors II. Springer, Berlin

    Google Scholar 

  33. Fischer R, Vasilev N, Twyman RM, Schillberg S (2015) High-value products from plants: the challenges of process optimization. Curr Opin Biotechnol 32:156–162. doi:10.1016/j.copbio.2014.12.018

    Article  CAS  Google Scholar 

  34. Hellwig S, Drossard J, Twyman RM, Fischer R (2004) Plant cell cultures for the production of recombinant proteins. Nat Biotechnol 22:1415–1422. doi:10.1038/nbt1027

    Article  CAS  Google Scholar 

  35. Eibl R, Werner S, Eibl D (2009) Disposable bioreactors for plant liquid cultures at litre-scale. Eng Life Sci 9:156–164. doi:10.1002/elsc.200800102

    Article  CAS  Google Scholar 

  36. Georgiev M, Georgiev V, Weber J, Bley T, Ilieva M, Pavlov A (2008) Agrobacterium rhizogenes-mediated genetic transformations: a powerful tool for the production of metabolites. In: Wolf T, Koch J (eds) Genetically modified plants. Nova Science Publishers, New York

    Google Scholar 

  37. Georgiev MI, Ludwig-Müller J, Bley T (2010) Hairy root culture: copying nature in new bioprocesses. In: Arora R (ed) Medicinal plant biotechnology. CABI, Wallingford

    Google Scholar 

  38. Kieran PM, MacLoughlin PF, Malone DM (1997) Plant cell suspension cultures: some engineering considerations. J Biotechnol 59:39–52. doi:10.1016/S0168-1656(97)00163-6

    Article  CAS  Google Scholar 

  39. Routledge SJ (2012) Beyond de-foaming: the effects of antifoams on bioprocess productivity. Comput Struct Biotechnol J 3. doi:10.5936/csbj.201210014

    Google Scholar 

  40. Morão A, Maia CI, Fonseca MMR, Vasconcelos JMT, Alves SS (1999) Effect of antifoam addition on gas-liquid mass transfer in stirred fermenters. Bioprocess Eng 20:165. doi:10.1007/s004490050576

    Article  Google Scholar 

  41. Wongsamuth R, Doran PM (1994) Foaming and cell flotation in suspended plant cell cultures and the effect of chemical antifoams. Biotechnol Bioeng 44:481–488. doi:10.1002/bit.260440411

    Article  CAS  Google Scholar 

  42. Chang J-S, Show P-L, Ling T-C, Chen C-Y, Ho S-H, Tan C-H, Nagarajan D, Phong W-N (2017) Photobioreactors. In: Larroche C (ed) Current developments in biotechnology and bioengineering. Elsevier, Amsterdam

    Google Scholar 

  43. Ho S-H, Chen C-Y, Chang J-S (2012) Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol 113:244–252. doi:10.1016/j.biortech.2011.11.133

    Article  CAS  Google Scholar 

  44. Srivastava S, Srivastava AK (2007) Hairy root culture for mass-production of high-value secondary metabolites. Crit Rev Biotechnol 27:29–43. doi:10.1080/07388550601173918

    Article  CAS  Google Scholar 

  45. Eibl R, Eibl D (2002) Bioreactors for plant cell and tissue cultures. Plant Biotechnol Transgenic Plants. doi:10.1201/9780203910849.ch8

    Google Scholar 

  46. Georgiev MI, Eibl R, Zhong J-J (2013) Hosting the plant cells in vitro: recent trends in bioreactors. Appl Microbiol Biotechnol 97:3787–3800. doi:10.1007/s00253-013-4817-x

    Article  CAS  Google Scholar 

  47. Paek K-Y, Hahn E-J, Son S-H (2001) Application of bioreactors for large-scale micropropagation systems of plants. In Vitro Cell Dev Biol Plant 37:149–157. doi:10.1007/s11627-001-0027-9

    Article  CAS  Google Scholar 

  48. Choi Y-E, Kim Y-S, Paek K-Y (2006) Types and designs of bioreactors for hairy root culture. In: Dutta Gupta S, Ibaraki Y (eds) Plant tissue culture engineering. Springer, Dordrecht

    Google Scholar 

  49. Kusakari K, Yokoyama M, Inomata S, Gozu Y, Katagiri C, Sugimoto Y (2012) Large-scale production of saikosaponins through root culturing of Bupleurum falcatum L. using modified airlift reactors. J Biosci Bioeng 113:99–105. doi:10.1016/j.jbiosc.2011.08.019

    Article  CAS  Google Scholar 

  50. Ruffoni B, Pistelli L, Bertoli A, Pistelli L (2010) Plant cell cultures: bioreactors for industrial production. Adv Exp Med Biol 698:203–221

