Skip to main content

Endolithic Microorganisms and Their Habitats

  • Chapter
  • First Online:
Their World: A Diversity of Microbial Environments

Part of the book series: Advances in Environmental Microbiology ((AEM,volume 1))

Abstract

Endolithic microorganisms are widespread in desert biomes, where hostile environmental conditions limit the majority of life to rock habitats. In these habitats, microorganisms receive light for photosynthesis, moderated and warmer temperatures, protection from UV radiation, and prolonged exposure to liquid water. In general, these microbial communities are composed of phototrophic microorganisms as well as fungi and heterotrophic bacteria. Microbial composition is distinct from soil communities, suggesting these habitats select for microorganisms best suited to this environment. The habitat is not nutrient limited, which explains why these microbial communities colonize a wide range of lithic substrates with different mineralogies; however, greater environmental pressures select for those able to tolerate increasingly harsh conditions. Growth rates vary primarily as a function of moisture availability, resulting in long-lived communities in the driest deserts. While most microorganisms require liquid water for growth, some lichens with an algal phycobiont can photosynthesize with water vapor alone, a significant advantage in these water-limited biomes. Additional strategies against stress include synthesis of pigments, EPS, and osmoprotectants, which significantly offsets the growth of biomass. Microbial activity leads to physical and geochemical weathering, but can also result in stabilization of the lithic habitat. Identification of endolithic biosignatures and microbial fossils has resulted in their study from an astrobiological perspective in the search for life on other planets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adhikary SP (1998) Polysaccharides from mucilaginous envelope layers of cyanobacteria and their ecological significance. J Sci Ind Res 57:454–466

    CAS  Google Scholar 

  • Ascaso C, Wierzchos J (2003) The search for biomarkers and microbial fossils in Antarctic rock microhabitats. Geomicrobiol J 20:439–450

    Article  CAS  Google Scholar 

  • Ascaso C, Wierzchos J, Castello R (1998) Study of the biogenic weathering of calcareous litharenite stones caused by lichen and endolithic microorganisms. Int Biodeterior Biodegrad 42:29–38

    Article  CAS  Google Scholar 

  • Banerjee M, Whitton BA, Wynn-Williams DD (2000) Phosphatase activities of endolithic communities in rocks of the Antarctic Dry Valleys. Microb Ecol 39:80–91

    Article  CAS  PubMed  Google Scholar 

  • Bell RA (1993) Cryptoendolithic algae of hot semiarid lands and deserts. J Phycol 29:133–139

    Article  Google Scholar 

  • Bell RA, Athey PV, Sommerfeld MR (1986) Cryptoendolithic algal communities of the Colorado plateau. J Phycol 22:429–435

    Article  Google Scholar 

  • Bennett PC (1991) Quartz dissolution in organic-rich aqueous systems. Geochim Cosmochim Acta 55:1781–1797

    Article  CAS  Google Scholar 

  • Bennett PC, Siegel DI (1987) Increased solubility of quartz in water due to complexation by dissolved organic compounds. Nature 326:684–687

    Article  CAS  Google Scholar 

  • Billi D, Friedmann EI, Hofer KG, Caiola MG, Ocampo-Friedman R (2000) Ionizing-radiation resistance in the desiccation-tolerant cyanobacterium Chroococcidiopsis. Appl Environ Microbiol 66:1489–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Billi D, Viaggiu E, Cockell CS, Rabbow E, Horneck G, Onofri S (2011) Damage escape and repair in dried Chroococcidiopsis spp. from hot and cold deserts exposed to simulated space and Martian conditions. Astrobiology 11:65–73

    Article  CAS  PubMed  Google Scholar 

  • Blackhurst RL, Jarvis K, Grady MM (2004) Biologically–induced elemental variations in Antarctic sandstones: a potential test for Martian micro-organisms. Int J Astrobiol 3:97–106

    Article  CAS  Google Scholar 

  • Blackhurst RL, Genge MJ, Kearsley AT, Grady MM (2005) Cryptoendolithic alteration of Antarctic sandstones: pioneers or opportunists? J Geophys Res Planet 110:E12S24

    Article  Google Scholar 

  • Blum JD, Klaue A, Nezat CA, Driscoll CT, Johnson CE, Siccama TG, Eagar C, Fahey TJ, Likens GE (2002) Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems. Nature 417:729–731

    Article  CAS  PubMed  Google Scholar 

  • Boison G, Mergel A, Jolkver H, Bothe H (2004) Bacterial life and dinitrogen fixation at a gypsum rock. Appl Environ Microbiol 70:7070–7077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonani G, Friedmann EI, Ocampo-Friedmann R, McKay CP, Wolfli W (1988) Preliminary report on radiocarbon dating of cryptoendolithic microorganisms. Polarforschung 58:199–200

    CAS  PubMed  Google Scholar 

  • Brady PV, Walther JV (1989) Controls on silicate dissolution rates in neutral and basic pH solutions at 25°C. Geochim Cosmochim Acta 53:2823–2830

    Article  CAS  Google Scholar 

  • Brantley SL, Crane SR, Crerar DA, Hellman R, Stallard R (1986) Dissolution at dislocation etch pits in quartz. Geochim Cosmochim Acta 50:2349–2361

    Article  CAS  Google Scholar 

  • Brock TD (1975) Effect of water potential on a Microcoleus (Cyanophyceae) from a desert crust. J Phycol 11:316–320

    Google Scholar 

  • Büdel B, Lange OL (1991) Water status of green and blue-green phycobionts in lichen thalli after hydration by water vapor uptake: do they become turgid? Bot Acta 104:361–366

    Article  Google Scholar 

  • Büdel B, Weber B, Kuhl M, Pfanz H, Sultemeyer D, Wessels D (2004) Reshaping of sandstone surfaces by cryptoendolithic cyanobacteria: bioalkalization causes chemical weathering in arid landscapes. Geobiology 2:261–268

    Article  Google Scholar 

  • Büdel B, Bendix J, Bicker FR, Green TGA (2008) Dewfall as a water source frequently activates the endolithic cyanobacterial communities in the granites of Taylor Valley, Antarctica. J Phycol 44:1415–1424

    Article  PubMed  Google Scholar 

  • Büdel B, Schulz B, Reichenberger H, Bicker F, Green TGA (2009) Cryptoendolithic cyanobacteria from calcite marble rock ridges, Taylor Valley, Antarctica. Algol Stud 129:61–69

    Article  Google Scholar 

  • Bungartz F, Garvie LAJ, Nash TH III (2004) Anatomy of the endolithic Sonoran Desert lichen Verrucaria rubrocincta Breuss: implications for biodeterioration and biomineralization. Lichenology 36:55–73

    Article  Google Scholar 

  • Burford EP, Fomina M, Gadd GM (2003) Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineral Mag 67:1127–1155

    Article  CAS  Google Scholar 

  • Burkins MB, Virginia RA, Chamberlain CP, Wall DH (2000) Origin and distribution of soil organic matter in Taylor Valley, Antarctica. Ecology 81:2377–2391

    Article  Google Scholar 

  • Butin H (1954) Physiologisch-ökologische Untersuchungen über den Wasserhaushalt und die Photosynthese bei Flechten. Biol Zbl 73:459–502

    Google Scholar 

  • Caneva G, Lombardozzi V, Ceschin S, Municchia AC, Salvadori O (2014) Unusual differential erosion related to the presence of endolithic microorganisms (Martvili, Georgia). J Cult Herit 15:538–545

    Article  Google Scholar 

  • Cary SC, McDonald IR, Barrett JE, Cowan DA (2010) On the rocks: the microbiology of Antarctic Dry Valley soils. Nat Rev Microbiol 8:129–138

    Article  CAS  PubMed  Google Scholar 

  • Casamatta DA, Verb RG, Beaver JR, Vis ML (2002) An investigation of the cryptobiotic community from sandstone cliffs in southeast Ohio. Int J Plant Sci 163:837–845

    Article  Google Scholar 

  • Chan Y, Lacap DC, Lau MCY, Ha KY, Warren-Rhodes KA, Cockell CS, Cowan DA, McKay CP, Pointing SB (2012) Hypolithic microbial communities: between a rock and a hard place. Environ Microbiol 14:2272–2282

    Article  PubMed  Google Scholar 

  • Cockell C, Stokes MD (2004) Widespread colonization by polar hypoliths. Nature 431:414

    Article  CAS  PubMed  Google Scholar 

  • Cockell CS, McKay CP, Omelon C (2003) Polar endoliths – an anti-correlation of climate extremes and microbial diversity. Int J Astrobiol 1:305–310

    Article  Google Scholar 

  • Cockell CS, Olsson K, Knowles F, Kelly L, Herrera A, Thorsteinsson T, Marteinsson V (2009a) Bacteria in weathered basaltic glass, Iceland. Geomicrobiol J 26:491–507

    Article  CAS  Google Scholar 

  • Cockell CS, Olsson-Francis K, Herrera A, Meunier A (2009b) Alteration textures in terrestrial volcanic glass and the associated bacterial community. Geobiology 7:50–65

    Article  CAS  PubMed  Google Scholar 

  • Cockell CS, Osinski GR, Banerjee NR, Howard KT, Gilmour I, Watson JS (2010) The microbe-mineral environment and gypsum neogenesis in a weathered polar evaporite. Geobiology 8:293–2308

    Article  CAS  PubMed  Google Scholar 

  • Cowan DA, Khan N, Pointing SB, Cary C (2010) Diverse hypolithic refuge communities in the McMurdo Dry Valleys. Antarct Sci 22:714–720

    Article  Google Scholar 

  • Danin A, Gerson R, Garty J (1983) Weathering patterns on hard limestone and dolomite by endolithic lichens and cyanobacteria: supporting evidence for eolian contribution to Terra Rosa soil. Soil Sci 136:213–217

    Article  Google Scholar 

  • Davila AF, Gómez-Silva B, de los Ríos A, Ascaso C, Olivares H, McKay CP, Wierzchos J (2008) Facilitation of endolithic microbial survival in the hyperarid core of the Atacama Desert by mineral deliquescence. J Geophys Res Biogeo 113, G01028

    Google Scholar 

  • de la Torre JR, Goebel BM, Friedmann EI, Pace NR (2003) Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 69:3858–3867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de los Ríos A, Wierzchos J, Ascaso C (2002) Microhabitats and chemical microenvironments under saxicolous lichens growing on granite. Microb Ecol 43:181–188

    Article  PubMed  CAS  Google Scholar 

  • de los Ríos A, Wierzchos J, Sancho LG, Ascaso C (2003) Acid microenvironments in microbial biofilms of Antarctic endolithic microecosystems. Environ Microbiol 5:231–237

    Article  PubMed  Google Scholar 

  • de los Ríos A, Wierzchos J, Sancho LG, Ascaso C (2004) Exploring the physiological state of continental Antarctic endolithic microorganisms by microscopy. FEMS Microbiol Ecol 50:143–152

    Article  PubMed  CAS  Google Scholar 

  • de los Ríos A, Sancho LG, Grube M, Wierzchos J, Ascaso C (2005) Endolithic growth of two Lecidea lichens in granite from continental Antarctica detected by molecular and microscopy techniques. New Phytol 165:181–190

    Article  PubMed  Google Scholar 

  • de los Ríos A, Grube M, Sancho L, Ascaso C (2007) Ultrastructural and genetic characteristics of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks. FEMS Microbiol Ecol 59:386–395

    Article  PubMed  CAS  Google Scholar 

  • de los Ríos A, Grube M, Sancho LG, Davila AF, Kastovsky J, McKay CP, Gómez-Silva B, Wierzchos J (2010) Comparative analysis of the microbial communities inhabiting halite evaporites of the Atacama Desert. Int Microbiol 13:79–89

    PubMed  Google Scholar 

  • de los Ríos A, Wierzchos J, Ascaso C (2014) The lithic microbial ecosystems of Antarctica’s McMurdo Dry Valleys. Antarct Sci 26:459–477

    Article  Google Scholar 

  • Dong H, Rech JA, Jiang H, Sun H, Buck BJ (2007) Endolithic cyanobacteria in soil gypsum: occurrences in Atacama (Chile), Mojave (United States), and Al-Jafr (Jordan) Deserts. J Geophys Res Biogeo 112, G02030

    Google Scholar 

  • Edwards HGM, Wynn-Williams DD, Jorge-Villar SE (2004) Biological modification of haematite in Antarctic cryptoendolithic communities. J Raman Spectrosc 35:470–474

    Article  CAS  Google Scholar 

  • Ehrlich HL (1998) Geomicrobiology: its significance for geology. Earth-Sci Rev 45:45–60

    Article  CAS  Google Scholar 

  • Ferris FG, Lowson EA (1997) Ultrastructure and geochemistry of endolithic microorganisms in limestone of the Niagara Escarpment. Can J Microbiol 43:211–219

    Article  CAS  Google Scholar 

  • Fewer DJ, Friedl T, Büdel B (2002) Chroococcidiopsis and heterocyst-differentiating cyanobacteria are each other’s closest living relatives. Mol Phylogenet Evol 23:82–90

    Article  CAS  PubMed  Google Scholar 

  • Fortin D, Ferris FG (1998) Precipitation of dissolved silica, sulfate and iron on bacterial surfaces. Geomicrobiol J 15:309–324

    Article  CAS  Google Scholar 

  • Fortin D, Ferris FG, Beveridge TJ (1997) Surface-mediated mineral development by bacteria. In: Banfield JF, Nealson KH (eds) Reviews in mineralogy and geochemistry, vol 35. Mineralogical Society of America, Chantilly, VA, pp 161–180

    Google Scholar 

  • Fortin D, Ferris FG, Scott SD (1998) Formation of Fe-silicates and Fe-oxides on bacterial surfaces in samples collected near hydrothermal vents on the Southern Explorer Ridge in the northeast Pacific Ocean. Am Mineral 83:1399–1408

    Article  CAS  Google Scholar 

  • Friedmann EI (1977) Microorganisms in antarctic desert rocks from dry valleys and Dufek Massif. Antarct J US 12:26–30

    Google Scholar 

  • Friedmann EI (1978) Melting snow in the dry valleys is a source of water for endolithic microorganisms. Antarct J US 13:162–163

    Google Scholar 

  • Friedmann EI (1980) Endolithic microbial life in hot and cold deserts. Origins Life Evol B 10:223–235

    Article  CAS  Google Scholar 

  • Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053

    Article  CAS  PubMed  Google Scholar 

  • Friedmann EI (1986) The Antarctic cold desert and the search for traces of life on Mars. Adv Space Res 6:167–172

    Article  Google Scholar 

  • Friedmann EI, Kibler AP (1980) Nitrogen economy of endolithic microbial communities in hot and cold deserts. Microb Ecol 6:95–108

    Article  CAS  PubMed  Google Scholar 

  • Friedmann EI, Koriem A (1989) Life on Mars: how it disappeared (if it ever was there). Adv Space Res 9:167–172

    Article  CAS  PubMed  Google Scholar 

  • Friedmann EI, McKay CP (1985) A method for continuous monitoring of snow: application to the cryptoendolithic microbial community of Antarctica. Antarct J US 20:179–181

    Google Scholar 

  • Friedmann EI, Ocampo R (1976) Endolithic blue-green algae in the dry valleys: primary producers in the Antarctic desert ecosystem. Science 193:1274–1279

    Article  Google Scholar 

  • Friedmann EI, Ocampo-Friedmann R (1984a) Endolithic microorganisms in extreme dry environments: analysis of a lithobiontic habitat. In: Klug MJ, Reddy CA (eds) Current perspectives in microbiology. American Society of Microbiology, Washington, DC, pp 177–185

    Google Scholar 

  • Friedmann EI, Ocampo-Friedmann R (1984b) The Antarctic cryptoendolithic ecosystem: relevance to exobiology. Orig Life 14:771–776

    Article  CAS  PubMed  Google Scholar 

  • Friedmann EI, Weed R (1987) Microbial trace-fossil formation, biogenous, and abiotic weathering in the Antarctic cold desert. Science 236:703–705

    Article  CAS  PubMed  Google Scholar 

  • Friedmann I, Lipkin Y, Ocampo-Paus R (1967) Desert algae of the Negev (Israel). Phycologia 6:185–200

    Article  Google Scholar 

  • Friedmann EI, Kappen L, Garty J (1980) Fertile stages of cryptoendolithic lichens in the dry valleys of southern Victoria Land. Antarct J US 15:166–167

    Google Scholar 

  • Friedmann EI, Friedmann RO, McKay CP (1981) Adaptations of cryptoendolithic lichens in the Antarctic desert. In: Jouventin P, Masse L, Trehen P (eds) Colloque sur les Ecosystemes Subantarctiques. Comite National Francais des Recherches Antarctiques, Paris, pp 65–70

    Google Scholar 

  • Friedmann EI, Friedmann RO, Weed R (1986) Trace fossils of endolithic microorganisms in Antarctica - a model For Mars. Origins Life Evol B 16:350

    Article  Google Scholar 

  • Friedmann EI, McKay CP, Nienow JA (1987) The cryptoendolithic microbial environment in the Ross Desert of Antarctica: satellite-transmitted continuous nanoclimate data, 1984 to 1986. Polar Biol 7:273–287

    Article  CAS  PubMed  Google Scholar 

  • Friedmann EI, Hua M, Ocampo-Friedman R (1988) Cryptoendolithic lichen and cyanobacterial communities of the Ross Desert, Antarctica. Polarforschung 58:251–259

    CAS  PubMed  Google Scholar 

  • Friedmann EI, Kappen L, Meyer MA, Nienow JA (1993) Long-term productivity in the cryptoendolithic microbial community of the Ross Desert, Antarctica. Microb Ecol 25:51–69

    CAS  PubMed  Google Scholar 

  • Gadd GM, Sayer JA (2000) Influence of fungi on the environmental mobility of metals and metalloids. In: Lovely DR (ed) Environmental microbe-metal interactions. ASM Press, Washington, DC, pp 237–256

    Chapter  Google Scholar 

  • Garvie LAJ, Knauth LP, Bungartz F, Slonowski S, Nash TH III (2008) Life in extreme environments: survival strategy of the endolithic desert lichen Verrucaria rubrocincta. Naturwissenschaften 95:705–712

    Article  CAS  PubMed  Google Scholar 

  • Gaylarde P, Gaylarde C (2004) Deterioration of siliceous stone monuments in Latin America: microorganisms and mechanisms. Corros Rev 22:395–415

    CAS  Google Scholar 

  • Gerrath JF, Gerrath JA, Matthes U, Larson DW (2000) Endolithic algae and cyanobacteria from cliffs of the Niagara Escarpment, Ontario, Canada. Can J Bot Rev Can Bot 78:807–815

    Article  Google Scholar 

  • Goublic S, Friedmann I, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sediment Petrol 51:475–478

    Google Scholar 

  • Gramain A, Diaz GC, Demergasso C, Lowenstein TK, McGenity TJ (2011) Archaeal diversity along a subterranian salt core from the Salar Grande (Chile). Environ Microbiol 13:2105–2121

    Article  PubMed  Google Scholar 

  • Grasby SE, Londry KL (2007) Biogeochemistry of hypersaline springs supporting a mid-continent marine ecosystem: an analogue for Martian springs? Astrobiology 7:662–683

    Article  CAS  PubMed  Google Scholar 

  • Grasby SE, Allen CC, Longazo TG, Lisle JT, Griffin DW, Beauchamp B (2003) Supraglacial sulfur springs and associated biological activity in the Canadian high Arctic – signs of life beneath the ice. Astrobiology 3:583–596

    Article  CAS  PubMed  Google Scholar 

  • Gratz AJ, Bird P (1993) Quartz dissolution: negative crystal experiments and a rate law. Geochim Cosmochim Acta 57:965–976

    Article  CAS  Google Scholar 

  • Gratz AJ, Manne S, Hansma PK (1991) Atomic force microscopy of atomic-scale ledges and etch pits formed during dissolution of quartz. Science 251:1343–1346

    Article  CAS  PubMed  Google Scholar 

  • Greenfield LG (1988) Forms of nitrogen in Beacon sandstone rocks containing endolithic microbial communities in Southern Victoria Land, Antarctica. Polarforschung 58:211–218

    Google Scholar 

  • Grilli Caiola M, Ocampo-Friedmann R, Friedmann EI (1993) Cytology of long-term desiccation in the desert cyanobacterium Chroococcidiopsis (Chroococcales). Phycologia 32:315–322

    Article  Google Scholar 

  • Hawes I, Howard-Williams C, Vincent WF (1992) Desiccation and recovery of Antarctic cyanobacterial mats. Polar Biol 12:587–594

    Article  Google Scholar 

  • Herrera A, Cockell CS, Self S, Blaxter M, Reitner J, Thorsteinsson T, Arp G, Dröse W, Tindle AG (2009) A cryptoendolithic community in volcanic glass. Astrobiology 9:369–381

    Article  CAS  PubMed  Google Scholar 

  • Hershkovitz N, Oren A, Cohen Y (1991) Accumulation of trehalose and sucrose in cyanobacteria exposed to matric water stress. Appl Environ Microbiol 57:645–648

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hess U (1962) Uber die hydraturabhangige Entwicklung und die Austrocknungsresistenz von Cyanophyceen. Arch Mikrobiol 44:189–218

    Article  CAS  PubMed  Google Scholar 

  • Hiebert FK, Bennett PC (1992) Microbial control of silicate weathering in organic-rich ground water. Science 258:278–281

    Article  CAS  PubMed  Google Scholar 

  • Hirsch P, Hoffmann B, Gallikowski CC, Mevs U, Siebert J, Sittig M (1988) Diversity and identification of heterotrophs from Antarctic rocks of the McMurdo Dry Valleys (Ross Desert). Polarforschung 58:261–269

    Google Scholar 

  • Hirsch P, Eckhardt FEW, Palmer RJ (1995) Fungi active in weathering of rock and stone monuments. Can J Bot Rev Can Bot 73:1384–1390

    Article  Google Scholar 

  • Hirsch P, Gallikowski CA, Siebert J, Peissl K, Kroppenstedt RM, Schumann P, Stackebrandt E, Anderson R (2004a) Deinococcus frigens sp. nov., Deinococcus saxicola sp. nov., and Deinococcus marmoris sp. nov., low temperature and draught-tolerating, UV-resistant bacteria from continental Antarctica. Syst Appl Microbiol 27:636–645

    Article  CAS  PubMed  Google Scholar 

  • Hirsch P, Mevs U, Kroppenstedt RM, Schumann P, Stackebrandt E (2004b) Cryptoendolithic actinomycetes from Antarctic sandstone rock samples: Micromonospora endolithica sp. nov. and two isolates related to Micromonospora coerulea Jensen 1932. Syst Appl Microbiol 27:166–174

    Article  CAS  PubMed  Google Scholar 

  • Hopkins DW, Sparrow AD, Gregorich EG, Elberling B, Novis P, Fraser F, Scrimgeour C, Dennis PG, Meier-Augenstein W, Greenfield LG (2008) Isotopic evidence for the provenance and turnover of organic carbon by soil microorganisms in the Antarctic Dry Valleys. Environ Microbiol 11:597–608

    Article  CAS  Google Scholar 

  • Hoppert M, Flies C, Pohl W, Günzel B, Schneider J (2004) Colonization strategies of lithobiontic microorganisms on carbonate rocks. Environ Geol 46:421–428

    Article  CAS  Google Scholar 

  • Horath T, Bachofen R (2009) Molecular characterization of an endolithic microbial community in dolomite rock in the central Alps (Switzerland). Microb Ecol 58:290–306

    Article  CAS  PubMed  Google Scholar 

  • Hughes KA, Lawley B (2003) A novel Antarctic microbial endolithic community within gypsum crusts. Environ Microbiol 5:555–565

    Article  PubMed  Google Scholar 

  • Johnston CG, Vestal JR (1986) Does iron inhibit cryptoendolithic communities? Antarct J US 21:225–226

    Google Scholar 

  • Johnston CG, Vestal JR (1989) Distribution of inorganic species in two Antarctic cryptoendolithic microbial communities. Geomicrobiol J 7:137–153

    Article  CAS  PubMed  Google Scholar 

  • Johnston CG, Vestal JR (1991) Photosynthetic carbon incorporation and turnover in Antarctic cryptoendolithic microbial communities: are they the slowest growing communities on earth? Appl Environ Microbiol 57:2308–2311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston CG, Vestal JR (1993) Biogeochemistry of oxalate in the Antarctic cryptoendolithic lichen-dominated community. Microb Ecol 25:305–319

    CAS  PubMed  Google Scholar 

  • Jorge Villar SE, Edwards HGM, Cockell CS (2005a) Raman spectroscopy of endoliths from Antarctic cold desert environments. Analyst 130:156–162

    Article  CAS  Google Scholar 

  • Jorge Villar SE, Edwards HGM, Worland MR (2005b) Comparative evaluation of Raman spectroscopy at different wavelengths for extremophile exemplars. Origins Life Evol B 35:489–506

    Article  CAS  Google Scholar 

  • Kappen L (1989) Field measurements of carbon dioxide exchange of the Antarctic lichen Usnea sphacelata in the frozen state. Antarct Sci 1:31–34

    Google Scholar 

  • Kappen L (1993a) Plant activity under snow and ice, with particular reference to lichens. Arctic 46:297–302

    Article  Google Scholar 

  • Kappen L (1993b) Lichens in the Antarctic region. In: Friedman EI (ed) Antarctic microbiology. Wiley, New York, pp 433–490

    Google Scholar 

  • Kappen L, Breuer M (1991) Ecological and physiological investigations in continental Antarctic cryptogams. II: Moisture relations and photosynthesis of lichens near Casey Station, Wilkes Land. Antarct Sci 3:273–278

    Google Scholar 

  • Kappen L, Friedmann EI (1983) Ecophysiology of lichens in the dry valleys of Southern Victoria Island, Antarctica. II. CO2 gas exchange in cryptoendolithic lichens. Polar Biol 1:227–232

    Article  Google Scholar 

  • Kappen L, Schroeter B (1997) Activity of lichens under the influence of snow and ice. Proc NIPR Symp Polar Biol 10:169–178

    Google Scholar 

  • Kappen L, Lange OL, Schulze E-D, Buschbom U, Evenari M (1980) Ecophysiological investigations on lichens of the Negev Desert. VII. The influence on the habitat exposure on dew imbibition and photosynthetic productivity. Flora 169:216–229

    Google Scholar 

  • Kappen L, Friedmann EI, Garty J (1981) Ecophysiology of lichens in the dry valleys of Southern Victoria Land, Antarctica. I. Microclimate of the cryptoendolithic lichen habitat. Flora 171:216–235

    Google Scholar 

  • Kappen L, Bolter M, Kuhn A (1986) Field measurements of net photosynthesis of lichens in the Antarctic. Polar Biol 5:255

    Article  Google Scholar 

  • Kappen L, Schroeter B, Sancho LG (1990) Carbon dioxide exchange of Antarctic crustose lichens in situ measured with a CO2/H2O porometer. Oecologia 82:311–316

    Article  Google Scholar 

  • Kappen L, Sommerkorn M, Schroeter B (1995) Carbon acquisition and water relations of lichens in polar regions – potentials and limitations. Lichenologist 27:531–545

    Article  Google Scholar 

  • Kelly LC, Cockell CS, Herrera-Belaroussi A, Piceno T, Andersen GL, DeSantis T, Brodie E, Thorsteinsson T, Marteinsson V, Poly F, LeRoux X (2011) Bacterial diversity of terrestrial crystalline volcanic rocks, Iceland. Microb Ecol 62:69–79

    Article  CAS  PubMed  Google Scholar 

  • Khan N, Tuffin M, Stafford W, Cary C, Lacap DC, Pointing SB (2011) Hypolithic microbial communities of quartz rocks from Miers Valley, McMurdo Dry Valleys, Antarctica. Polar Biol 34:1657–1668

    Article  Google Scholar 

  • Kidron GJ (2000) Dew moisture regime of endolithic and epilithic lichens inhabiting limestone cobbles and rock outcrops, Negev Highlands, Israel. Flora 195:146–153

    Google Scholar 

  • Kuhlman KR, Venkat P, La Duc MT, Kuhlman GM, McKay CP (2008) Evidence of a microbial community associated with rock varnish at Yungay, Atacama Desert, Chile. J Geophys Res Biogeo 113:G04022

    Google Scholar 

  • Kurtz HD, Netoff DI (2001) Stabilization of friable sandstone surfaces in a desiccating, wind-abraded environment of south-central Utah by rock surface microorganisms. J Arid Environ 48:89–100

    Article  Google Scholar 

  • Lacap DC, Warren-Rhodes KA, McKay CP, Pointing SB (2011) Cyanobacteria and chloroflexi-dominated hypolithic colonization of quartz at the hyper-arid core of the Atacama Desert, Chile. Extremophiles 15:31–38

    Article  PubMed  PubMed Central  Google Scholar 

  • Lange OL (1969) Experimentellökologische Untersuchungen an Flechten der Negev Wüste. I. CO2-Gaswechsel von Ramalina maciformis (Del.) Bory unter kontrollierten Bedingungen im Laboratorium. Flora 158:324–359

    Google Scholar 

  • Lange OL (2003) Photosynthetic productivity of the epilithic lichen Lecanora muralis: long-term field monitoring of CO2 exchange and its physiological interpretation. II. Diel and seasonal patterns of net photosynthesis and respiration. Flora 198:55–70

    Google Scholar 

  • Lange OL, Bertsch A (1965) Photosynthese der Wüstenflechte Ramalina maciformis nach Wasserdampfaufnahme aus dem Luftraum. Naturwissenschaften 52:215–216

    Article  CAS  Google Scholar 

  • Lange OL, Kilian E (1985) Reaktivierung der Photosynthese trockener Flechten durch Wasserdampfaufnahme aus dem Luftraum: Artspezifisch unterschiedliches Verhalten. Flora 176:7–23

    Google Scholar 

  • Lange OL, Redon J (1983) Epiphytische Flechten im Bereich einer chilenischen "Nebeloase" (Fray Jorge). II. Ökophysiologische Charakterisierung von CO2-Gaswechsel und Wasserhaushalt. Flora 174:245–284

    Google Scholar 

  • Lange OL, Ziegler H (1986) Different limiting processes of photosynthesis in lichens. In: Marcelle R, Clijsters H, Van Poucke M (eds) Biological control of photosynthesis. Martinus Nijhoff Publishers, Dordrecht, pp 147–161

    Chapter  Google Scholar 

  • Lange OL, Kilian E, Ziegler H (1986) Water vapor uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as phycobionts. Oecologia 71:104–110

    Article  Google Scholar 

  • Lange OL, Schulze ED, Koch W (1970) Experimentellökologische Untersuchungen an Flechten der Negev Wüste. II. CO2-Gaswechsel und Wasserhaushalt von Ramalina maciformis (Del.) Bory am natürlichen Standort während der sommerlichen Trockenperiode. Flora 159:38–62

    Google Scholar 

  • Lange OL, Meyer A, Zellner H, Ullman I, Wessels DCJ (1990) Eight days in the life of a desert lichen: water relations and photosynthesis of Teloschistes capensis in the coastal fog zone of the Namib Desert. Modoqua 17:17–30

    Google Scholar 

  • Lange OL, Büdel B, Meyer A, Kilian E (1993) Further evidence that activation of net photosynthesis by dry cyanobacterial lichens requires liquid water. Lichenology 25:175–189

    Article  Google Scholar 

  • Lange OL, Meyer A, Büdel B (1994) Net photosynthesis activation of a desiccated cyanobacterium without liquid water in high air humidity alone. Experiments with Microcoleus sociatus isolated from a desert soil crust. Funct Ecol 8:52–57

    Article  Google Scholar 

  • Lange OL, Green TGA, Heber U (2001) Hydration-dependent photosynthetic production of lichens: what do laboratory studies tell us about field performance? J Exp Bot 52:2033–2042

    Article  CAS  PubMed  Google Scholar 

  • Lange OL, Green TGA, Melzer B, Meyer A, Zellner H (2006) Water relations and CO2 exchange of the terrestrial lichen Teloschistes capensis in the Namib fog desert: measurements during two seasons in the field and under controlled conditions. Flora 201:268–280

    Article  Google Scholar 

  • Lian B, Chen Y, Tang Y (2010) Microbes on carbonate rocks and pedogenesis in karst regions. J Earth Sci 21:293–296

    Article  CAS  Google Scholar 

  • Lovely DR, Chapelle FH (1995) Deep subsurface microbial processes. Rev Geophys 33:365–381

    Article  Google Scholar 

  • Makhalanyane TP, Valverde A, Birkeland NK, Cary SC, Tuffin IM, Cowan DA (2013a) Evidence for successional development in Antarctic hypolithic bacterial communities. ISME J 7:2080–2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makhalanyane TP, Valverde A, Lacap DC, Pointing SB, Tuffin MI, Cowan DA (2013b) Evidence of species recruitment and development of hot desert hypolithic communities. Environ Microbiol Rep 5:219–224

    Article  PubMed  Google Scholar 

  • Matthes U, Turner SJ, Larson DW (2001) Light attenuation by limestone rock and its constraint on the depth distribution of endolithic algae and cyanobacteria. Int J Plant Sci 162:263–270

    Article  Google Scholar 

  • McKay CP (2012) Full solar spectrum measurements of absorption of light in a sample of the Beacon Sandstone containing the Antarctic cryptoendolithic microbial community. Antarct Sci 24:243–248

    Article  Google Scholar 

  • McKay CP, Friedmann EI (1985) The cryptoendolithic microbial environment in the Antarctic cold desert: temperature variations in nature. Polar Biol 4:19–25

    Article  CAS  PubMed  Google Scholar 

  • McKay CP, Friedmann EI, Gomez-Silva B, Caceres-Villanueva L, Andersen DT, Landheim R (2003) Temperature and moisture conditions for life in the extreme arid region of the Atacama Desert: four years of observations including the El Nino of 1997-1998. Astrobiology 3:393–406

    Article  CAS  PubMed  Google Scholar 

  • Nash TH III, Reiner A, Demmig-Adams B, Kilian E, Kaiser WM, Lange OL (1990) The effect of atmospheric desiccation and osmotic water stress on photosynthesis and dark respiration of lichens. New Phytol 116:269–276

    Article  Google Scholar 

  • Navarro-González R, Rainey FA, Molina P, Bagaley DR, Hollen BJ, de la Rosa J, Small AM, Quinn RC, Grunthaner FJ, Cáceres L, Gomez-Silva B, McKay CP (2003) Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science 302:1018–1021

    Article  PubMed  CAS  Google Scholar 

  • Nienow JA, Friedmann EI (1993) Terrestrial lithophytic (rock) communities. In: Friedmann EI, Thistle AB (eds) Antarctic microbiology. Wiley-Liss, New York, NY, pp 343–412

    Google Scholar 

  • Nienow JAC, McKay CP, Friedmann EI (1988a) The cryptoendolithic microbial environment in the Ross desert of Antarctica: mathematical models of the thermal regime. Microb Ecol 16:253–270

    Article  Google Scholar 

  • Nienow JAC, McKay CP, Friedmann EI (1988b) The cryptoendolithic microbial environment in the Ross desert of Antarctica: light in the photosynthetically active region. Microb Ecol 16:271–289

    Article  Google Scholar 

  • Norris TB, Castenholz RW (2006) Endolithic photosynthetic communities within ancient and recent travertine deposits in Yellowstone National Park. FEMS Microbiol Ecol 57:470–483

    Article  CAS  PubMed  Google Scholar 

  • Omelon CR, Pollard WH, Ferris FG (2006a) Environmental controls on microbial colonization of high Arctic cryptoendolithic habitats. Polar Biol 30:19–29

    Article  Google Scholar 

  • Omelon CR, Pollard WH, Ferris FG (2006b) Chemical and ultrastructural characterization of high Arctic cryptoendolithic habitats. Geomicrobiol J 23:189–200

    Article  CAS  Google Scholar 

  • Omelon CR, Pollard WH, Ferris FG (2007) Inorganic species distribution and microbial diversity within high Arctic cryptoendolithic habitats. Microb Ecol 54:740–752

    Article  PubMed  Google Scholar 

  • Omelon CR, Pollard WH, Ferris FG, Bennett PC (2008) Cyanobacteria within cryptoendolithichabitats: the role of high pH in biogenic rock weathering in the Canadian high Arctic. Paper presented at the 9th international conference on Permafrost, University of Alaska Fairbanks,Fairbanks, 29 June–3 July

    Google Scholar 

  • Omelon CR, Warden JG, Mykytczuk NCS, Breecker DO, Bennett PC (2013) Microbial respiration in high Arctic cryptoendolithic habitats. In: Paper presented at the 5th international conference on polar and alpine microbiology, Big Sky, Montana, 8–12 Sept 2013

    Google Scholar 

  • Ortega-Calvo JJ, Arino X, Hernandez-Marine M, Saiz-Jimenez C (1995) Factors affecting the weathering and colonization of monuments by phototrophic microorganisms. Sci Total Environ 167:329–341

    Article  CAS  Google Scholar 

  • Palmer RJ, Friedmann EI (1990) Water relations and photosynthesis in the cryptoendolithic microbial habitat of hot and cold deserts. Microb Ecol 19:111–118

    Article  Google Scholar 

  • Palmer RJ, Hirsch P (1991) Photosynthesis-based microbial communities on 2 churches in northern Germany – weathering of granite and glazed brick. Geomicrobiol J 9:103–118

    Article  Google Scholar 

  • Pannewitz S, Schlensog M, Green TGA, Sancho LG, Schroeter B (2003) Are lichens active under snow in continental Antarctica? Oecologia 135:30–38

    Article  PubMed  Google Scholar 

  • Parnell J, Lee P, Cockell CS, Osinski GR (2004) Microbial colonization in impact-generated hydrothermal sulphate deposits, Haughton impact structure, and implications for sulphates on Mars. Int J Astrobiol 3:247–256

    Article  CAS  Google Scholar 

  • Parro V, de Diego-Castilla G, Moreno-Paz M, Blanco Y, Cruz-Gil P, Rodríguez-Manfredi JA, Fernández-Remolar D, Gómez F, Gómez MJ, Rivas LA, Demergasso C, Echeverría A, Urtuvia VN, Ruiz-Bermejo M, Garcia-Villadangos M, Postigo M, Sánchez-Román M, Chong-Diaz G, Gómez-Elvira J (2011) A microbial oasis in the hypersaline Atacama subsurface discovered by a life detector chip: implications for the search for life on Mars. Astrobiology 11:969–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phoenix VR, Bennett PC, Engel AS, Tyler SW, Ferris FG (2006) Chilean high-altitude hot-spring sinters: a model system for UV screening mechanisms by early Precambrian cyanobacteria. Geobiology 4:15–28

    Article  CAS  Google Scholar 

  • Pointing SB, Belnap J (2012) Microbial colonization and controls in dryland systems. Nat Rev Microbiol 10:551–562

    Article  CAS  PubMed  Google Scholar 

  • Pointing SB, Warren-Rhodes KA, Lacap DC, Rhodes KL, McKay CP (2007) Hypolithic community shifts occur as a result of liquid water availability along environmental gradients in China’s hot and cold hyperarid deserts. Environ Microbiol 9:414–424

    Article  CAS  PubMed  Google Scholar 

  • Pointing SB, Chan YK, Lacap DC, Lau MCY, Jurgens JA, Farrell R (2009) Highly specialized microbial diversity in hyper-arid polar desert. Proc Natl Acad Sci USA 106:19964–19969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pontefract A, Osinski GR, Cockell CS, Moore CA, Moores JE, Southam G (2014) Impact-generated endolithic habitat within crystalline rocks of the Haughton impact structure, Devon Island, Canada. Astrobiology 14:522–533

    Article  PubMed  Google Scholar 

  • Potts M (1999) Mechanisms of desiccation tolerance in cyanobacteria. Eur J Phycol 34:319–328

    Article  Google Scholar 

  • Potts M, Friedmann EI (1981) Effects of water stress on cryptoendolithic cyanobacteria from hot desert rocks. Arch Microbiol 130:267–271

    Article  CAS  Google Scholar 

  • Preston LJ, Dartnell LR (2014) Planetary habitability: lessons learned from terrestrial analogues. Int J Astrobiol 13:81–98

    Article  Google Scholar 

  • Rabe L, Ernfridsson E, Edlund J, Pedersen K (2013) Evaluation of nine different treatments for reduction of biological biomass on cultural heritage limestone. Paper presented at the 21st international symposium on environmental biogeochemistry, Wuhan, China, October 13–18

    Google Scholar 

  • Redon J, Lange OL (1983) Epiphytische Flechten im Bereich einer chilenischen "Nebeloase" (Fray Jorge). I. Vegetationskundliche Gliederung und Standortsbedingungen. Flora 174:213–243

    Google Scholar 

  • Roldán M, Ascaso C, Wierzchos J (2014) Fluorescent fingerprints of endolithic phototrophic cyanobacteria living within halite rocks in the Atacama Desert. Appl Environ Microbiol 80:2998–3006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rothschild LJ (1990) Earth analogs for Martian life. Microbes in evaporites, a new model system for life on Mars. Icarus 88:246–260

    Article  CAS  PubMed  Google Scholar 

  • Ruisi S, Barreca D, Selbmann L, Zucconi L, Onofri S (2007) Fungi in Antarctica. Rev Environ Sci Biotechnol 6:127–141

    Article  Google Scholar 

  • Saiz-Jimenez C, Garcia-Rowe J, Garcia del Cura MA, Ortega-Calvo JJ, Roekens E, Van Grieken R (1990) Endolithic cyanobacteria in Maastricht limestone. Sci Total Environ 94:209–220

    Article  CAS  Google Scholar 

  • Sand W, Bock E (1991) Biodeterioration of mineral materials by microorganisms – biogenic sulfuric and nitric acid corrosion of concrete and natural stone. Geomicrobiol J 9:129–138

    Article  CAS  Google Scholar 

  • Scherer S, Potts M (1989) Novel water stress protein from a desiccation-tolerant cyanobacterium. J Biol Chem 264:12546–12553

    CAS  PubMed  Google Scholar 

  • Schlesinger WH, Pippen JS, Wallenstein MD, Hofmockel KS, Klepeis DM, Mahall BE (2003) Community composition and photosynthesis by photoautotrophs under quartz pebbles, southern Mojave desert. Ecology 84:3222–3231

    Article  Google Scholar 

  • Schroeter B (1994) In situ photosynthetic differentiation of the green algal and the cyanobacterial photobiont in the crustose lichen Placopsis contortuplicata. Oecologia 98:212–220

    Article  Google Scholar 

  • Schroeter B, Scheidegger C (1995) Water relations in lichens at subzero temperatures: structural changes and carbon dioxide exchange in the lichen Umbilicaria aprina from continental Antarctica. New Phytol 131:273–285

    Article  Google Scholar 

  • Selbmann L, Onofri S, Fenice M, Federici F, Petruccioli M (2002) Production and structural characterization of the exopolysaccharide of the Antarctic fungus Phoma herbarum CCFEE 5080. Res Microbiol 153:585–592

    Article  CAS  PubMed  Google Scholar 

  • Selbmann L, de Hoog GS, Mazzagalia A, Friedman EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert. Stud Mycol 51:1–32

    Google Scholar 

  • Siebert J, Hirsch P (1988) Characterization of 15 selected coccal bacteria isolated from Antarctic rock and soil samples from the McMurdo-Dry Valleys (South Victoria Land). Polar Biol 9:37–44

    Article  CAS  PubMed  Google Scholar 

  • Siebert J, Palmer RJ, Hirsch P (1991) Analysis of free amino acids in microbially colonized sandstone by precolumn phenyl isothiocyanate derivatization and high-performance liquid chromatography. Appl Environ Microbiol 57:879–881

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siebert J, Hirsch P, Hoffmann B, Gliesche CG, Peissl K, Jendrach M (1996) Cryptoendolithic microorganisms from Antarctic sandstone of Linnaeus Terrace (Asgard range): diversity, properties and interactions. Biodivers Conserv 5:1337–1363

    Article  Google Scholar 

  • Sigler WV, Bachofen R, Zeyer J (2003) Molecular characterization of endolithic cyanobacteria inhabiting exposed dolomite in central Switzerland. Environ Microbiol 5:618–627

    Article  CAS  PubMed  Google Scholar 

  • Smith MC, Bowman JP, Scott FJ, Line MA (2000) Sublithic bacteria associated with Antarctic quartz stones. Antarct Sci 12:177–184

    Google Scholar 

  • Souza-Egipsy V, Ascaso C, Wierzchos J (2002) Ultrastructure and biogeochemical features of microbiotic soil crusts and their implications in a semi-arid habitat. Geomicrobiol J 19:567–580

    Article  CAS  Google Scholar 

  • Starke V, Kirshtein JD, Fogel ML, Steele A (2013) Microbial community composition and endolith colonization at an Arctic thermal spring are driven by calcite precipitation. Environ Microbiol Rep 5:648–659

    PubMed  Google Scholar 

  • Sterflinger K (2000) Fungi as geologic agents. Geomicrobiol J 17:97–124

    Article  CAS  Google Scholar 

  • Sterflinger K, De Baere R, de Hoog GS, De Wachter R, Krumbein WE, Haase G (1997) Coniosporium perforans and C. apollinis, two new rock-inhabiting fungi isolated from marble in the Sanctuary of Delos (Cyclades, Greece). Anton van Lee 72:349–363

    Article  CAS  Google Scholar 

  • Stomeo F, Valverde A, Pointing SB, McKay CP, Warren-Rhodes KA, Tuffin MI, Seely M, Cowan DA (2013) Hypolithic and soil microbial community assembly along an aridity gradient in the Namib desert. Extremophiles 17:329–337

    Article  PubMed  Google Scholar 

  • Stromberg JM, Applin DM, Cloutis EA, Rice M, Berard G, Mann P (2014) The persistence of a chlorophyll spectral biosignature from Martian evaporite and spring analogues under Mars-like conditions. Int J Astrobiol 13:203–223

    Article  CAS  Google Scholar 

  • Sun HJ, Friedmann EI (1999) Growth on geological time scales in the Antarctic cryptoendolithic microbial community. Geomicrobiol J 16:193–202

    Article  Google Scholar 

  • Sun H, Nienow JA, McKay CP (2010) The antarctic cryptoendolithic microbial ecosystem. In: Doran PT, Lyons WB, McKnight DM (eds) Life in Antarctic Deserts and other cold dry environments. Cambridge University Press, Cambridge, pp 110–138

    Chapter  Google Scholar 

  • Tamaru Y, Takani Y, Yoshida T, Sakamoto T (2005) Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl Environ Microbiol 71:7327–7333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Y, Lian B, Dong H, Liu D, Hou W (2012) Endolithic bacterial communities in dolomite and limestone rocks from the Nanjiang Canyon in Guizhou karst area (China). Geomicrobiol J 29:213–225

    Article  Google Scholar 

  • Tracy CR, Streten-Joyce C, Dalton R, Nussear KE, Gibb KS, Christian KA (2010) Microclimate and limits to photosynthesis in a diverse community of hypolithic cyanobacteria in northern Australia. Environ Microbiol 12:592–607

    Article  PubMed  Google Scholar 

  • Tuovila BJ, LaRock PA (1987) Occurrence and preservation of ATP in Antarctic rocks and its implications in biomass determinations. Geomicrobiol J 5:105–118

    Article  CAS  Google Scholar 

  • Vestal JR (1988a) Carbon metabolism of the cryptoendolithic microbiota from the Antarctic desert. Appl Environ Microbiol 54:960–965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vestal JR (1988b) Biomass of the cryptoendolithic microbiota from the Antarctic desert. Appl Environ Microbiol 54:957–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vincent WF (2007) Cold tolerance in cyanobacteria and life in the cryosphere (from Part 4: Phototrophs in cold environments). In: Algae and Cyanobacteria in extreme environments. Springer, Netherlands, pp 289–301

