Skip to main content

Role of TRPC Channels in Store-Operated Calcium Entry

  • Chapter
  • First Online:
Calcium Entry Pathways in Non-excitable Cells

Abstract

Store-operated calcium entry (SOCE) is a ubiquitous Ca2+ entry pathway that is activated in response to depletion of Ca2+ stores within the endoplasmic reticulum (ER) and contributes to the control of various physiological functions in a wide variety of cell types. The transient receptor potential canonical (TRPC) channels (TRPCs 1–7), that are activated by stimuli leading to PIP2 hydrolysis, were first identified as molecular components of SOCE channels. TRPC channels show a miscellany of tissue expression, physiological functions and channel properties. However, none of the TRPC members display currents that resemble I CRAC. Intensive search for the CRAC channel component led to identification of Orai1 and STIM1, now established as being the primary constituents of the CRAC channel. There is now considerable evidence that STIM1 activates both Orai1 and TRPC1 via distinct domains in its C-terminus. Intriguingly, TRPC1 function is not only dependent on STIM1 but also requires Orai1. The critical functional interaction between TRPC1 and Orai1, which determines the activation of TRPC1, has also been identified. In this review, we will discuss current concepts regarding the role of TRPC channels in SOCE, the physiological functions regulated by TRPC-mediated SOCE, and the complex mechanisms underlying the regulation of TRPCs, including the functional interactions with Orai1 and STIM1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ong HL, de Souza LB, Cheng KT, Ambudkar IS (2014) Physiological functions and regulation of TRPC channels. Handb Exp Pharmacol 223:1005–1034

    Article  CAS  PubMed  Google Scholar 

  2. Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85(2):757–810

    Article  CAS  PubMed  Google Scholar 

  3. Putney JW Jr (1990) Capacitative calcium entry revisited. Cell Calcium 11(5–6):611–624

    Article  CAS  PubMed  Google Scholar 

  4. Parekh AB, Fleig A, Penner R (1997) The store-operated calcium current I(CRAC): nonlinear activation by InsP3 and dissociation from calcium release. Cell 89(6):973–980

    Article  CAS  PubMed  Google Scholar 

  5. Penner R, Matthews G, Neher E (1988) Regulation of calcium influx by second messengers in rat mast cells. Nature 334(6182):499–504

    Article  CAS  PubMed  Google Scholar 

  6. Matthews G, Neher E, Penner R (1989) Second messenger-activated calcium influx in rat peritoneal mast cells. J Physiol 418:105–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lewis RS, Cahalan MD (1989) Mitogen-induced oscillations of cytosolic Ca2+ and transmembrane Ca2+ current in human leukemic T cells. Cell Regul 1(1):99–112

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu X, Groschner K, Ambudkar IS (2004) Distinct Ca2+-permeable cation currents are activated by internal Ca2+-store depletion in RBL-2H3 cells and human salivary gland cells, HSG and HSY. J Membr Biol 200(2):93–104

    Article  CAS  PubMed  Google Scholar 

  9. Minke H, Cook B (2002) TRP channel proteins and signal transduction. Physiol Rev 82:429–472

    Article  CAS  PubMed  Google Scholar 

  10. Montell C (2005) The TRP superfamily of cation channels. Sci STKE 272:re3

    Google Scholar 

  11. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Choi S, Maleth J, Jha A, Lee KP, Kim MS, So I, Ahuja M, Muallem S (2014) The TRPCs-STIM1-Orai interaction. Handb Exp Pharmacol 223:1035–1054

    Article  CAS  PubMed  Google Scholar 

  13. Nesin V, Tsiokas L (2014) Trpc1. Handb Exp Pharmacol 222:15–51

    Article  CAS  PubMed  Google Scholar 

  14. Miller BA (2014) Trpc2. Handb Exp Pharmacol 222:53–65

    Article  CAS  PubMed  Google Scholar 

  15. Lichtenegger M, Groschner K (2014) TRPC3: a multifunctional signaling molecule. Handb Exp Pharmacol 222:67–84

    Article  CAS  PubMed  Google Scholar 

  16. Freichel M, Tsvilovskyy V, Camacho-Londono JE (2014) TRPC4- and TRPC4-containing channels. Handb Exp Pharmacol 222:85–128

