Skip to main content

Microstructure and Weathering Processes Within Biological Soil Crusts

  • Chapter
  • First Online:
Biological Soil Crusts: An Organizing Principle in Drylands

Part of the book series: Ecological Studies ((ECOLSTUD,volume 226))

Abstract

Biological soil crusts (biocrusts) are organo-sedimentary systems in which both the organic and the inorganic mineral components play dynamic roles in determining the architecture and evolution of the system, as they interact between themselves and with the physical environment. We review critically advances in the description of the microstructure of biocrusts with respect to their abiotic and biological components, as well as the interactions between the two in time and space that result in important properties of environmental relevance. We pay special attention to the processes of crust biological and physical succession and to mineral weathering processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amézketa E (1999) Soil aggregate stability: a review. J Sustain Agr 14(2–3):83–151. doi:10.1300/J064v14n02_08

    Article  Google Scholar 

  • Bachmann E (1904) Die Beziehungen der Kieselflechten zu ihrem Substrat. Ber Deut Bot Ges 22:101–104

    Google Scholar 

  • Bachmann E (1913) Die Beziehungen der Kalkflechten zu ihrem Substrat. Ber Deut Bot Ges 31:3–12

    Google Scholar 

  • Badorreck A, Gerke HH, Hüttl RF (2013) Morphology of physical soil crusts and infiltration patterns in an artificial catchment. Soil Tillage Res 129:1–8. doi:10.1016/j.still.2013.01.001

    Article  Google Scholar 

  • Bates ST, Garcia-Pichel F (2009) A culture-independent study of free-living fungi in biological soil crusts of the Colorado Plateau: their diversity and relative contribution to microbial biomass. Environ Microbiol 11:56–67

    Article  CAS  PubMed  Google Scholar 

  • Bates ST, Nash TH, Sweat KG, Garcia-Pichel F (2010) Fungal communities of lichen-dominated biological soil crusts: diversity, relative microbial biomass, and their relationship to disturbance and crust cover. J Arid Environ 74:1192–1199

    Article  Google Scholar 

  • Baran R, Brodie EL, Mayberry-Lewis J, Nunes Da Rocha U, Bowen BP, Karaoz U, Cadillo-Quiroz H, Garcia-Pichel F, Northen TR (2015) Exometabolite niche partitioning among sympatric soil bacteria. Nat Commun 6:8289. doi:10.1038/ncomms9289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell RA, Athey PV, Sommerfeld MR (1986) Cryptoendolithic algal communities of the Colorado Plateau. J Phycol 22:429–435

    Article  Google Scholar 

  • Beraldi H, Garcia-Pichel F (2010) Biogenicity of roll-up structures and their potential as biosignatures of ancient life on land. Geobiology 9(1):10–23

    Article  Google Scholar 

  • Beraldi-Campesi H, Hartnett H, Anbar A, Gordon G, Garcia-Pichel F (2009) Effects of biological soil crusts on soil elemental concentrations; implications for biogeochemistry and as traceable biosignatures of ancient life on land. Geobiology 7:348–359

    Article  CAS  PubMed  Google Scholar 

  • Beraldi-Campesi H, Farmer J, Garcia-Pichel F (2014) Modern terrestrial sedimentary biostructures and their fossil analogs in mesoproterozoic subaerial deposits. PALAIOS 29(2):45–54. doi:10.2110/palo.2013.084

    Article  Google Scholar 

  • Bowker MA, Belnap J, Davidson DW, Goldstein H (2006) Correlates of biological soil crust distribution across a continuum of spatial scales: support for a hierarchical conceptual model. J Appl Ecol 43:152–163

    Article  Google Scholar 

  • Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124(1–2):3–22. doi:10.1016/j.geoderma.2004.03.005

    Article  CAS  Google Scholar 

  • Büdel B, Weber B, Kühl M, Pfanz H, Sültemeyer D, Wessels D (2004) Reshaping of sandstone surfaces by cryptoendolithic cyanobacteria: bioalkalization causes chemical weathering in arid landscapes. Geobiology 2:261–268

