Skip to main content

Strategies and Methodologies for the Co-expression of Multiple Proteins in Plants

  • Chapter
  • First Online:
Advanced Technologies for Protein Complex Production and Characterization

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 896))

Abstract

The first transgenes were introduced in a plant genome more than 30 years ago. Since then, the capabilities of the plant scientific community to engineer the genome of plants have progressed at an unparalleled speed. Plant genetic engineering has become a central technology that has dramatically incremented our basic knowledge of plant biology and has enabled the translation of this knowledge into a number of increasingly complex and sophisticated biotechnological applications, which in most cases rely on the simultaneous co-expression of multiple recombinant proteins from different origins. To meet the new challenges of modern plant biotechnology, the plant scientific community has developed a vast arsenal of innovative molecular tools and genome engineering strategies. In this chapter we review a variety of tools, technologies, and strategies developed to transfer and simultaneously co-express multiple transgenes and proteins in a plant host. Their potential advantages, disadvantages, and future prospects are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Galluppi GR, Goldberg SB, Hoffmann NL, Woo SC (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci U S A 80:4803–4807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lorence A, Verpoorte R (2004) Gene transfer and expression in plants. Methods Mol Biol 267:329–350

    CAS  PubMed  Google Scholar 

  3. Altpeter F, Baisakh N, Beachy R, Bock R, Capell T, Christou P, Daniell H, Datta K, Datta S, Dix PJ, Fauquet C, Huang N, Kohli A, Mooibroek H, Nicholson L, Nguyen TT, Nugent G, Raemakers K, Romano A, Somers DA, Stoger E, Taylor N, Visser R (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol Breed 15:305–327

    Article  Google Scholar 

  4. Kohli A, Miro B, Twyman RM (2010) Transgene integration, expression and stability in plants: strategies for improvements. In: Transgenic crop plants. Springer, Berlin, pp 201–237

    Chapter  Google Scholar 

  5. Pitzschke A, Hirt H (2010) New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation. EMBO J 29:1021–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Păcurar DI, Thordal-Christensen H, Păcurar ML, Pamfil D, Botez C, Bellini C (2011) Agrobacterium tumefaciens: from crown gall tumors to genetic transformation. Physiol Mol Plant Pathol 76:76–81

    Article  Google Scholar 

  7. Lee LY, Gelvin SB (2008) T-DNA Binary vectors and systems. Plant Physiol 146:325–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gelvin SB (2010) Plant proteins involved in Agrobacterium-mediated genetic transformation. Annu Rev Phytopathol 48:45–68

    Article  CAS  PubMed  Google Scholar 

  9. Kapila J, De Rycke R, Van Montagu M, Angenon G (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108

    Article  CAS  Google Scholar 

  10. Wroblewski T, Tomczak A, Michelmore R (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol J 3:259–273

    Article  CAS  PubMed  Google Scholar 

  11. Wood CC, Petrie JR, Shrestha P, Mansour MP, Nichols PD, Green AG, Singh SP (2009) A leaf-based assay using interchangeable design principles to rapidly assemble multistep recombinant pathways. Plant Biotechnol J 7:914–924

    Article  CAS  PubMed  Google Scholar 

  12. Liu Q, Manzano D, Tanić N, Pesic M, Bankovic J, Pateraki I, Ricard L, Ferrer A, De Vos R, van de Krol S, Bouwmeester H (2014) Elucidation and in planta reconstitution of the parthenolide biosynthetic pathway. Metab Eng 23:145–153

    Article  PubMed  CAS  Google Scholar 

  13. Chen Q, Lai H, Hurtado J, Stahnke J (2013) Agroinfiltration as an effective and scalable strategy of gene delivery for production of pharmaceutical proteins. Adv Tech Biol Med 1:103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. NĂ¼tzmann H-W, Osbourn A (2014) Gene clustering in plant specialized metabolism. Curr Opin Biotechnol 26:91–99

    Article  PubMed  CAS  Google Scholar 

  15. Sainsbury F, Lomonossoff GP (2014) Transient expressions of synthetic biology in plants. Curr Opin Plant Biol 19:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Conley AJ, Zhu H, Le LC, Jevnikar AM, Lee BH, Brandle JE, Menassa R (2011) Recombinant protein production in a variety of Nicotiana hosts: a comparative analysis. Plant Biotechnol J 9:434–444

    Article  CAS  PubMed  Google Scholar 

  17. Møldrup ME, Geu-Flores F, de Vos M, Olsen CE, Sun J, Jander G, Halkier BA (2012) Engineering of benzylglucosinolate in tobacco provides proof-of-concept for dead-end trap crops genetically modified to attract Plutella xylostella (diamondback moth). Plant Biotechnol J 10:435–442

    Article  PubMed  CAS  Google Scholar 

  18. Somers DA, Makarevitch I (2004) Transgene integration in plants: poking or patching holes in promiscuous genomes? Curr Opin Biotechnol 15:126–131

    Article  CAS  PubMed  Google Scholar 

  19. Elghabi Z, Ruf S, Bock R (2011) Biolistic co-transformation of the nuclear and plastid genomes. Plant J 67:941–948

    Article  CAS  PubMed  Google Scholar 

  20. Verma D, Daniell H (2007) Chloroplast vector systems for biotechnology applications. Plant Physiol 145:1129–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen L, Marmey P, Taylor NJ, Brizard J-P, Espinoza C, D’Cruz P, Huet H, Zhang S, de Kochko A, Beachy RN, Fauquet CM (1998) Expression and inheritance of multiple transgenes in rice plants. Nat Biotechnol 16:1060–1064

    Article  CAS  PubMed  Google Scholar 

  22. Zhu C, Naqvi S, Breitenbach J, Sandmann G, Christou P, Capell T (2008) Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proc Natl Acad Sci U S A 105:18232–18237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Naqvi S, Zhu C, Farré G, Ramessar K, Bassie L, Breitenbach J, Perez Conesa D, Ros G, Sandmann G, Capell T, Christou P (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci U S A 106:7762–7767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Halpin C (2005) Gene stacking in transgenic plants – the challenge for 21st century plant biotechnology. Plant Biotechnol J 3:141–155

    Article  CAS  PubMed  Google Scholar 

  25. Nicholson L, Gonzalez-Melendi P, Van Dolleweerd C, Tuck H, Perrin Y, Ma JKC, Fischer R, Christou P, Stoger E (2004) A recombinant multimeric immunoglobulin expressed in rice shows assembly-dependent subcellular localization in endosperm cells. Plant Biotechnol J 3:115–127

    Article  CAS  Google Scholar 

  26. Thuenemann EC, Meyers AE, Verwey J, Rybicki EP, Lomonossoff GP (2013) A method for rapid production of heteromultimeric protein complexes in plants: assembly of protective bluetongue virus-like particles. Plant Biotechnol J 11:839–846

    Article  CAS  PubMed  Google Scholar 

  27. Wu G, Truksa M, Datla N, Vrinten P, Bauer J, Zank T, Cirpus P, Heinz E, Qiu X (2005) Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants. Nat Biotechnol 23:1013–1017

    Article  CAS  PubMed  Google Scholar 

  28. Antunes MS, Morey KJ, Smith JJ, Albrecht KD, Bowen TA, Zdunek JK, Troupe JF, Cuneo MJ, Webb CT, Hellinga HW, Medford JI (2011) Programmable ligand detection system in plants through a synthetic signal transduction pathway. PLoS ONE 6, e16292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Que Q, Chilton M-DM, de Fontes CM, He C, Nuccio M, Zhu T, Wu Y, Chen JS, Shi L (2010) Trait stacking in transgenic crops: challenges and opportunities. GM Crops 1:220–229

    Article  PubMed  Google Scholar 

  30. Streatfield SJ (2007) Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol J 5:2–15

    Article  CAS  PubMed  Google Scholar 

  31. Egelkrout E, Rajan V, Howard JA (2012) Overproduction of recombinant proteins in plants. Plant Sci 184:83–101

    Article  CAS  PubMed  Google Scholar 

  32. Jackson MA, Sternes PR, Mudge SR, Graham MW, Birch RG (2014) Design rules for efficient transgene expression in plants. Plant Biotechnol J 12:925–933

    Article  CAS  PubMed  Google Scholar 

  33. Meshcheriakova YA, Saxena P, Lomonossoff GP (2014) Fine-tuning levels of heterologous gene expression in plants by orthogonal variation of the untranslated regions of a nonreplicating transient expression system. Plant Biotechnol J 12:718–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Slater S, Mitsky TA, Houmiel KL, Hao M, Reiser SE, Taylor NB, Tran M, Valentin HE, Rodriguez DJ, Stone DA, Padgette SR, Kishore G, Gruys KJ (1999) Metabolic engineering of Arabidopsis and Brassica for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production. Nat Biotechnol 17:1011–1016

    Article  CAS  PubMed  Google Scholar 

  35. Bohmert K, Balbo I, Kopka J, Mittendorf V, Nawrath C, Poirier Y, Tischendorf G, Trethewey RN, Willmitzer L (2000) Transgenic Arabidopsis plants can accumulate polyhydroxybutyrate to up to 4% of their fresh weight. Planta 211:841–845

    Article  CAS  PubMed  Google Scholar 

  36. Huang JC, Zhong YJ, Liu J, Sandmann G, Chen F (2013) Metabolic engineering of tomato for high-yield production of astaxanthin. Metab Eng 17:59–67

    Article  CAS  PubMed  Google Scholar 

  37. Naqvi S, Farré G, Sanahuja G, Capell T, Zhu C, Christou P (2010) When more is better: multigene engineering in plants. Trends Plant Sci 15:48–56

    Article  CAS  PubMed  Google Scholar 

  38. Ellis T, Adie T, Baldwin GS (2011) DNA assembly for synthetic biology: from parts to pathways and beyond. Integr Biol 3:109–118

    Article  CAS  Google Scholar 

  39. Liu W, Yuan JS, Stewart CN (2013) Advanced genetic tools for plant biotechnology. Nat Rev Genet 14:781–793

    Article  CAS  PubMed  Google Scholar 

  40. Patron NJ (2014) DNA assembly for plant biology: techniques and tools. Curr Opin Plant Biol 19:14–19

    Article  CAS  PubMed  Google Scholar 

  41. Takita E, Kohda K, Tomatsu H, Hanano S, Moriya K, Hosouchi T, Sakurai N, Suzuki H, Shinmyo A, Shibata D (2013) Precise sequential DNA ligation on a solid substrate: solid-based rapid sequential ligation of multiple DNA molecules. DNA Res 20:583–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen Q-J, Zhou H-M, Chen J, Wang X-C (2006) A Gateway-based platform for multigene plant transformation. Plant Mol Biol 62:927–936

    Article  CAS  PubMed  Google Scholar 

  43. Karimi M, Depicker A, Hilson P (2007) Recombinational cloning with plant Gateway vectors. Plant Physiol 145:1144–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Untergasser A, Bijl GJM, Liu W, Bisseling T, Schaart JG, Geurts R (2012) One-step Agrobacterium mediated transformation of eight genes essential for rhizobium symbiotic signaling using the novel binary vector system pHUGE. PLoS ONE 7, e47885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vemanna RS, Chandrashekar BK, Hanumantha Rao HM, Sathyanarayanagupta SK, Sarangi KS, Nataraja KN, Udayakumar M (2012) A modified MultiSite Gateway cloning strategy for consolidation of genes in plants. Mol Biotechnol 53:129–138

    Article  CAS  Google Scholar 

  46. Sarrion-Perdigones A, Falconi EE, Zandalinas SI, JuĂ¡rez P, FernĂ¡ndez-del-Carmen A, Granell A, Orzaez D (2011) GoldenBraid: an iterative cloning system for standardized assembly of reusable genetic modules. PLoS ONE 6, e21622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sarrion-Perdigones A, Vazquez-Vilar M, Palaci J, Castelijns B, Forment J, Ziarsolo P, Blanca J, Granell A, Orzaez D (2013) GoldenBraid 2.0: a comprehensive DNA assembly framework for plant synthetic biology. Plant Physiol 162:1618–1631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lampropoulos A, Sutikovic Z, Wenzl C, Maegele I, Lohmann JU, Forner J (2013) GreenGate – a novel, versatile, and efficient cloning system for plant transgenesis. PLoS ONE 8, e83043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Weber E, Engler C, Gruetzner R, Werner S, Marillonnet S (2011) A modular cloning system for standardized assembly of multigene constructs. PLoS ONE 6, e16765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Engler C, Youles M, Gruetzner R, Ehnert T-M, Werner S, Jones JDG, Patron NJ, Marillonnet S (2014) A Golden Gate modular cloning toolbox for plants. ACS Synth Biol. doi:10.1021/sb4001504

    PubMed  Google Scholar 

  51. Fujisawa M, Takita E, Harada H, Sakurai N, Suzuki H, Ohyama K, Shibata D, Misawa N (2009) Pathway engineering of Brassica napus seeds using multiple key enzyme genes involved in ketocarotenoid formation. J Exp Bot 60:1319–1332

    Article  CAS  PubMed  Google Scholar 

  52. Boyle PM, Burrill DR, Inniss MC, Agapakis CM, Deardon A, Dewerd JG, Gedeon MA, Quinn JY, Paull ML, Raman AM, Theilmann MR, Wang L, Winn JC, Medvedik O, Schellenberg K, Haynes KA, Viel A, Brenner TJ, Church GM, Shah JV, Silver PA (2012) A BioBrick compatible strategy for genetic modification of plants. J Biol Eng 6:8

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hebelstrup KH, Christiansen MW, Carciofi M, Tauris B, Brinch-Pedersen H, Holm PB (2010) UCE: a uracil excision (USER™)-based toolbox for transformation of cereals. Plant Methods 6:1–10

    Article  CAS  Google Scholar 

  54. De Rybel B, van den Berg W, Lokerse AS, Liao CY, van Mourik H, Moller B, Llavata-Peris CI, Weijers D (2011) A versatile set of ligation-independent cloning vectors for functional studies in plants. Plant Physiol 156:1292–1299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Kronbak R, Ingvardsen CR, Madsen CK, Gregersen PL (2014) A novel approach to the generation of seamless constructs for plant transformation. Plant Methods 10:1–10