    Article  CAS  Google Scholar 

  51. Mishra BN, Ranjan R (2008) Growth of hairy-root cultures in various bioreactors for the production of secondary metabolites. Biotechnol Appl Biochem 49:1–10. doi:10.1042/BA20070103

    Article  CAS  Google Scholar 

  52. Wen Su W, Jun He B, Liang H, Sun S (1996) A perfusion air-lift bioreactor for high density plant cell cultivation and secreted protein production. J Biotechnol 50:225–233. doi:10.1016/0168-1656(96)01568-4

    Article  CAS  Google Scholar 

  53. Fischer U, Alfermann a W (1995) Cultivation of photoautotrophic plant-cell suspensions in the bioreactor – influence of culture conditions. J Biotechnol 41:19–28. doi: 10.1016/0168-1656(95)00043-P

    Google Scholar 

  54. Geipel K, Socher ML, Haas C, Bley T, Steingroewer J (2013) Growth kinetics of a Helianthus annuus and a Salvia fruticosa suspension cell line: shake flask cultivations with online monitoring system. Eng Life Sci 13:593–602. doi:10.1002/elsc.201200148

    Article  CAS  Google Scholar 

  55. Meister J, Maschke RW, Werner S, John GT, Eibl D (2016) How to efficiently shake viscous culture broths: culture broth viscosity evaluated in shake flasks studies. Genet Eng Biotechnol News 36:28–29

    Article  Google Scholar 

  56. Werner S, Greulich J, Geipel K, Steingroewer J, Bley T, Eibl D (2014) Mass propagation of Helianthus annuus suspension cells in orbitally shaken bioreactors: improved growth rate in single-use bag bioreactors. Eng Life Sci 14:676–684. doi:10.1002/elsc.201400024

    Article  CAS  Google Scholar 

  57. Raven N, Rasche S, Kuehn C, Anderlei T, Klöckner W, Schuster F, Henquet M, Bosch D, Büchs J, Fischer R, Schillberg S (2015) Scaled-up manufacturing of recombinant antibodies produced by plant cells in a 200-L orbitally-shaken disposable bioreactor. Biotechnol Bioeng 112:308–321. doi:10.1002/bit.25352

    Article  CAS  Google Scholar 

  58. Raven N, Schillberg S, Rasche S (2016) Plant cell-based recombinant antibody manufacturing with a 200 L orbitally shaken disposable bioreactor. Methods Mol Biol 1385:161–172. doi:10.1007/978-1-4939-3289-4_12

    Article  CAS  Google Scholar 

  59. Kaiser SC, Kraume M, Eibl D (2013) Development of the travelling wave bioreactor – a concept study. Chem Ing Tech 85:136–143. doi:10.1002/cite.201200127

    Article  CAS  Google Scholar 

  60. Kaiser SC, Kraume M, Eibl D (2016) Development of the travelling wave bioreactor. Part I: design studies based on numerical models. Chem Ing Tech 88:77–85. doi:10.1002/cite.201500092

    Article  CAS  Google Scholar 

  61. Kaiser SC, Perepelitsa N, Kraume M, Eibl D (2015) Development of the travelling wave bioreactor. Part II: engineering characteristics and cultivation results. Chem Ing Techn/a-n/a. doi: 10.1002/cite.201500091

    Google Scholar 

  62. Eibl R, Eibl D (2006) Design and use of the wave bioreactor for plant cell culture. In: Gupta SD, Ibaraki Y (eds) Plant tissue culture engineering. Springer, Dordrecht

    Google Scholar 

  63. Werner S, Eibl R, Lettenbauer C, Röll M, Eibl D, De Jesus M, Zhang X, Stettler M, Tissot S, Bürkie C, Broccard G, Kühner M, Tanner R, Baldi L, Hacker D, Wurm FM (2010) Innovative, non-stirred bioreactors in scales from milliliters up to 1000 liters for suspension cultures of cells using disposable bags and containers – a Swiss contribution. Chim Int J Chem 64:819–823. doi:10.2533/chimia.2010.819

    Article  CAS  Google Scholar 

  64. Scholz J, Suppmann S (2016) A re-usable wave bioreactor for protein production in insect cells. MethodsX 3:497–501. doi:10.1016/j.mex.2016.08.001

    Article  CAS  Google Scholar 

  65. Eibl R, Werner S, Eibl D (2010) Bag bioreactor based on wave-induced motion: characteristics and applications. Adv Biochem Eng Biotechnol 115:55–87. doi:10.1007/10_2008_15

    Google Scholar 

  66. Eibl R, Kaiser S, Lombriser R, Eibl D (2010) Disposable bioreactors: the current state-of-the-art and recommended applications in biotechnology. Appl Microbiol Biotechnol 86:41–49. doi:10.1007/s00253-009-2422-9