    Article  Google Scholar 

  • Callebaut F, Gabriels D, Minjauw W, De Boodt M (1985) Determination of soil surface strength with a needle-type penetrometer. Soil Tillage Res 5:227–245. doi:10.1016/0167-1987(85)90017-0

    Article  Google Scholar 

  • Chen J, Blume H-P, Beyer L (2000) Weathering of rocks induced by lichen colonization—a review. Catena 39:121–146

    Article  CAS  Google Scholar 

  • Chen R, Zhang Y, Li Y, Wei W, Zhang J, Wu N (2009) The variation of morphological features and mineralogical components of biological soil crusts in the Gurbantunggut Desert of Northwestern China. Environ Geol 57:1135–114

    Article  Google Scholar 

  • Couradeau E, Karaoz U, HsiaoChien L, Nunes da Rocha U, Northen T, Brodie E, Garcia-Pichel F (2016) Bacteria increase arid land soil surface temperature through the production of sunscreens. Nat Commun 7:10373. doi:10.1038/ncomms10373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danin A, Gerson R, Garty J (1983) Weathering patterns on hard limestone and dolomite by endolithic lichens and cyanobacteria: supporting evidence for eolian contribution to Terra Rossa soil. Soil Sci 136(4):213–217

    Article  Google Scholar 

  • de los Rios A, Wierzchos J, Sancho LG, Ascaso C (2003) Acid microenvironments in microbial biofilms of Antarctic endolithic microecosystems. Environ Microbiol 5(4):231–237

    Article  PubMed  Google Scholar 

  • de los Rios A, Grube M, Sancho LG, Ascaso C (2007) Ultrastructural and genetic characteristics of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks. FEMS Microbiol Ecol 59:386–395

    Article  CAS  PubMed  Google Scholar 

  • Dietze M, Bartel S, Lindner M, Kleber A (2012) Formation mechanisms and control factors of vesicular soil structure. Catena 99:83–96. doi:10.1016/j.catena.2012.06.011

    Article  CAS  Google Scholar 

  • Drahorad SL, Felix-Henningsen P (2013) Application of an electronic micropenetrometer to assess mechanical stability of biological soil crusts. J Plant Nutr Soil Sci 6:904–909. doi:10.1002/jpln.201200291

    Article  Google Scholar 

  • Drahorad SL, Steckenmesser D, Felix-Henningsen P, Lichner L, Rodný M (2013) Ongoing succession of biological soil crusts increases water repellency—a case study on Arenosols in Sekule, Slovakia. Biologia 68(6):1089–1093. doi:10.2478/s11756-013-0247-6

    Article  Google Scholar 

  • Eichler H (1981) Kleinformen der hocharktischen Verwitterung im Bereich der Oobloyah Bay, N.-Ellsmere Island, N.W.T., Kanada-Formengenese und Prozesse. Heidelberger Geogr Arbeiten 69:465–486

    Google Scholar 

  • Elliott DR, Thomas AD, Hoon SR, Sen R (2014) Niche partitioning of bacterial communities in biological crusts and soils under grasses, shrubs and trees in the Kalahari. Biodivers Conserv 23:1709–1733

    Article  Google Scholar 

  • Felde VJMNL, Peth S, Uteau-Puschmann D, Drahorad S, Felix-Henningsen P (2014) Soil microstructure as an under-explored feature of biological soil crust hydrological properties: case study from the NW Negev Desert. Biodivers Conserv 23(7):1687–1708. doi:10.1007/s10531-014-0693-7

    Article  Google Scholar 

  • Fischer T, Veste M, Schaaf W, Düming A, Kögel-Knabner I, Wiehe W, Bens O, Hüttl RF (2010) Initial pedogenesis in a topsoil crust 3 years after construction of an artificial catchment in Brandenburg, NE Germany. Biogeochemistry 101:165–176. doi:10.1007/s10533-010-9464-z

    Article  Google Scholar 

  • Friedmann EI (1982) Endolithic organisms in the antarctic cold desert. Science 215:1045–1053

    Article  CAS  PubMed  Google Scholar 

  • Friedmann I, Lipkin Y, Ocampo-Paus R (1967) Desert algae of the Negev (Israel). Phycologia 6(4):185–200

    Article  Google Scholar 

  • Friedmann EI, Hua M, Ocampo-Friedmann R (1988) Cryptoendolithic lichen and cyanobacterial communities of the Ross Desert, Antarctica. Polarforschung 58(2/3):251–259

    CAS  PubMed  Google Scholar 

  • Garcia-Pichel F (1995) A scalar irradiance microprobe for the measurement of UV radiation at high spatial resolution. Photochem Photobiol 61:248–254

    Article  Google Scholar 

  • Garcia-Pichel F (2002) Desert environments: biological soil crusts. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, pp 1019–1023

    Google Scholar 

  • Garcia-Pichel F (2006) Plausible mechanisms for the boring on carbonates by microbial phototrophs. Sediment Geol 185:205–213

    Article  Google Scholar 

  • Garcia-Pichel F, Belnap J (1996) Microenvironments and microscale productivity of cyanobacterial desert crusts. J Phycol 32:774–782

    Article  Google Scholar 

  • Garcia-Pichel F, Pringault O (2001) Cyanobacteria track water in desert soils. Nature 413:380–381

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Pichel F, Wojciechowski MF (2009) The evolution of a capacity to build supra-cellular ropes enabled filamentous cyanobacteria to colonize highly erodible substrates. PLoS One 4(11):e7801

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Pichel F, Johnson SL, Youngkin D, Belnap J (2003) Small-scale vertical distribution of bacterial biomass and diversity in biological soil crusts from arid lands in the Colorado Plateau. Microb Ecol 46:312–321

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Pichel F, López-Cortés A, Nübel U (2001) Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. Appl Environ Microbiol 67:1902–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Pichel F, Ramírez-Reinat E, Gao Q (2010) Microbial excavation of solid carbonates powered by P-type ATPase-mediated transcellular Ca2+ transport. PNAS 107(50):21749–21754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George DB, Davidson DW, Schleip KC, Patrell-Kim LJ (2000) Microtopography of microbiotic crusts on the Colorado Plateau, and the distribution of component organisms. West N Am Nat 60:343–354

    Google Scholar 

  • Golubić S, Krumbein W, Schneider J (1979) The carbon cycle. In: Trudinger PA, Swaine DJ (eds) Biogeochemical cycling of mineral-forming elements. Elsevier Scientific, Amsterdam, pp 29–45

    Chapter  Google Scholar 

  • Guo Y-R, Zhao H-L, Zuo X, Drake S, Zhao X (2008) Biological soil crust development and its topsoil properties in the process of dune stabilization, Inner Mongolia, China. Environ Geol 54:653–662

    Article  CAS  Google Scholar 

  • Hillel D, Warrick AW, Baker RS, Rosenzweig C (1998) Environmental soil physics. Academic, San Diego, CA

    Google Scholar 

  • Hu C, Zhang D, Huang Z, Liu Y (2003) The vertical microdistribution of cyanobacteria and green algae within desert crusts and the development of the algal crusts. Plant Soil 257:97–111

    Article  CAS  Google Scholar 

  • Jimenez Aguilar A, Huber-Sannwald E, Belnap J, Smart DR, Arredondo Moreno JT (2009) Biological soil crusts exhibit a dynamic response to seasonal rain and release from grazing with implications for soil stability. J Arid Environ 73:1158–1169

    Article  Google Scholar 

  • Johnson SL, Budinoff CR, Belnap J, Garcia-Pichel F (2005) Relevance of ammonium oxidation in biological soil crust communities. Environ Microbiol 7:1–12

    Article  CAS  PubMed  Google Scholar 

  • Johnson SL, Neuer S, Garcia-Pichel F (2007) Export of nitrogenous compounds due to incomplete cycling within biological soil crusts of arid lands. Environ Microbiol 9:680–689

    Article  CAS  PubMed  Google Scholar 

  • Lan S, Wu L, Zhang D, Hu C (2012) Successional stages of biological soil crusts and their microstructure variability in Shapotou region (China). Environ Earth Sci 65:77–88

    Article  Google Scholar 

  • Maestre FT, Huesca M, Zaady E, Bautista S, Cortina J (2002) Infiltration, penetration resistance and microphytic crust composition in contrasted microsites within a Mediterranean semi-arid steppe. Soil Biol Biochem 34(6):895–898. doi:10.1016/S0038-0717(02)00021-4

    Article  CAS  Google Scholar 

  • Mager DM (2010) Carbohydrates in cyanobacterial soil crusts as a source of carbon in the southwest Kalahari, Botswana. Soil Biol Biochem 42(2):313–318. doi:10.1016/j.soilbio.2009.11.009

    Article  CAS  Google Scholar 

  • Maier S, Schmidt TSB, Zheng LJ, Peer T, Wagner V, Grube M (2014) Analyses of dryland biological soil crusts highlight lichens as an important regulator of microbial communities. Biodivers Conserv 23:1735–1755

    Article  Google Scholar 

  • Malam Issa O, Défarge C, Trichet J, Valentin C, Rajot JL (2009) Microbiotic soil crusts in the Sahel of Western Niger and their influence on soil porosity and water dynamics. CATENA 77(1):48–55. doi:10.1016/j.catena.2008.12.013

    Article  Google Scholar 

  • Marusenko Y, Bates ST, Anderson I, Johnson S, Soule T, Garcia-Pichel F (2013) Ammonia-oxidizing archaea and bacteria are structured by geography in biological soil crusts across North American arid lands. Ecol Process 2:9. doi:10.1186/2192-1709-2-9

    Article  Google Scholar 

  • Miralles-Mellado I, Cantón Y, Solé-Benet A (2011) Two-dimensional porosity of crusted silty soils: indicators of soil quality in semiarid rangelands? Soil Sci Soc Am J 75(4):1330–1342. doi:10.2136/sssaj2010.0283

    Article  CAS  Google Scholar 

  • Pringault O, Garcia-Pichel F (2004) Hydrotaxis of cyanobacteria in desert crusts. Microbial Ecol 47:363–373

    Article  Google Scholar 

  • Raanan H, Felde VJMNL, Peth S, Drahorad S, Ionescu D, Eshkol G, Treves H, Felix-Henningsen P, Berkowicz S, Keren N, Horn R, Hagemann M, Kaplan A (2016) Three-dimensional structure and cyanobacterial activity within a desert biological soil crust. Environ Microbiol 18: 372–383. doi:10.1111/1462-2920.12859

    Google Scholar 

  • Rajeev L, Nunes da Rocha U, Klitgord N, Luning EG, Fortney J, Axen SP, Shih PM, Bouskill NJ, Bowen BP, Kerfeld C, Garcia-Pichel F, Brodie EL, Northen TR, Mukhopadhyay A (2013) Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. ISME J 7:2178–2191. doi:10.1038/ismej.2013.83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramirez-Reinat EL, Garcia-Pichel F (2012) Prevalence of Ca2 + -ATPase-mediated carbonate dissolution among cyanobacterial euendoliths. Appl Environ Microb 78(1):7–13

    Article  CAS  Google Scholar 

  • Rao B, Liu Y, Lan S, Wu P, Wang W, Li D (2012) Effects of sand burial stress on the early developments of cyanobacterial crusts in the field. Eur J Soil Biol 48:48–55

    Article  Google Scholar 

  • Rossi F, Potrafka R, Garcia-Pichel F, de Philippis R (2012) Role of the exo-polysaccharides in enhancing hydraulic conductivity of biological soil crusts. Soil Biol Biochem 46:33–40

    Article  CAS  Google Scholar 

  • Serstevens A, Rouxhet PG, Herbillon AJ (1978) Alteration of mica surfaces by water and solutions. Clay Miner 13:401–410

    Article  Google Scholar 

  • Smith SM, Abed RMM, Garcia-Pichel F (2004) Biological soil crusts of sand dunes in Cape Cod National Seashore Massachusetts, USA. Microbial Ecol 28:200–208

    Article  Google Scholar 

  • Steven B, Gallegos-Graves L, Belnap J, Kuske CR (2013) Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material. FEMS Microbiol Ecol 86:101–113