    Article  CAS  PubMed  Google Scholar 

  17. Zholos AV (2014) Trpc5. Handb Exp Pharmacol 222:129–156

    Article  CAS  PubMed  Google Scholar 

  18. Dietrich A, Gudermann T (2014) TRPC6: physiological function and pathophysiological relevance. Handb Exp Pharmacol 222:157–188

    Article  CAS  PubMed  Google Scholar 

  19. Zhang X, Trebak M (2014) Transient receptor potential canonical 7: a diacylglycerol-activated non-selective cation channel. Handb Exp Pharmacol 222:189–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten S, Montell C (1995) TRPC1, a human homolog of a Drosophila store-operated channel. Proc Natl Acad Sci U S A 92:9652–9656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhu X, Chu PB, Peyton M, Birnbaumer L (1995) Molecular cloning of a widely expressed human homologue for the Drosophila trp gene. FEBS Lett 373:193–198

    Article  CAS  PubMed  Google Scholar 

  22. Hogan PG, Lewis RS, Rao A (2010) Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu Rev Immunol 28:491–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nilius B, Owsianik G (2010) Transient receptor potential channelopathies. Pflugers Arch 460(2):437–450

    Article  CAS  PubMed  Google Scholar 

  24. Greka A, Mundel P (2011) Balancing calcium signals through TRPC5 and TRPC6 in podocytes. J Am Soc Nephrol 22(11):1969–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Beech DJ (2013) Characteristics of transient receptor potential canonical calcium-permeable channels and their relevance to vascular physiology and disease. Circ J 77(3):570–579

    Article  CAS  PubMed  Google Scholar 

  26. Liu X, Singh BB, Ambudkar IS (2003) TRPC1 is required for functional store-operated Ca2+ channels. Role of acidic amino acid residues in the S5-S6 region. J Biol Chem 278(13):11337–11343

    Article  CAS  PubMed  Google Scholar 

  27. Liu X, Wang W, Singh BB, Lockwich T, Jadlowiec J, O’Connell B, Wellner R, Zhu MX, Ambudkar IS (2000) Trp1, a candidate protein for the store-operated Ca2+ influx mechanism in salivary gland cells. J Biol Chem 275(5):3403–3411

    Article  CAS  PubMed  Google Scholar 

  28. Dietrich A, Chubanov V, Kalwa H, Rost BR, Gudermann T (2006) Cation channels of the transient receptor potential superfamily: their role in physiological and pathophysiological processes of smooth muscle cells. Pharmacol Ther 112(3):744–760

    Article  CAS  PubMed  Google Scholar 

  29. Mehta D, Ahmmed GU, Paria BC, Holinstat M, Voyno-Yasenetskaya T, Tiruppathi C, Minshall RD, Malik AB (2003) RhoA interaction with inositol 1,4,5-triphosphate receptor and transient receptor potential channel-1 regulates Ca2+ entry. J Biol Chem 278(35):33492–33500

    Article  CAS  PubMed  Google Scholar 

  30. Tiruppathi C, Ahmmed GU, Vogel SM, Malik AB (2006) Ca2+ signaling, TRP channels, and endothelial permeability. Microcirculation 13(8):693–708

    Article  CAS  PubMed  Google Scholar 

  31. Brownlow SL, Harper AG, Harper MT, Sage SO (2004) A role for hTRPC1 and lipid raft domains in store-mediated calcium entry in human platelets. Cell Calcium 35(2):107–113

    Article  CAS  PubMed  Google Scholar 

  32. Rosado JA, Brownlow SL, Sage SO (2002) Endogenously expressed Trp1 is involved in store-mediated Ca2+ entry by conformational coupling in human platelets. J Biol Chem 277(44):42157–42163

    Article  CAS  PubMed  Google Scholar 

  33. Dietrich A, Fahlbusch M, Gudermann T (2014) Classical transient receptor potential 1 (TRPC1): channel or channel regulator? Cells 3(4):939–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hong JH, Li Q, Kim MS, Shin DM, Feske S, Birnbaumer L, Cheng KT, Ambudkar IS, Muallem S (2011) Polarized but differential localization and recruitment of STIM1, Orai1 and TRPC channels in secretory cells. Traffic 12(2):232–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ma X, Cheng KT, Wong CO, O’Neil RG, Birnbaumer L, Ambudkar IS, Yao X (2011) Heteromeric TRPV4-C1 channels contribute to store-operated Ca2+ entry in vascular endothelial cells. Cell Calcium 50(6):502–509

    Article  CAS  PubMed  Google Scholar 

  36. Liu X, Cheng KT, Bandyopadhyay BC, Pani B, Dietrich A, Paria BC, Swaim WD, Beech D, Yildrim E, Singh BB, Birnbaumer L, Ambudkar IS (2007) Attenuation of store-operated Ca2+ current impairs salivary gland fluid secretion in TRPC1−/− mice. Proc Natl Acad Sci U S A 104(44):17542–17547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sun Y, Birnbaumer L, Singh BB (2015) TRPC1 regulates calcium-activated chloride channels in salivary gland cells. J Cell Physiol. doi:10.1002/jcp.25017

    Google Scholar 

  38. Pani B, Ong HL, Brazer SC, Liu X, Rauser K, Singh BB, Ambudkar IS (2009) Activation of TRPC1 by STIM1 in ER-PM microdomains involves release of the channel from its scaffold caveolin-1. Proc Natl Acad Sci U S A 106(47):20087–20092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pani B, Liu X, Bollimuntha S, Cheng KT, Niesman IR, Zheng C, Achen VR, Patel HH, Ambudkar IS, Singh BB (2013) Impairment of TRPC1-STIM1 channel assembly and AQP5 translocation compromise agonist-stimulated fluid secretion in mice lacking caveolin1. J Cell Sci 126(Pt 2):667–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Du J, Sours-Brothers S, Coleman R, Ding M, Graham S, Kong DH, Ma R (2007) Canonical transient receptor potential 1 channel is involved in contractile function of glomerular mesangial cells. J Am Soc Nephrol 18(5):1437–1445

    Article  CAS  PubMed  Google Scholar 

  41. Sours S, Du J, Chu S, Ding M, Zhou XJ, Ma R (2006) Expression of canonical transient receptor potential (TRPC) proteins in human glomerular mesangial cells. Am J Physiol Renal Physiol 290(6):F1507–F1515

    Article  CAS  PubMed  Google Scholar 

  42. Ong EC, Nesin V, Long CL, Bai CX, Guz JL, Ivanov IP, Abramowitz J, Birnbaumer L, Humphrey MB, Tsiokas L (2013) A TRPC1-dependent pathway regulates osteoclast formation and function. J Biol Chem 288(31):22219–22231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kochukov MY, Balasubramanian A, Noel RC, Marrelli SP (2013) Role of TRPC1 and TRPC3 channels in contraction and relaxation of mouse thoracic aorta. J Vasc Res 50(1):11–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zanou N, Schakman O, Louis P, Ruegg UT, Dietrich A, Birnbaumer L, Gailly P (2012) Trpc1 ion channel modulates phosphatidylinositol 3-kinase/Akt pathway during myoblast differentiation and muscle regeneration. J Biol Chem 287(18):14524–14534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zanou N, Shapovalov G, Louis M, Tajeddine N, Gallo C, Van Schoor M, Anguish I, Cao ML, Schakman O, Dietrich A, Lebacq J, Ruegg U, Roulet E, Birnbaumer L, Gailly P (2010) Role of TRPC1 channel in skeletal muscle function. Am J Physiol Cell Physiol 298(1):C149–C162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sabourin J, Lamiche C, Vandebrouck A, Magaud C, Rivet J, Cognard C, Bourmeyster N, Constantin B (2009) Regulation of TRPC1 and TRPC4 cation channels requires an alpha1-syntrophin-dependent complex in skeletal mouse myotubes. J Biol Chem 284(52):36248–36261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stiber JA, Zhang ZS, Burch J, Eu JP, Zhang S, Truskey GA, Seth M, Yamaguchi N, Meissner G, Shah R, Worley PF, Williams RS, Rosenberg PB (2008) Mice lacking Homer 1 exhibit a skeletal myopathy characterized by abnormal transient receptor potential channel activity. Mol Cell Biol 28(8):2637–2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vandebrouck A, Sabourin J, Rivet J, Balghi H, Sebille S, Kitzis A, Raymond G, Cognard C, Bourmeyster N, Constantin B (2007) Regulation of capacitative calcium entries by {alpha}1-syntrophin: association of TRPC1 with dystrophin complex and the PDZ domain of {alpha}1-syntrophin. FASEB J 20:136–138

    Google Scholar 

  49. Kim EY, Alvarez-Baron CP, Dryer SE (2009) Canonical transient receptor potential channel (TRPC)3 and TRPC6 associate with large-conductance Ca2+-activated K+ (BKCa) channels: role in BKCa trafficking to the surface of cultured podocytes. Mol Pharmacol 75(3):466–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zagranichnaya TK, Wu X, Villereal ML (2005) Endogenous TRPC1, TRPC3, and TRPC7 proteins combine to form native store-operated channels in HEK-293 cells. J Biol Chem 280(33):29559–29569

    Article  CAS  PubMed  Google Scholar 

  51. Boulay G, Brown DM, Qin N, Jiang M, Dietrich A, Zhu MX, Chen Z, Birnbaumer M, Mikoshiba K, Birnbaumer L (1999) Modulation of Ca2+ entry by polypeptides of the inositol 1,4,5-trisphosphate receptor (IP3R) that bind transient receptor potential (TRP): evidence for roles of TRP and IP3R in store depletion-activated Ca2+ entry. Proc Natl Acad Sci U S A 96(26):14955–14960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kiselyov K, Xu X, Mozhayeva G, Kuo T, Pessah I, Mignery G, Zhu X, Birnbaumer L, Muallem S (1998) Functional interaction between InsP3 receptors and store-operated Htrp3 channels. Nature 396(6710):478–482

    Article  CAS  PubMed  Google Scholar 

  53. Vazquez G, Wedel BJ, Trebak M, St John Bird G, Putney JW Jr (2003) Expression level of the canonical transient receptor potential 3 (TRPC3) channel determines its mechanism of activation. J Biol Chem 278(24):21649–21654

    Article  CAS  PubMed  Google Scholar 

  54. Zhu X, Jiang M, Peyton M, Boulay G, Hurst R, Stefani E, Birnbaumer L (1996) trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell 85(5):661–671

    Article  CAS  PubMed  Google Scholar 

  55. Kim MS, Hong JH, Li Q, Shin DM, Abramowitz J, Birnbaumer L, Muallem S (2009) Deletion of TRPC3 in mice reduces store-operated Ca2+ influx and the severity of acute pancreatitis. Gastroenterology 137(4):1509–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim MS, Lee KP, Yang D, Shin DM, Abramowitz J, Kiyonaka S, Birnbaumer L, Mori Y, Muallem S (2011) Genetic and pharmacologic inhibition of the Ca2+ influx channel TRPC3 protects secretory epithelia from Ca2+-dependent toxicity. Gastroenterology 140(7):2107–2115, 2115 e2101-2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ambudkar IS, Ong HL (2007) Organization and function of TRPC channelosomes. Pflugers Arch 455(2):187–200

    Article  CAS  PubMed  Google Scholar 

  58. Okada T, Shimizu S, Wakamori M, Maeda A, Kurosaki T, Takada N, Imoto K, Mori Y (1998) Molecular cloning and functional characterisation of a novel receptor-activated TRP Ca2+ channel from mouse brain. J Biol Chem 273(17):10279–10287

    Article  CAS  PubMed  Google Scholar 

  59. Zeng F, Xu SZ, Jackson PK, McHugh D, Kumar B, Fountain SJ, Beech DJ (2004) Human TRPC5 channel activated by a multiplicity of signals in a single cell. J Physiol 559(Pt 3):739–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Philipp S, Cavalie A, Freichel M, Wissenbach U, Zimmer S, Trost C, Marquart A, Murakami M, Flockerzi V (1996) A mammalian capacitative calcium entry channel homologous to Drosophila TRP and TRPL. EMBO J 15(22):6166–6171

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Warnat J, Philipp S, Zimmer S, Flockerzi V, Cavalie A (1999) P.henotype of a recombinant store-operated channel : highly selective permeation of Ca2+. J Physiol 518(3):631–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kinoshita M, Akaike A, Satoh M, Kaneko S (2000) Positive regulation of capacitative Ca2+ entry by intracellular Ca2+ in Xenopus oocytes expressing rat TRP4. Cell Calcium 28(3):151–159

    Article  CAS  PubMed  Google Scholar 

  63. Wang J, Shimoda LA, Sylvester JT (2004) Capacitative calcium entry and TRPC channel proteins are expressed in rat distal pulmonary arterial smooth muscle. Am J Physiol Lung Cell Mol Physiol 286(4):L848–L858

    Article  CAS  PubMed  Google Scholar 

  64. Philipp S, Trost C, Warnat J, Rautmann J, Himmerkus N, Schroth G, Kretz O, Nastainczyk W, Cavalie A, Hoth M, Flockerzi V (2000) TRP4 (CCE1) protein is part of native calcium release-activated Ca2+-like channels in adrenal cells. J Biol Chem 275(21):23985–23972

    Google Scholar 

  65. Sundivakkam PC, Freichel M, Singh V, Yuan JP, Vogel SM, Flockerzi V, Malik AB, Tiruppathi C (2012) The Ca2+ sensor stromal interaction molecule 1 (STIM1) is necessary and sufficient for the store-operated Ca2+ entry function of transient receptor potential canonical (TRPC) 1 and 4 channels in endothelial cells. Mol Pharmacol 81(4):510–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fatherazi S, Presland RB, Belton CM, Goodwin P, Al-Qutub M, Trbic Z, Macdonald G, Schubert MM, Izutsu KT (2007) Evidence that TRPC4 supports the calcium selective ICRAC-like current in human gingival keratinocytes. Pflugers Arch 453(6):879–889

    Article  CAS  PubMed  Google Scholar 

  67. Yang H, Mergler S, Sun X, Wang Z, Lu L, Bonanno JA, Pleyer U, Reinach PS (2005) TRPC4 knockdown suppresses epidermal growth factor-induced store-operated channel activation and growth in human corneal epithelial cells. J Biol Chem 280(37):32230–32237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang S, Remillard CV, Fantozzi I, Yuan JX (2004) ATP-induced mitogenesis is mediated by cyclic AMP response element-binding protein-enhanced TRPC4 expression and activity in human pulmonary artery smooth muscle cells. Am J Physiol Cell Physiol 287(5):C1192–C1201

    Article  CAS  PubMed  Google Scholar 

  69. Sours-Brothers S, Ding M, Graham S, Ma R (2009) Interaction between TRPC1/TRPC4 assembly and STIM1 contributes to store-operated Ca2+ entry in mesangial cells. Exp Biol Med (Maywood) 234(6):673–682

    Article  CAS  Google Scholar 

  70. Freichel M, Suh SH, Pfeifer A, Schweig U, Trost C, Weibgerber P, Biel M, Philipp S, Freise D, Droogmans G, Hofmann F, Flockerzi V, Nilius B (2001) Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4−/− mice. Nat Cell Biol 3:121–127

    Article  CAS  PubMed  Google Scholar 

  71. Tiruppathi C, Freichel M, Vogel SM, Paria BC, Mehta D, Flockerzi V, Malik AB (2002) Impairment of store-operated Ca2+ entry in TRPC4−/− mice interferes with increase in lung microvascular permeability. Circ Res 91(1):70–76

    Article  CAS  PubMed  Google Scholar 

  72. Goel M, Sinkins WG, Schilling WP (2002) Selective association of TRPC channel subunits in rat brain synaptosomes. J Biol Chem 277(50):48303–48310

    Article  CAS  PubMed  Google Scholar 

  73. Hofmann T, Schaefer M, Schultz G, Gudermann T (2002) Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci U S A 99(11):7461–7466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE (2003) Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J Biol Chem 278(40):39014–39019

    Article  PubMed  Google Scholar 

  75. Liu X, Bandyopadhyay BC, Singh BB, Groschner K, Ambudkar IS (2005) Molecular analysis of a store-operated and 2-acetyl-sn-glycerol-sensitive non-selective cation channel. Heteromeric assembly of TRPC1-TRPC3. J Biol Chem 280(22):21600–21606

    Article  CAS  PubMed  Google Scholar 

  76. Wu X, Zagranichnaya TK, Gurda GT, Eves EM, Villereal ML (2004) A TRPC1/TRPC3-mediated increase in store-operated calcium entry is required for differentiation of H19-7 hippocampal neuronal cells. J Biol Chem 279(42):43392–43402

    Article  CAS  PubMed  Google Scholar 

  77. Beech DJ (2005) Emerging functions of 10 types of TRP cationic channel in vascular smooth muscle. Clin Exp Pharmacol Physiol 32(8):597–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Antigny F, Koenig S, Bernheim L, Frieden M (2013) During post-natal human myogenesis, normal myotube size requires TRPC1- and TRPC4-mediated Ca2+ entry. J Cell Sci 126(Pt 11):2525–2533

    Article  CAS  PubMed  Google Scholar 

  79. Louis M, Zanou N, Van Schoor M, Gailly P (2008) TRPC1 regulates skeletal myoblast migration and differentiation. J Cell Sci 121(Pt 23):3951–3959

    Article  CAS  PubMed  Google Scholar 

  80. Seth M, Zhang ZS, Mao L, Graham V, Burch J, Stiber J, Tsiokas L, Winn M, Abramowitz J, Rockman HA, Birnbaumer L, Rosenberg P (2009) TRPC1 channels are critical for hypertrophic signaling in the heart. Circ Res 105(10):1023–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wu X, Eder P, Chang B, Molkentin JD (2010) TRPC channels are necessary mediators of pathologic cardiac hypertrophy. Proc Natl Acad Sci U S A 107(15):7000–7005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Phelan KD, Mock MM, Kretz O, Shwe UT, Kozhemyakin M, Greenfield LJ, Dietrich A, Birnbaumer L, Freichel M, Flockerzi V, Zheng F (2012) Heteromeric canonical transient receptor potential 1 and 4 channels play a critical role in epileptiform burst firing and seizure-induced neurodegeneration. Mol Pharmacol 81(3):384–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Quick K, Zhao J, Eijkelkamp N, Linley JE, Rugiero F, Cox JJ, Raouf R, Gringhuis M, Sexton JE, Abramowitz J, Taylor R, Forge A, Ashmore J, Kirkwood N, Kros CJ, Richardson GP, Freichel M, Flockerzi V, Birnbaumer L, Wood JN (2012) TRPC3 and TRPC6 are essential for normal mechanotransduction in subsets of sensory neurons and cochlear hair cells. Open Biol 2(5):120068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Ma X, Cao J, Luo J, Nilius B, Huang Y, Ambudkar IS, Yao X (2010) Depletion of intracellular Ca2+ stores stimulates the translocation of vanilloid transient receptor potential 4-c1 heteromeric channels to the plasma membrane. Arterioscler Thromb Vasc Biol 30(11):2249–2255

    Article  CAS  PubMed  Google Scholar 

  85. Ma X, Nilius B, Wong JW, Huang Y, Yao X (2011) Electrophysiological properties of heteromeric TRPV4-C1 channels. Biochim Biophys Acta 1808(12):2789–2797

    Article  CAS  PubMed  Google Scholar 

  86. Schindl R, Fritsch R, Jardin I, Frischauf I, Kahr H, Muik M, Riedl MC, Groschner K, Romanin C (2012) Canonical transient receptor potential (TRPC) 1 acts as a negative regulator for vanilloid TRPV6-mediated Ca2+ influx. J Biol Chem 287(42):35612–35620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cheng KT, Liu X, Ong HL, Ambudkar IS (2008) Functional requirement for Orai1 in store-operated TRPC1-STIM1 channels. J Biol Chem 283(19):12935–12940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cheng KT, Liu X, Ong HL, Swaim W, Ambudkar IS (2011) Local Ca2+ entry via Orai1 regulates plasma membrane recruitment of TRPC1 and controls cytosolic Ca2+ signals required for specific cell functions. PLoS Biol 9(3):e1001025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Galan C, Zbidi H, Bartegi A, Salido GM, Rosado JA (2009) STIM1, Orai1 and hTRPC1 are important for thrombin- and ADP-induced aggregation in human platelets. Arch Biochem Biophys 490(2):137–144

    Article  CAS  PubMed  Google Scholar 

  90. Jardin I, Salido GM, Rosado JA (2008) Role of lipid rafts in the interaction between hTRPC1, Orai1 and STIM1. Channels 2(6):401–403

    Article  PubMed  Google Scholar 

  91. Huang GN, Zeng W, Kim JY, Yuan JP, Han L, Muallem S, Worley PF (2006) STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat Cell Biol 8(9):1003–1010