    Article  CAS  Google Scholar 

  67. Kim Y, Wyslouzil BE, Weathers PJ (2002) Secondary metabolism of hairy root cultures in bioreactors. In Vitro Cell Dev Biol Plant 38:1–10. doi:10.1079/IVP2001243

    Article  CAS  Google Scholar 

  68. Tscheschke B, Dreimann J, von der Ruhr JW, Schmidt T, Stahl F, Just L, Scheper T (2015) Evaluation of a new mist-chamber bioreactor for biotechnological applications. Biotechnol Bioeng 112:1155–1164. doi:10.1002/bit.25523

    Article  CAS  Google Scholar 

  69. Suresh B, Bais H, Raghavarao KSMS, Ravishankar GA, Ghildyal NP (2005) Comparative evaluation of bioreactor design using Tagetes patula L. hairy roots as a model system. Process Biochem 40:1509–1515. doi:10.1016/j.procbio.2003.10.017

    Article  CAS  Google Scholar 

  70. Nuutila AM, Lindqvist A-S, Kauppinen V (1997) Growth of hairy root cultures of strawberry (Fragaria ananassa Duch.) in three different types of bioreactors. Biotechnol Tech 11:363–366. doi:10.1023/A:1018444117681

    Article  CAS  Google Scholar 

  71. M. Paula W (2012) The status of temporary immersion system (TIS) technology for plant micropropagation. Afr J Biotechnol doi: 10.5897/AJB12.1693

    Google Scholar 

  72. Ducos JP, Terrier B, Courtois D, Pétiard V (2008) Improvement of plastic-based disposable bioreactors for plant science needs. Phytochem Rev 7:607–613. doi:10.1007/s11101-008-9089-1

    Article  CAS  Google Scholar 

  73. Ashraf MF, Aziz MA, Stanslas J, Kadir MA (2013) Optimization of immersion frequency and medium substitution on microtuberization of Chlorophytum borivilianum in RITA system on production of saponins. Process Biochem 48:73–77. doi:10.1016/j.procbio.2012.12.001

    Article  CAS  Google Scholar 

  74. Georgiev V, Schumann A, Pavlov A, Bley T (2014) Temporary immersion systems in plant biotechnology. Eng Life Sci 14:607–621. doi:10.1002/elsc.201300166

    Article  CAS  Google Scholar 

  75. Noorman H (2015) Scale-up and scale-down. In: Villadsen J (ed) Fundamental bioengineering. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  76. Zlokarnik M (1991) Dimensional analysis and scale-up in chemical engineering. Springer, Berlin. doi:10.1007/978-3-642-76673-2

    Book  Google Scholar 

  77. Werner S, Olownia J, Egger D, Eibl D (2013) An approach for scale-up of geometrically dissimilar orbitally shaken single-use bioreactors. Chem Ing Tech 85:118–126. doi:10.1002/cite.201200153

    Article  CAS  Google Scholar 

  78. Garcia-Ochoa F, Gomez E (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv 27:153–176. doi:10.1016/j.biotechadv.2008.10.006

    Article  CAS  Google Scholar 

  79. Platas Barradas O, Jandt U, Minh Phan L Da, Villanueva ME, Schaletzky M, Rath A, Freund S, Reichl U, Skerhutt E, Scholz S, Noll T, Sandig V, Pörtner R, Zeng A-P (2012) Evaluation of criteria for bioreactor comparison and operation standardization for mammalian cell culture. Eng Life Sci 12:518–528. doi: 10.1002/elsc.201100163

    Google Scholar 

  80. Platas Barradas O, Jandt U, Da Minh PL, Villanueva M, Rath A, Reichl U, Schräder E, Scholz S, Noll T, Sandig V, Pörtner R, Zeng A-P (2011) Criteria for bioreactor comparison and operation standardisation during process development for mammalian cell culture. BMC Proc 5(Suppl 8):P47. doi:10.1186/1753-6561-5-S8-P47

    Article  Google Scholar 

  81. Minow B, de Witt H, Knabben I (2013) Fast track API manufacturing from shake flask to production scale using a 1000-L single-use facility. Chem Ing Tech 85:87–94. doi:10.1002/cite.201200136

    Article  CAS  Google Scholar 

  82. Rodríguez-Monroy M, Galindo E (1999) Broth rheology, growth and metabolite production of Beta vulgaris suspension culture: a comparative study between cultures grown in shake flasks and in a stirred tank. Enzym Microb Technol 24:687–693. doi:10.1016/S0141-0229(99)00002-2