    Google Scholar 

  • Walker JJ, Pace NR (2007a) Endolithic microbial ecosystems. Annu Rev Microbiol 61:331–347

    Article  CAS  PubMed  Google Scholar 

  • Walker JJ, Pace NR (2007b) Phylogenetic composition of rocky mountain endolithic microbial ecosystems. Appl Environ Microbiol 73:3497–3504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker JJ, Spear JR, Pace NR (2005) Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature 434:1011–1014

    Article  CAS  PubMed  Google Scholar 

  • Warren LA, Ferris FG (1998) Continuum between sorption and precipitation of Fe(III) on microbial surfaces. Environ Sci Technol 32:2331–2337

    Article  CAS  Google Scholar 

  • Warren-Rhodes KA, Rhodes KL, Pointing SB, Ewing SA, Lacap DC, Gomez-Silva B, Amundson R, Friedman EI, McKay CP (2006) Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microb Ecol 52:389–398

    Article  PubMed  Google Scholar 

  • Warren-Rhodes KA, Rhodes KL, Boyle LN, Pointing SB, Chen Y, Liu S, Zhuo P, McKay CP (2007a) Cyanobacterial ecology across environmental gradients and spatial scales in China’s hot and cold deserts. FEMS Microbiol Ecol 61:470–482

    Article  CAS  PubMed  Google Scholar 

  • Warren-Rhodes KA, Rhodes KL, Liu S, Zhou P, McKay CP (2007b) Nanoclimate environment of cyanobacterial communities in China's hot and cold hyperarid deserts. J Geophys Res Biogeo 112:G01016

    Google Scholar 

  • Warren-Rhodes KA, McKay CP, Boyle LN, Wing MR, Kiekebusch EM, Cowan DA, Stomeo F, Pointing SB, Kaseke KF, Eckardt F, Henschel JR, Anisfeld A, Seely M, Rhodes KL (2013) Physical ecology of hypolithic communities in the central Namib Desert: the role of fog, rain, rock habitat, and light. J Geophys Res Biogeo 118:1451–1460

    Article  Google Scholar 

  • Weed R, Ackert RPJ (1986) Chemical weathering of Beacon supergroup sandstones and implications for Antarctic glacial chronology. S Afr J Sci 82:513–516

    Google Scholar 

  • Weed R, Norton SA (1991) Siliceous crusts, quartz rinds and biotic weathering of sandstones in the cold desert of Antarctica. In: Berthelin J (ed) Diversity of Environmental Biogeochemistry (Developments in Geochemistry, Vol. 6). Elsevier, Amsterdam, p 327-339

    Google Scholar 

  • Wessels DCJ, Büdel B (1995) Epilithic and cryptoendolithic cyanobacteria of Clarens sandstone cliffs in the Golden Gate Highlands National Park, South Africa. Bot Acta 108:220–226

    Article  Google Scholar 

  • Wessels DCJ, Schoeman P (1988) Mechanism and rate of weathering of Clarens sandstone by an endolithic lichen. S Afr J Sci 84:274–277

    Google Scholar 

  • Wharton RA Jr, McKay CP, Mancinelli RL, Simmons GM Jr (1989) Early Martian environments: the Antarctic and other terrestrial analogues. Adv Space Res 9:147–153

    Article  PubMed  Google Scholar 

  • Wierzchos J, Ascaso C (2002) Microbial fossil record of rocks from the Ross Desert, Antarctica: implications in the search for past life on Mars. Int J Astrobiol 1:51–59

    Article  Google Scholar 

  • Wierzchos J, Ascaso C, Sancho LG, Green A (2003) Iron-rich diagenetic minerals are biomarkers of microbial activity in Antarctic rocks. Geomicrobiol J 20:15–24

    Article  CAS  Google Scholar 

  • Wierzchos J, de los Ríos A, Sancho LG, Ascaso C (2004) Viability of endolithic micro-organisms in rocks from the McMurdo Dry Valleys of Antarctica established by confocal and fluorescence microscopy. J Microsc 216:57–61

    Article  CAS  PubMed  Google Scholar 

  • Wierzchos J, Sancho LG, Ascaso C (2005) Biomineralization of endolithic microbes in rocks from the McMurdo Dry Valleys of Antarctica: implications for microbial fossil formation and their detection. Environ Microbiol 7:566–575

    Article  CAS  PubMed  Google Scholar 

  • Wierzchos J, Ascaso C, McKay CP (2006) Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology 6:415–422

    Article  PubMed  Google Scholar 

  • Wierzchos J, Cámara B, de los Ríos A, Davila AF, Sánchez Almazo IM, Artieda O, Wierzchos K, Gómez-Silva B, McKay C, Ascaso C (2011) Microbial colonization of Ca-sulfate crusts in the hyperarid core of the Atacama Desert: implications for the search for life on Mars. Geobiology 9:44–60

    Article  CAS  PubMed  Google Scholar 

  • Wierzchos J, Davila AF, Sánchez-Almazo IM, Hajnos M, Swieboda R, Ascaso C (2012) Novel water source for endolithic life in the hyperarid core of the Atacama Desert. Biogeosciences 9:2275–2286

    Article  Google Scholar 

  • Wierzchos J, Davila AF, Artieda O, Cámara-Gallego B, de los Ríos A, Nealson KH, Valea S, García-González MT, Ascaso C (2013) Ignimbrite as a substrate for endolithic life in the hyper-arid Atacama Desert: Implications for the search for life on Mars. Icarus 224:334–346

    Article  Google Scholar 

  • Wingender J, New TR, Flemming H-C (1999) What are bacterial extracellular polymeric substances? In: Wingender J, New TR, Flemming H-C (eds) Microbial extracellular polymeric substances: characterization, structure and function. Springer, Berlin, pp 1–19

    Chapter  Google Scholar 

  • Wong FK, Lacap DC, Lau MC, Aitchison JC, Cowan DA, Pointing SB (2010a) Hypolithic microbial community of quartz pavement in the high-altitude tundra of central Tibet. Microb Ecol 60:730–739

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong FK, Lau MC, Lacap DC, Aitchison JC, Cowan DA, Pointing SB (2010b) Endolithic microbial colonization of limestone in a high-altitude arid environment. Microb Ecol 59:689–699

    Article  PubMed  Google Scholar 

  • Wynn-Williams DD, Edwards HGM, Garcia-Pichel F (1999) Functional biomolecules of Antarctic stromatolitic and endolithic cyanobacterial communities. Eur J Phycol 34:381–391

    Article  Google Scholar 

  • Ziolkowski LA, Mykytczuk NCS, Omelon CR, Johnson H, Whyte LG, Slater GF (2013) Arctic gypsum endoliths: a biogeochemical characterization of a viable and active microbial community. Biogeosciences 10:7661–7675

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher R. Omelon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Omelon, C.R. (2016). Endolithic Microorganisms and Their Habitats. In: Hurst, C. (eds) Their World: A Diversity of Microbial Environments. Advances in Environmental Microbiology, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-28071-4_4

Download citation

Publish with us

Policies and ethics