    Article  CAS  PubMed  Google Scholar 

  92. Kim MS, Zeng W, Yuan JP, Shin DM, Worley PF, Muallem S (2009) Native store-operated Ca2+ influx requires the channel function of Orai1 and TRPC1. J Biol Chem 284(15):9733–9741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Liao Y, Erxleben C, Yildirim E, Abramowitz J, Armstrong DL, Birnbaumer L (2007) Orai proteins interact with TRPC channels and confer responsiveness to store depletion. Proc Natl Acad Sci U S A 104(11):4682–4687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jardin I, Gomez LJ, Salido GM, Rosado JA (2009) Dynamic interaction of hTRPC6 with the Orai1-STIM1 complex or hTRPC3 mediates its role in capacitative or non-capacitative Ca2+ entry pathways. Biochem J 420(2):267–276

    Article  CAS  PubMed  Google Scholar 

  95. Woodard GE, Lopez JJ, Jardin I, Salido GM, Rosado JA (2010) TRPC3 regulates agonist-stimulated Ca2+ mobilization by mediating the interaction between type I inositol 1,4,5-trisphosphate receptor, RACK1, and Orai1. J Biol Chem 285(11):8045–8053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ong HL, Jang SI, Ambudkar IS (2012) Distinct contributions of Orai1 and TRPC1 to agonist-induced [Ca2+]i signals determine specificity of Ca2+-dependent gene expression. PLoS ONE 7(10):e47146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15(13):1235–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169(3):435–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yuan JP, Zeng W, Dorwart MR, Choi YJ, Worley PF, Muallem S (2009) SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol 11(3):337–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zeng W, Yuan JP, Kim MS, Choi YJ, Huang GN, Worley PF, Muallem S (2008) STIM1 gates TRPC channels, but not Orai1, by electrostatic interaction. Mol Cell 32(3):439–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yuan JP, Zeng W, Huang GN, Worley PF, Muallem S (2007) STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nat Cell Biol 9(6):636–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lopez JJ, Salido GM, Pariente JA, Rosado JA (2006) Interaction of STIM1 with endogenously expressed human canonical TRP1 upon depletion of intracellular Ca2+ stores. J Biol Chem 281(38):28254–28264

    Article  CAS  PubMed  Google Scholar 

  103. Ong HL, Cheng KT, Liu X, Bandyopadhyay BC, Paria BC, Soboloff J, Pani B, Gwack Y, Srikanth S, Singh BB, Gill DL, Ambudkar IS (2007) Dynamic assembly of TRPC1-STIM1-Orai1 ternary complex is involved in store-operated calcium influx. Evidence for similarities in store-operated and calcium release-activated calcium channel components. J Biol Chem 282(12):9105–9116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pani B, Ong HL, Liu X, Rauser K, Ambudkar IS, Singh BB (2008) Lipid rafts determine clustering of STIM1 in endoplasmic reticulum-plasma membrane junctions and regulation of Store-operated Ca2+ Entry (SOCE). J Biol Chem 283(25):17333–17340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lee KP, Choi S, Hong JH, Ahuja M, Graham S, Ma R, So I, Shin DM, Muallem S, Yuan JP (2014) Molecular determinants mediating gating of transient receptor potential canonical (TRPC) channels by stromal interaction molecule 1 (STIM1). J Biol Chem 289(10):6372–6382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lee KP, Yuan JP, So I, Worley PF, Muallem S (2010) STIM1-dependent and STIM1-independent function of transient receptor potential canonical (TRPC) channels tunes their store-operated mode. J Biol Chem 285(49):38666–38673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Albarran L, Dionisio N, Lopez E, Salido GM, Redondo PC, Rosado JA (2014) STIM1 regulates TRPC6 heteromultimerization and subcellular location. Biochem J 463(3):373–381

    Article  CAS  PubMed  Google Scholar 

  108. Ma HT, Peng Z, Hiragun T, Iwaki S, Gilfillan AM, Beaven MA (2008) Canonical transient receptor potential 5 channel in conjunction with Orai1 and STIM1 allows Sr2+ entry, optimal influx of Ca2+, and degranulation in a rat mast cell line. J Immunol 180(4):2233–2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Shim AH, Tirado-Lee L, Prakriya M (2015) Structural and functional mechanisms of CRAC channel regulation. J Mol Biol 427(1):77–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Muik M, Frischauf I, Derler I, Fahrner M, Bergsmann J, Eder P, Schindl R, Hesch C, Polzinger B, Fritsch R, Kahr H, Madl J, Gruber H, Groschner K, Romanin C (2008) Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J Biol Chem 283(12):8014–8022