    Article  CAS  PubMed  Google Scholar 

  • Thomas AD, Dougill AJ (2006) Distribution and characteristics of cyanobacterial soil crusts in the Molopo Basin, South Africa. J Arid Environ 64(2):270–283. doi:10.1016/j.jaridenv.2005.04.011

    Article  Google Scholar 

  • Thomas AD, Dougill AJ (2007) Spatial and temporal distribution of cyanobacterial soil crusts in the Kalahari: implications for soil surface properties. Geomorphology 85:17–29

    Article  Google Scholar 

  • Veluci RM, Neher DA, Weicht TR (2006) Nitrogen fixation and leaching of biological soil crust communities in mesic temperate soils. Microbial Ecol 51(2):189–96. doi:10.1007/s00248-005-0121-3

    Article  CAS  Google Scholar 

  • Verrecchia E, Yair A, Kidron GJ, Verrecchia K (1995) Physical properties of the psammophile cryptogamic crust and their consequences to the water regime of sandy soils, north-western Negev Desert, Israel. J Arid Environ 29(4):427–437

    Article  Google Scholar 

  • Weber B, Wessels DCJ, Büdel B (1996) Biology and ecology of cryptoendolithic cyanobacteria of a sandstone outcrop in the Northern Province, South Africa. Algol Stud 83:565–579

    Google Scholar 

  • Weber B, Scherr C, Bicker F, Friedl T, Büdel B (2011) Respiration-induced weathering patterns of two endolithically growing lichens. Geobiology 9:34–43

    Article  CAS  PubMed  Google Scholar 

  • Wessels DCJ, Büdel B (1995) Epilithic and cryptoendolithic cyanobacteria of Clarens sandstone cliffs in the Golden Gate Highlands National Park, South Africa. Bot Acta 108:220–226

    Article  Google Scholar 

  • Wessels DCJ, Schoeman P (1988) Mechanism and rate of weathering of Clarens sandstone by an endolithic lichen. S Afr J Sci 84:274–277

    Google Scholar 

  • Williams AJ, Buck BJ, Beyene MA (2012) Biological soil crusts in the Mojave Desert, USA: micromorphology and pedogenesis. Soil Sci Soc Am J 76(5):1685–1695. doi:10.2136/sssaj2012.0021

    Article  CAS  Google Scholar 

  • Wu L, Lan S, Zhang D, Hu C (2011) Small-scale vertical distribution of algae and structure of lichen soil crusts. Microb Ecol 62:715–724

    Article  PubMed  Google Scholar 

  • Yair A (1990) Runoff generation in a sandy area—the Nizzana Sands, Western Negev, Israel. Earth Surf Process Land 15:597–609

    Article  Google Scholar 

  • Yair A, Almog R, Veste M (2011) Differential hydrological response of biological topsoil crusts along a rainfall gradient in a sandy arid area: Northern Negev desert. Israel Catena 87(3):326–333

    Article  Google Scholar 

  • Yeager CM, Kornosky JL, Morgan RL, Cain EC, Belnap J, Garcia-Pichel F, Kuske CR (2007) Three distinct clades of cultured heterocystous cyanobacteria constitute the dominant N-fixing members of biological soil crusts of the Colorado Plateau, USA. FEMS Microbiol Ecol 60(1):85–97

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y (2005) The microstructure and formation of biological soil crusts in their early developmental stage. Chin Sci Bull 50(2):117–121

    Google Scholar 

  • Zhang YM, Wang HL, Wang YQ, Yang WK, Zhang DY (2006) The microstructure of microbiotic crust and its influence on wind erosion for a sandy soil surface in the Gurbantunggut Desert of Northwestern China. Geoderma 132:441–449

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferran Garcia-Pichel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Garcia-Pichel, F., Felde, V.J.M.N.L., Drahorad, S.L., Weber, B. (2016). Microstructure and Weathering Processes Within Biological Soil Crusts. In: Weber, B., Büdel, B., Belnap, J. (eds) Biological Soil Crusts: An Organizing Principle in Drylands. Ecological Studies, vol 226. Springer, Cham. https://doi.org/10.1007/978-3-319-30214-0_13

Download citation

Publish with us

Policies and ethics