    Article  CAS  Google Scholar 

  56. Hamilton CM (1997) A binary-BAC system for plant transformation with high-molecular-weight DNA. Gene 200:107–116

    Article  CAS  PubMed  Google Scholar 

  57. Liu YG, Shirano Y, Fukaki H, Yanai Y, Tasaka M, Tabata S, Shibata D (1999) Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. Proc Natl Acad Sci U S A 96:6535–6540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Song J, Bradeen JM, Naess SK, Helgeson JP, Jiang J (2003) BIBAC and TAC clones containing potato genomic DNA fragments larger than 100 kb are not stable in Agrobacterium. Theor Appl Genet 107:958–964

    Article  CAS  PubMed  Google Scholar 

  59. Shibata D, Liu YG (2000) Agrobacterium-mediated plant transformation with large DNA fragments. Trends Plant Sci 5:354–357

    Article  CAS  PubMed  Google Scholar 

  60. Lin L, Liu Y-G, Xu X, Li B (2003) Efficient linking and transfer of multiple genes by a multigene assembly and transformation vector system. Proc Natl Acad Sci U S A 100:5962–5967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Buntru M, Gärtner S, Staib L, Kreuzaler F, Schlaich N (2013) Delivery of multiple transgenes to plant cells by an improved version of MultiRound Gateway technology. Transgenic Res 22:153–167

    Article  CAS  PubMed  Google Scholar 

  62. Jobling SA, Westcott RJ, Tayal A, Jeffcoat R, Schwall GP (2002) Production of a freeze-thaw-stable potato starch by antisense inhibition of three starch synthase genes. Nat Biotechnol 20:295–299

    Article  CAS  PubMed  Google Scholar 

  63. Qi B, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J, Napier JA, Stobart AK, Lazarus CM (2004) Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol 22:739–745

    Article  CAS  PubMed  Google Scholar 

  64. Ma JKC, Hiatt A, Hein M, Vine ND, Wang F, Stabila P, Van Dolleweerd C, Mostov K, Lehner T (1995) Generation and assembly of secretory antibodies in plants. Science 268:716–719

    Article  CAS  PubMed  Google Scholar 

  65. Datta K, Baisakh N, Thet KM, Tu J, Datta S (2002) Pyramiding transgenes for multiple resistance in rice against bacterial blight, yellow stem borer and sheath blight. Theor Appl Genet 106:1–8

    CAS  PubMed  Google Scholar 

  66. Houshyani B, Assareh M, Busquets A, Ferrer A, Bouwmeester HJ, Kappers IF (2013) Three-step pathway engineering results in more incidence rate and higher emission of nerolidol and improved attraction of Diadegma semiclausum. Metab Eng 15:88–97

    Article  CAS  PubMed  Google Scholar 

  67. van Erp H, Kelly AA, Menard G, Eastmond PJ (2014) Multigene engineering of triacylglycerol metabolism boosts seed oil content in Arabidopsis. Plant Physiol 165:30–36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch H-J, Rosenkranz R, Stäbler N, Schönfeld B, Kreuzaler F, Peterhänsel C (2007) Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol 25:593–599

    Article  CAS  PubMed  Google Scholar 

  69. Ebinuma H, Sugita K, Matsunaga E, Endo S, Yamada K, Komamine A (2001) Systems for the removal of a selection marker and their combination with a positive marker. Plant Cell Rep 20:383–392

    Article  CAS  Google Scholar 

  70. Kohli A, Twyman RM, Abranches R, Wegel E, Stoger E, Christou P (2003) Transgene integration, organization and interaction in plants. Plant Mol Biol 52:247–258

    Article  CAS  PubMed  Google Scholar 

  71. Conrado RJ, Varner JD, DeLisa MP (2008) Engineering the spatial organization of metabolic enzymes: mimicking nature’s synergy. Curr Opin Biotechnol 19:492–499

    Article  CAS  PubMed  Google Scholar 

  72. Peremarti A, Twyman RM, GĂ³mez-Galera S, Naqvi S, FarrĂ© G, Sabalza M, Miralpeix B, Dashevskaya S, Yuan D, Ramessar K, Christou P, Zhu C, Bassie L, Capell T (2010) Promoter diversity in multigene transformation. Plant Mol Biol 73:363–378

    Article  CAS  PubMed  Google Scholar 

  73. Podevin N, Davies HV, Hartung F, Nogué F, Casacuberta JM (2013) Site-directed nucleases: a paradigm shift in predictable, knowledge-based plant breeding. Trends Biotechnol 31:375–383

    Article  CAS  PubMed  Google Scholar 

  74. Kathiria P, Eudes F (2014) Nucleases for genome editing in crops. Biocatalysis Agric Biotechnol 3:14–19

    Article  Google Scholar 

  75. Marton I, Zuker A, Shklarman E, Zeevi V, Tovkach A, Roffe S, Ovadis M, Tzfira T, Vainstein A (2010) Nontransgenic genome modification in plant cells. Plant Physiol 154:1079–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mozes-Koch R, Gover O, Tanne E, Peretz Y, Maori E, Chernin L, Sela I (2012) Expression of an entire bacterial operon in plants. Plant Physiol 158:1883–1892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gaeta RT, Masonbrink RE, Krishnaswamy L, Zhao C, Birchler JA (2012) Synthetic chromosome platforms in plants. Annu Rev Plant Biol 63:307–330

    Article  CAS  PubMed  Google Scholar 

  78. Houben A, Mette MF, Teo CH, Lermontova I, Schubert I (2013) Engineered plant minichromosomes. Int J Dev Biol 57:651–657

    Article  CAS  PubMed  Google Scholar 

  79. Farré G, Blancquaert D, Capell T, Van Der Straeten D, Christou P, Zhu C (2014) Engineering complex metabolic pathways in plants. Annu Rev Plant Biol 65:187–223

    Article  PubMed  CAS  Google Scholar 

  80. Dhar MK, Kaul S, Kour J (2011) Towards the development of better crops by genetic transformation using engineered plant chromosomes. Plant Cell Rep 30:799–806

    Article  CAS  PubMed  Google Scholar 

  81. Murata M (2014) Minichromosomes and artificial chromosomes in Arabidopsis. Chromosome Res 22:167–178

    Article  CAS  PubMed  Google Scholar 

  82. Birchler JA (2014) Engineered minichromosomes in plants. Curr Opin Plant Biol 19C:76–80

    Article  CAS  Google Scholar 

  83. Sainsbury F, Benchabane M, Goulet M-C, Michaud D (2012) Multimodal protein constructs for herbivore insect control. Toxins 4:455–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Beaujean A, Ducrocq-Assaf C, Sangwan RS, Lilius G, BĂ¼low L, Sangwan-Norreel BS (2000) Engineering direct fructose production in processed potato tubers by expressing a bifunctional alpha-amylase/glucose isomerase gene complex. Biotechnol Bioeng 70:9–16

    Article  CAS  PubMed  Google Scholar 

  85. Jang I-C, Oh S-J, Seo J-S, Choi W-B, Song SI, Kim CH, Kim YS, Seo H-S, Do Choi Y, Nahm BH, Kim J-K (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131:516–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kourtz L, Dillon K, Daughtry S, Madison LL, Peoples O, Snell KD (2005) A novel thiolase-reductase gene fusion promotes the production of polyhydroxybutyrate in Arabidopsis. Plant Biotechnol J 3:435–447

    Article  CAS  PubMed  Google Scholar 

  87. Tian L, Dixon RA (2006) Engineering isoflavone metabolism with an artificial bifunctional enzyme. Planta 224:496–507

    Article  CAS  PubMed  Google Scholar 

  88. Carrington JC, Dougherty WG (1988) A viral cleavage site cassette: identification of amino acid sequences required for tobacco etch virus polyprotein processing. Proc Natl Acad Sci U S A 85:3391–3395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Walsh TA, Strickland JA (1993) Proteolysis of the 85-kilodalton crystalline cysteine proteinase inhibitor from potato releases functional cystatin domains. Plant Physiol 103:1227–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Urwin PE, Levesley A, McPherson MJ, Atkinson HJ (2000) Transgenic resistance to the nematode Rotylenchulus reniformis conferred by Arabidopsis thaliana plants expressing proteinase inhibitors. Mol Breed 6:257–264

    Article  CAS  Google Scholar 

  91. Urwin PE, McPherson MJ, Atkinson HJ (1998) Enhanced transgenic plant resistance to nematodes by dual proteinase inhibitor constructs. Planta 204:472–479

    Article  CAS  PubMed  Google Scholar 

  92. François IEJA, De Bolle MFC, Dwyer G, Goderis IJWM, Woutors PFJ, Verhaert PD, Proost P, Schaaper WMM, Cammue BPA, Broekaert WF (2002) Transgenic expression in Arabidopsis of a polyprotein construct leading to production of two different antimicrobial proteins. Plant Physiol 128:1346–1358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Walker JM, Vierstra RD (2007) A ubiquitin-based vector for the co-ordinated synthesis of multiple proteins in plants. Plant Biotechnol J 5:413–421

    Article  CAS  PubMed  Google Scholar 

  94. Zhang B, Rapolu M, Huang L, Su WW (2011) Coordinate expression of multiple proteins in plant cells by exploiting endogenous kex2p-like protease activity. Plant Biotechnol J 9:970–981

    Article  CAS  PubMed  Google Scholar 

  95. Luke GA, de Felipe P, Cowton VM (2006) Self-processing polyproteins: a strategy for co-expression of multiple proteins in plants. Biotechnol Genet Eng Rev 23:239–252

    Article  CAS  PubMed  Google Scholar 

  96. von Bodman SB, Domier LL, Farrand SK (1995) Expression of multiple eukaryotic genes from a single promoter in Nicotiana. Biotechnology (NY) 13:587–591

    Article  Google Scholar 

  97. Ceriani MF, Marcos JF, Hopp HE, Beachy RN (1998) Simultaneous accumulation of multiple viral coat proteins from a TEV-NIa based expression vector. Plant Mol Biol 36:239–248

    Article  CAS  PubMed  Google Scholar 

  98. Dasgupta S, Collins GB, Hunt AG (1998) Co-ordinated expression of multiple enzymes in different subcellular compartments in plants. Plant J 16:107–116

    Article  CAS  PubMed  Google Scholar 

  99. Liang H, Gao H, Maynard CA, Powell WA (2005) Expression of a self-processing, pathogen resistance-enhancing gene construct in Arabidopsis. Biotechnol Lett 27:435–442

    Article  CAS  PubMed  Google Scholar 

  100. Saunders K, Sainsbury F, Lomonossoff GP (2009) Efficient generation of cowpea mosaic virus empty virus-like particles by the proteolytic processing of precursors in insect cells and plants. Virology 393:329–337

    Article  CAS  PubMed  Google Scholar 

  101. Bedoya L, MartĂ­nez F, Rubio L, DarĂ²s J-A (2010) Simultaneous equimolar expression of multiple proteins in plants from a disarmed potyvirus vector. J Biotechnol 150:268–275

    Article  CAS  PubMed  Google Scholar 

  102. Wellink J, Verver J, Van Lent J, van Kammen A (1996) Capsid proteins of cowpea mosaic virus transiently expressed in protoplasts form virus-like particles. Virology 224:352–355

    Article  CAS  PubMed  Google Scholar 

  103. Luke G (2012) Translating 2A research into practice. Innovations in biotechnology. InTech Open, Rijeka, pp 165–186

    Google Scholar 

  104. Geu-Flores F, Olsen CE, Halkier BA (2009) Towards engineering glucosinolates into non-cruciferous plants. Planta 229:261–270

    Article  CAS  PubMed  Google Scholar 

  105. van Herpen TWJM, Cankar K, Nogueira M, Bosch D, Bouwmeester HJ, Beekwilder J (2010) Nicotiana benthamiana as a production platform for artemisinin precursors. PLoS ONE 5, e14222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. François IEJA, Van Hemelrijck W, Aerts AM, Wouters PFJ, Proost P, Broekaert WF, Cammue BPA (2004) Processing in Arabidopsis thaliana of a heterologous polyprotein resulting in differential targeting of the individual plant defensins. Plant Sci 166:113–121

    Article  CAS  Google Scholar 

  107. Ralley L, Enfissi EMA, Misawa N, Schuch W, Bramley PM, Fraser PD (2004) Metabolic engineering of ketocarotenoid formation in higher plants. Plant J 39:477–486

    Article  CAS  PubMed  Google Scholar 

  108. Quilis J, LĂ³pez-GarcĂ­a B, Meynard D, Guiderdoni E, San Segundo B (2014) Inducible expression of a fusion gene encoding two proteinase inhibitors leads to insect and pathogen resistance in transgenic rice. Plant Biotechnol J 12:367–377

    Article  CAS  PubMed  Google Scholar 

  109. El Amrani A, Barakate A, Askari BM, Li X, Roberts AG, Ryan MD, Halpin C (2004) Coordinate expression and independent subcellular targeting of multiple proteins from a single transgene. Plant Physiol 135:16–24

    Article  PubMed  PubMed Central  Google Scholar 

  110. Lee D-S, Lee K-H, Jung S, Jo E-J, Han K-H, Bae H-J (2012) Synergistic effects of 2A-mediated polyproteins on the production of lignocellulose degradation enzymes in tobacco plants. J Exp Bot 63:4797–4810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ma C, Mitra A (2002) Expressing multiple genes in a single open reading frame with the 2A region of foot-and-mouth disease virus as a linker. Mol Breed 9:191–199

    Article  CAS  Google Scholar 

  112. Sun H, Lang Z, Zhu L, Huang D (2012) Acquiring transgenic tobacco plants with insect resistance and glyphosate tolerance by fusion gene transformation. Plant Cell Rep 31:1877–1887

    Article  CAS  PubMed  Google Scholar 

  113. LĂ³pez-Lastra M, Rivas A, BarrĂ­a MI (2005) Protein synthesis in eukaryotes: the growing biological relevance of cap-independent translation initiation. Biol Res 38:121–146

    Article  PubMed  Google Scholar 

  114. Urwin P, Yi L, Martin H, Atkinson H, Gilmartin PM (2000) Functional characterization of the EMCV IRES in plants. Plant J 24:583–589

    Article  CAS  PubMed  Google Scholar 

  115. Urwin PE, Zubko EI, Atkinson HJ (2002) The biotechnological application and limitation of IRES to deliver multiple defence genes to plant pathogens. Physiol Mol Plant Pathol 61:103–108

    Article  CAS  Google Scholar 

  116. Ha S-H, Liang YS, Jung H, Ahn M-J, Suh S-C, Kweon S-J, Kim D-H, Kim Y-M, Kim J-K (2010) Application of two bicistronic systems involving 2A and IRES sequences to the biosynthesis of carotenoids in rice endosperm. Plant Biotechnol J 8:928–938

    Article  CAS  PubMed  Google Scholar 

  117. Gouiaa S, Khoudi H, Leidi EO, Pardo JM, Masmoudi K (2012) Expression of wheat Na(+)/H(+) antiporter TNHXS1 and H(+)- pyrophosphatase TVP1 genes in tobacco from a bicistronic transcriptional unit improves salt tolerance. Plant Mol Biol 79:137–155

    Article  CAS  PubMed  Google Scholar 

  118. Peretz Y, Mozes-Koch R, Akad F, Tanne E, Czosnek H, Sela I (2007) A universal expression/silencing vector in plants. Plant Physiol 145:1251–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gover O, Peretz Y, Mozes-Koch R, Maori E, Rabinowitch HD, Sela I (2014) Only minimal regions of tomato yellow leaf curl virus (TYLCV) are required for replication, expression and movement. Arch Virol. doi:10.1007/s00705-014-2066-7

    PubMed  PubMed Central  Google Scholar 

  120. Oey M, Lohse M, Kreikemeyer B, Bock R (2009) Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant J 57:436–445

    Article  CAS  PubMed  Google Scholar 

  121. Ruhlman T, Verma D, Samson N, Daniell H (2010) The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant Physiol 152:2088–2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bock R (2013) Strategies for metabolic pathway engineering with multiple transgenes. Plant Mol Biol 83:21–31

    Article  CAS  PubMed  Google Scholar 

  123. Bock R (2007) Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr Opin Biotechnol 18:100–106

    Article  CAS  PubMed  Google Scholar 

  124. Jayaraj J, Devlin R, Punja Z (2007) Metabolic engineering of novel ketocarotenoid production in carrot plants. Transgenic Res 17:489–501

    Article  PubMed  CAS  Google Scholar 

  125. Verma D, Samson NP, Koya V, Daniell H (2008) A protocol for expression of foreign genes in chloroplasts. Nat Protoc 3:739–758

    Article  CAS  PubMed  Google Scholar 

  126. Clarke JL, Daniell H (2011) Plastid biotechnology for crop production: present status and future perspectives. Plant Mol Biol 76:211–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Daniell H (2007) Transgene containment by maternal inheritance effective or elusive? Proc Natl Acad Sci U S A 104:6879–6880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ruf S, Karcher D, Bock R (2007) Determining the transgene containment level provided by chloroplast transformation. Proc Natl Acad Sci U S A 104:6998–7002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Caroca R, Howell KA, Hasse C, Ruf S, Bock R (2013) Design of chimeric expression elements that confer high-level gene activity in chromoplasts. Plant J 73:368–379

    Article  CAS  PubMed  Google Scholar 

  130. Maliga P, Bock R (2011) Plastid biotechnology food, fuel, and medicine for the 21st century. Plant Physiol 155:1501–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Scharff LB, Bock R (2014) Synthetic biology in plants. Plant J 78:783–798

    Article  CAS  PubMed  Google Scholar 

  132. Kuroda H, Maliga P (2001) Complementarity of the 16S rRNA penultimate stem with sequences downstream of the AUG destabilizes the plastid mRNAs. Nucleic Acids Res 29:970–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Drechsel O, Bock R (2011) Selection of Shine-Dalgarno sequences in plastids. Nucleic Acids Res 39:1427–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bock R (2014) Genetic engineering of the chloroplast: novel tools and new applications. Curr Opin Biotechnol 26:7–13

    Article  CAS  PubMed  Google Scholar 

  135. Bock R (2014) Engineering chloroplasts for high-level foreign protein expression. In: Maliga P (ed) Chloroplast biotechnology: methods and protocols, vol 1132. Springer, New York, pp 93–106

    Chapter  Google Scholar 

  136. Liere K, Börner T (2007) Transcription and transcriptional regulation in plastids. In: Bock R (ed) Cell and molecular biology of plastids. Springer, Berlin, pp 121–174

    Chapter  Google Scholar 

  137. Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313

    Article  CAS  PubMed  Google Scholar 

  138. Chakrabarti SK, Lutz KA, Lertwiriyawong B, Svab Z, Maliga P (2006) Expression of the cry9Aa2 B.t. gene in tobacco chloroplasts confers resistance to potato tuber moth. Transgenic Res 15:481–488

    Article  CAS  PubMed  Google Scholar 

  139. Kuroda H, Maliga P (2001) Sequences downstream of the translation initiation codon are important determinants of translation efficiency in chloroplasts. Plant Physiol 125:430–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhang J, Ruf S, Hasse C, Childs L, Scharff LB, Bock R (2012) Identification of cis-elements conferring high levels of gene expression in non-green plastids. Plant J 72:115–128

    Article  CAS  PubMed  Google Scholar 

  141. Krichevsky A, Meyers B, Vainstein A, Maliga P, Citovsky V (2010) Autoluminescent plants. PLoS ONE 5, e15461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Westhoff P, Herrmann RG (1998) Complex RNA maturation in chloroplasts. Eur J Biochem 171:551–564

    Article  Google Scholar 

  143. Hirose T, Sugiura M (1997) Both RNA editing and RNA cleavage are required for translation of tobacco chloroplast ndhD mRNA: a possible regulatory mechanism for the expression of a chloroplast operon consisting of functionally unrelated genes. EMBO J 16:6804–6811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Walter M, Piepenburg K, Schöttler MA, Petersen K, Kahlau S, Tiller N, Drechsel O, Weingartner M, Kudla J, Bock R (2010) Knockout of the plastid RNase E leads to defective RNA processing and chloroplast ribosome deficiency. Plant J 64:851–863

    Article  CAS  PubMed  Google Scholar 

  145. De Cosa B, Moar W, Lee S-B, Miller M, Daniell H (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19:71–74

    Article  PubMed  PubMed Central  Google Scholar 

  146. Quesada-Vargas T, Ruiz ON, Daniell H (2005) Characterization of heterologous multigene operons in transgenic chloroplasts. Transcription, processing, and translation. Plant Physiol 138:1746–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hasunuma T, Miyazawa S-I, Yoshimura S, Shinzaki Y, Tomizawa K-I, Shindo K, Choi S-K, Misawa N, Miyake C (2008) Biosynthesis of astaxanthin in tobacco leaves by transplastomic engineering. Plant J 55:857–868

    Article  CAS  PubMed  Google Scholar 

  148. Nakashita H, Arai Y, Shikanai T, Doi Y, Yamaguchi I (2001) Introduction of bacterial metabolism into higher plants by polycistronic transgene expression. Biosci Biotechnol Biochem 65:1688–1691

    Article  CAS  PubMed  Google Scholar 

  149. Magee AM, Horvath EM, Kavanagh TA (2004) Pre-screening plastid transgene expression cassettes in Escherichia coli may be unreliable as a predictor of expression levels in chloroplast-transformed plants. Plant Sci 166:1605–1611

    Article  CAS  Google Scholar 

  150. Zhou F, Karcher D, Bock R (2007) Identification of a plastid intercistronic expression element (IEE) facilitating the expression of stable translatable monocistronic mRNAs from operons. Plant J 52:961–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lu Y, Rijzaani H, Karcher D, Ruf S, Bock R (2013) Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. Proc Natl Acad Sci U S A 110:E623–E632

    Article  PubMed  PubMed Central  Google Scholar 

  152. Cerutti H, Osman M, Grandoni P, Jagendorf AT (1992) A homolog of Escherichia coli RecA protein in plastids of higher plants. Proc Natl Acad Sci U S A 89:8068–8072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Krech K, Fu H-Y, Thiele W, Ruf S, Schöttler MA, Bock R (2013) Reverse genetics in complex multigene operons by co-transformation of the plastid genome and its application to the open reading frame previously designated psbN. Plant J 75:1062–1074

    Article  CAS  PubMed  Google Scholar 

  154. Kumar S, Hahn FM, Baidoo E, Kahlon TS, Wood DF, McMahan CM, Cornish K, Keasling JK, Daniell H, Whalen MC (2012) Remodeling the isoprenoid pathway in tobacco by expressing the cytoplasmic mevalonate pathway in chloroplasts. Metab Eng 14:19–28

    Article  CAS  PubMed  Google Scholar 

  155. Sinagawa-García SR, Tungsuchat-Huang T, Maliga P (2009) Next generation synthetic vectors for transformation of the plastid genome of higher plants. Plant Mol Biol 70:487–498

    Article  PubMed  CAS  Google Scholar 

  156. Day A, Goldschmidt-Clermont M (2011) The chloroplast transformation toolbox selectable markers and marker removal. Plant Biotechnol J 9:540–553

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of the Spanish Ministerio de EconomĂ­a y Competitividad (AGL2013-43522-R) and the Generalitat de Catalunya (2014 SGR 1434).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Ferrer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ferrer, A., ArrĂ³, M., Manzano, D., Altabella, T. (2016). Strategies and Methodologies for the Co-expression of Multiple Proteins in Plants. In: Vega, M. (eds) Advanced Technologies for Protein Complex Production and Characterization. Advances in Experimental Medicine and Biology, vol 896. Springer, Cham. https://doi.org/10.1007/978-3-319-27216-0_17

Download citation

Publish with us

Policies and ethics