    Article  Google Scholar 

  83. Sánchez MJ, Jiménez-Aparicio A, Gutiérrez López G, Trejo Tapia G, Rodríguez-Monroy M (2002) Broth rheology of Beta vulgaris cultures growing in an air lift bioreactor. Biochem Eng J 12:37–41. doi:10.1016/S1369-703X(02)00043-8

    Article  Google Scholar 

  84. Chattopadhyay S, Farkya S, Srivastava AK, Bisaria VS (2002) Bioprocess considerations for production of secondary metabolites by plant cell suspension cultures. Biotechnol Bioprocess Eng 7:138–149. doi:10.1007/BF02932911

    Article  CAS  Google Scholar 

  85. Zlokarnik M (2008) Stirring: theory and practice. Wiley-VCH Verlag GmbH, Weinheim

    Google Scholar 

  86. Metzner AB, Otto RE (1957) Agitation of non-Newtonian fluids. AICHE J 3:3–10. doi:10.1002/aic.690030103

    Article  CAS  Google Scholar 

  87. Kraume M (2004) Transportvorgänge in der Verfahrenstechnik. Springer, Berlin

    Book  Google Scholar 

  88. Thakur RK, Vial C, Djelveh G, Labbafi M (2004) Mixing of complex fluids with flat-bladed impellers: effect of impeller geometry and highly shear-thinning behavior. Chem Eng Process Process Intensif 43:1211–1222. doi:10.1016/j.cep.2003.11.005

    Article  CAS  Google Scholar 

  89. Su W wen (1995) Bioprocessing technology for plant cell suspension cultures. Appl Biochem Biotechnol 50:189–230. doi: 10.1007/BF02783455

    Google Scholar 

  90. Löffelholz C, Husemann U, Greller G, Meusel W, Kauling J, Ay P, Kraume M, Eibl R, Eibl D (2013) Bioengineering parameters for single-use bioreactors: overview and evaluation of suitable methods. Chem Ing Tech 85:40–56. doi:10.1002/cite.201200125

    Article  Google Scholar 

  91. Meusel W, Kauling J, Löffelholz C (2013) Single-use technologies for biopharmaceutical production: report from the working group bioprocess technology – upstream processing. Chem Ing Tech 85:23–25. doi:10.1002/cite.201200217

    Article  CAS  Google Scholar 

  92. Ducos JP, Pareilleux A (1986) Effect of aeration rate and influence of pCO2 in large-scale cultures of Catharanthus roseus cells. Appl Microbiol Biotechnol 25:101–105. doi:10.1007/BF00938932

    CAS  Google Scholar 

  93. Taticek RA, Mooyoung M, Legge RL (1991) The scale-up of plant-cell culture – engineering considerations. Plant Cell Tissue Organ Cult 24:139–158. doi:10.1007/BF00039742

    Article  Google Scholar 

  94. Kieran PM, Malone DM, MacLoughlin PF (2000) Effects of hydrodynamic and interfacial forces on plant cell suspension systems. Adv Biochem Eng Biotechnol 67:139–177

    CAS  Google Scholar 

  95. Georgiev MI, Pavlov AI, Bley T (2007) Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol 74:1175–1185. doi:10.1007/s00253-007-0856-5

    Article  CAS  Google Scholar 

  96. Baíza AM, Quiroz-Moreno A, Ruíz JA, Loyola-Vargas VM (1999) Genetic stability of hairy root cultures of Datura stramonium. Plant Cell Tissue Organ Cult 59:9–17. doi:10.1023/A:1006398727508

    Article  Google Scholar 

  97. Balandrin M, Klocke J, Wurtele E, Bollinger W (1985) Natural plant chemicals: sources of industrial and medicinal materials. Science 228:1154–1160. doi:10.1126/science.3890182

    Article  CAS  Google Scholar 

  98. Berlin J, Beier H, Fecker L, Forche E, Noé W, Sasse F, Schiel O, Wray V (1985) Conventional and new approaches to increase the alkaloid production of plant cell cultures. In: Neumann K-H (ed) Primary and secondary metabolism of plant cell cultures. Springer, Berlin

    Google Scholar 

  99. Palavalli RR, Srivastava S, Srivastava AK (2012) Development of a mathematical model for growth and oxygen transfer in in vitro plant hairy root cultivations. Appl Biochem Biotechnol 167:1831–1844. doi:10.1007/s12010-011-9515-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sören Werner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Werner, S., Maschke, R.W., Eibl, D., Eibl, R. (2017). Bioreactor Technology for Sustainable Production of Plant Cell-Derived Products. In: Pavlov, A., Bley, T. (eds) Bioprocessing of Plant In Vitro Systems. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-32004-5_6-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32004-5_6-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32004-5

  • Online ISBN: 978-3-319-32004-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics