Skip to main content
Log in

Life in extreme environments: survival strategy of the endolithic desert lichen Verrucaria rubrocincta

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Verrucaria rubrocincta Breuss is an endolithic lichen that inhabits caliche plates exposed on the surface of the Sonoran Desert. Caliche surface temperatures are regularly in excess of 60°C during the summer and approach 0°C in the winter. Incident light intensities are high, with photosynthetically active radiation levels typically to 2,600 μmol/m2 s−1 during the summer. A cross-section of rock inhabited by V. rubrocincta shows an anatomical zonation comprising an upper micrite layer, a photobiont layer containing clusters of algal cells, and a pseudomedulla embedded in the caliche. Hyphae of the pseudomedulla become less numerous with depth below the rock surface. Stable carbon and oxygen isotopic data for the caliche and micrite fall into two sloping, well-separated arrays on a δ13C–δ18O plot. The δ13CPDB of the micrite ranges from 2.1 to 8.1 and δ18OSMOW from 25.4 to 28.9, whereas δ13CPDB of the caliche ranges from −4.7 to 0.7 and δ18OSMOW from 23.7 to 29.2. The isotopic data of the micrite can be explained by preferential fixing of 12C into the alga, leaving local 13C enrichment and evaporative enrichment of 18O in the water. The 14C dates of the micrite range from recent to 884 years b.p., indicating that “dead” carbon from the caliche is not a significant source for the lichen-precipitated micrite. The endolithic growth is an adaptation to the environmental extremes of exposed rock surfaces in the hot desert. The micrite layer is highly reflective and reduces light intensity to the algae below and acts as an efficient sunscreen that blocks harmful UV radiation. The micrite also acts as a cap to the lichen and helps trap moisture. The lichen survives by the combined effects of biodeterioration and biomineralization. Biodeterioration of the caliche concomitant with biomineralization of a protective surface coating of micrite results in the distinctive anatomy of V. rubrocincta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Batts JE, Calder LJ, Batts BD (2004) Utilizing stable isotope abundances of lichens to monitor environmental change. Chem Geol 204:345–368

    Article  CAS  Google Scholar 

  • Beazley MJ, Rickman RD, Ingram DK, Boutton TW, Russ J (2002) Natural abundances of carbon isotopes (14C, 13C) in lichens and calcium oxalate pruina: implications for archaeological and paleoenvironmental studies. Radiocarbon 44:675–683

    CAS  Google Scholar 

  • Bell RA (1993) Cryptoendolithic algae of hot semiarid lands and deserts. J Phycol 29:133–139

    Article  Google Scholar 

  • Brown G, Schultz M, Robinson MD (2002) Saxicolous and terricolous lichens form the foothills of northern Oman. Nova Hedwig 75:177–188

    Article  Google Scholar 

  • Bungartz F, Garvie LAJ, Nash TH III (2004) Anatomy of the endolithic Sonoran desert lichen Verrucaria rubrocincta Breuss: implications for bioteterioration and biomineralization. Lichenologist 36:55–73

    Article  Google Scholar 

  • Bungartz F, Wirth V (2007) Buellia peregrina sp. nov., a new euendolithic calcicolous lichen species from the Namib Desert. Lichenologist 39:41–45

    Article  Google Scholar 

  • Burford EP, Fomina M, Gadd GM (2003) Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineral Mag 67:1127–1155

    Article  CAS  Google Scholar 

  • Burford EP, Hillier S, Gadd GM (2006) Biomineralization of fungal hyphae with calcite (CaCO3) and calcium oxalate mono- and dihydrate in carboniferous limestone microcosms. Geomicrobiol J 23:599–611

    Article  CAS  Google Scholar 

  • Cerling TE, Solomon DK, Quade J, Bowman JR (1991) On the isotopic composition of carbon in soil carbon dioxide. Geochim Cosmochim Acta 55:3403–3405

    Article  CAS  Google Scholar 

  • Chen J, Blume HP, Beyer L (2000) Weathering of rocks induced by lichen colonization—a review. Catena 39:121–146

    Article  CAS  Google Scholar 

  • Craig H (1957) Isotopic standards for carbon and oxygen and corrections factors for mass-spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12:133–149

    Article  CAS  Google Scholar 

  • Cuna S, Balas G, Hauer E (2007) Effects of natural environmental factors on delta C-13 of lichens. Isot Environ Health Stud 43:95–104

    Article  CAS  Google Scholar 

  • Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053

    Article  PubMed  Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49

    Article  PubMed  CAS  Google Scholar 

  • Gauslaa Y, McEvoy M (2005) Seasonal changes in solar radiation drive acclimation of the sun-screening compound parietin in the lichen Xanthoria parietina. Basic Appl Ecol 6:75–82

    Article  CAS  Google Scholar 

  • Hall K, Andre MF (2001) New insights into rock weathering from high-frequency rock temperature data: an Antarctic study of weathering by thermal stress. Geomorphology 41:23–35

    Article  Google Scholar 

  • Hoppert M, Flies C, Pohl W, Günzl B, Schneider J (2004) Colonization strategies of lithobiontic microorganisms on carbonate rocks. Environ Geol 46:421–428

    Article  CAS  Google Scholar 

  • Kappen L, Friedmann EI, Garty J (1981) Ecophysiology of lichens in the dry valleys of Southern Victoria-Land, Antarctica. I. Microclimate and the cryptoendolithic lichen habitat. Flora 171:216–235

    Google Scholar 

  • Kidron GJ (2000) Dew moisture regime of endolithic and epilithic lichens inhabiting limestone cobbles and rock outcrops, Negev Highland, Israel. Flora 195:146–153

    Google Scholar 

  • Knauth LP, Brill M, Klonowski S (2003) Isotope geochemistry of caliche developed on basalt. Geochim Cosmochim Acta 67:185–195

    Article  CAS  Google Scholar 

  • Knight KB, Clements DR, Gordillo LF, Jefferies JI, Tilley D, Workman TJ, Lloyd AF, St Clair LLS (2002) The lichen flora of two sites in the Mojave Desert, California, USA. Mycotaxon 84:27–32

    Google Scholar 

  • Kranner I, Grill D (1997) Desiccation and the subsequent recovery of cryptogamics that are resistant to drought. Phyton-Annales Rei Botanicae 37:139–150

    CAS  Google Scholar 

  • Kuhlman KR, Fusco WG, La Duc MT, Allenbach LB, Ball CL, Kuhlman GM, Anderson RC, Erickson IK, Stuecker T, Benardini J, Strap JL, Crawford RL (2006) Diversity of microorganisms within rock varnish in the Whipple Mountains, California. Appl Environ Microbiol 72:1708–1715

    Article  PubMed  CAS  Google Scholar 

  • Máguas C, Brugnoli E (1996) Spatial variation in carbon isotope discrimination across the thalli of several lichen species. Plant Cell Environ 19:437–446

    Article  Google Scholar 

  • Matthes U, Turner SJ, Larson DW (2001) Light attenuation by limestone rock and its constraint on the depth distribution of endolithic algae and cyanobacteria. Int J Plant Sci 162:263–270

    Article  Google Scholar 

  • McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–857

    Article  CAS  Google Scholar 

  • McEvoy M, Nybakken L, Solhaug KA, Gauslaa Y (2006) UV triggers the synthesis of the widely distributed secondary lichen compound usnic acid. Mycol Prog 5:221–229

    Article  Google Scholar 

  • Nash TH III (1996a) Lichen biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Nash TH III (1996b) Photosynthesis, respiration, productivity and growth. In: Nash TH III (ed) Lichen Biology. Cambridge University Press, Cambridge, pp 88–120

    Google Scholar 

  • Nash TH III, Reiner A, Demmig-Adams B, Kilian E, Kaiser WM, Lange OL (1990) The effect of atmospheric desiccation and osmotic water stress on photosynthesis and dark respiration of lichens. New Phytol 116:269–276

    Article  Google Scholar 

  • Nash TH III, White SL, Marsh JE (1977) Lichen and moss distribution and biomass in hot desert ecosystems. Bryologist 80:470–479

    Article  Google Scholar 

  • Nash TH III, Ryan BD, Gries C, Bungartz F (2002) Lichen flora of the Greater Sonoran Desert Region. Lichens, Tempe

    Google Scholar 

  • Nash TH III, Ryan BD, Diederich P, Gries C, Bungartz F (2004) Lichen flora of the Greater Sonoran Desert Region. Lichen Unlimited, Tempe

    Google Scholar 

  • O'Neil JR, Adami LH, Epstein S (1975) Revised value for the 18O fractionation between CO2 and H2O at 25°C. J Res US Geol Surv 3:623–624

    Google Scholar 

  • O'Neil JR, Clayton RN, Mayeda TK (1969) Oxygen isotope fractionation in divalent metal carbonates. J Chem Phys 51:5547–5558

    Article  Google Scholar 

  • Omelon CR, Pollard WH, Ferris FG (2006) Environmental controls on microbial colonization of high Arctic cryptoendolithic habitats. Polar Biol 30:19–29

    Article  Google Scholar 

  • Quade J, Cerling TE, Bowman JR (1989) Systematic variations in the carbon and oxygen isotopic composition of pedogenic carbonate along elevation transects in the southern Great Basin, United States. Geol Soc Am Bull 101:464–475

    Article  CAS  Google Scholar 

  • Riera P (2005) δ13C and δ15N comparison among different co-occurring lichen species from littoral rocky substrata. Lichenologist 37:93–95

    Article  Google Scholar 

  • Sharma T, Clayton RN (1965) Measurements of 18O/16O ratios of total oxygen from carbonates. Geochim Cosmochim Acta 29:1347–1353

    Article  CAS  Google Scholar 

  • Scheidegger C, Schroeter B, Frey B (1995) Structural and functional processes during water-vapor uptake and desiccation in selected lichens with green algal photobionts. Planta 197:399–409

    Article  CAS  Google Scholar 

  • Staley JT, Palmer F, Adams JB (1982) Microcolonial fungi: common inhabitants on desert rock? Science 215:1093–1095

    Article  PubMed  Google Scholar 

  • Tretiach M (1995) Ecophysiology of calcicolous endolithic lichens: progress and problems. G Bot Ital 129:159–184

    Google Scholar 

  • Tretiach M, Muggia L (2006) Caloplaca badioreagens, a new calcicolous, endolithic lichen from Italy. Lichenologist 38:223–229

    Article  Google Scholar 

  • Tretiach M, Pecchiari M (1995) Gas exchange rates and chlorophyll content of epi- and endolithic lichens from the Trieste karst (NE Italy). New Phytol 130:585–592

    Article  Google Scholar 

  • Viles HA (2005) Microclimate and weathering in the central Namib Desert, Namibia. Geomorphology 67:189–209

    Article  Google Scholar 

  • Weissman L, Garty J, Hochman A (2005) Rehydration of the lichen Ramalina lacera results in production of reactive oxygen species and nitric oxide and a decrease in antioxidants. Appl Environ Microbiol 71:2121–2129

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Dr. Othmar Breuss, Naturhistorisches Museum Wien for the confirmation of the specimen identification as V. rubrocincta. Funding for this research was provided by the National Science Foundation (DEB-0103738) and NASA (NNG06GE37G). This is publication no. 1069 of the Charles Darwin Research Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence A. J. Garvie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garvie, L.A.J., Knauth, L.P., Bungartz, F. et al. Life in extreme environments: survival strategy of the endolithic desert lichen Verrucaria rubrocincta . Naturwissenschaften 95, 705–712 (2008). https://doi.org/10.1007/s00114-008-0373-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-008-0373-0

Keywords

Navigation