    Article  CAS  PubMed  Google Scholar 

  111. Asanov A, Sampieri A, Moreno C, Pacheco J, Salgado A, Sherry R, Vaca L (2015) Combined single channel and single molecule detection identifies subunit composition of STIM1-activated transient receptor potential canonical (TRPC) channels. Cell Calcium 57(1):1–13

    Article  CAS  PubMed  Google Scholar 

  112. Wang X, Wang Y, Zhou Y, Hendron E, Mancarella S, Andrake MD, Rothberg BS, Soboloff J, Gill DL (2014) Distinct Orai-coupling domains in STIM1 and STIM2 define the Orai-activating site. Nat Commun 5:3183–3193

    PubMed  PubMed Central  Google Scholar 

  113. Collins SR, Meyer T (2011) Evolutionary origins of STIM1 and STIM2 within ancient Ca2+ signaling systems. Trends Cell Biol 21(4):202–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Brandman O, Liou J, Park WS, Meyer T (2007) STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 131(7):1327–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kar P, Bakowski D, Di Capite J, Nelson C, Parekh AB (2012) Different agonists recruit different stromal interaction molecule proteins to support cytoplasmic Ca2+ oscillations and gene expression. Proc Natl Acad Sci U S A 109(18):6969–6974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ong HL, de Souza LB, Zheng C, Cheng KT, Liu X, Goldsmith CM, Feske S, Ambudkar IS (2015) STIM2 enhances receptor-stimulated Ca2+ signaling by promoting recruitment of STIM1 to the endoplasmic reticulum-plasma membrane junctions. Sci Signal 8(359):ra3

    Article  PubMed  CAS  Google Scholar 

  117. Shalygin A, Skopin A, Kalinina V, Zimina O, Glushankova L, Mozhayeva GN, Kaznacheyeva E (2014) STIM1 and STIM2 proteins differently regulate endogenous store-operated channels in HEK293 cells. J Biol Chem 290(8): 4717–4727

    Google Scholar 

  118. Rao JN, Rathor N, Zhuang R, Zou T, Liu L, Xiao L, Turner DJ, Wang JY (2012) Polyamines regulate intestinal epithelial restitution through TRPC1-mediated Ca2+ signaling by differentially modulating STIM1 and STIM2. Am J Physiol Cell Physiol 303(3):C308–C317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Vig M, Beck A, Billingsley JM, Lis A, Parvez S, Peinelt C, Koomoa DL, Soboloff J, Gill DL, Fleig A, Kinet JP, Penner R (2006) CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr Biol 16(20):2073–2079

    Article  CAS  PubMed  Google Scholar 

  120. Zhang SL, Yeromin AV, Zhang XH, Yu Y, Safrina O, Penna A, Roos J, Stauderman KA, Cahalan MD (2006) Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc Natl Acad Sci U S A 103(24):9357–9362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441(7090):179–185

    Article  CAS  PubMed  Google Scholar 

  122. Hoth M, Niemeyer BA (2013) The neglected CRAC proteins: Orai2, Orai3, and STIM2. Curr Top Membr 71:237–271

    Article  CAS  PubMed  Google Scholar 

  123. Gwack Y, Srikanth S, Feske S, Cruz-Guilloty F, Oh-hora M, Neems DS, Hogan PG, Rao A (2007) Biochemical and functional characterization of Orai proteins. J Biol Chem 282(22):16232–16243

    Article  CAS  PubMed  Google Scholar 

  124. Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443(7108):230–233

    Article  CAS  PubMed  Google Scholar 

  125. McNally BA, Somasundaram A, Yamashita M, Prakriya M (2012) Gated regulation of CRAC channel ion selectivity by STIM1. Nature 482(7384):241–245

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Ng LC, McCormack MD, Airey JA, Singer CA, Keller PS, Shen XM, Hume JR (2009) TRPC1 and STIM1 mediate capacitative Ca2+ entry in mouse pulmonary arterial smooth muscle cells. J Physiol 587(Pt 11):2429–2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lu M, Branstrom R, Berglund E, Hoog A, Bjorklund P, Westin G, Larsson C, Farnebo LO, Forsberg L (2010) Expression and association of TRPC subtypes with Orai1 and STIM1 in human parathyroid. J Mol Endocrinol 44(5):285–294

    Article  CAS  PubMed  Google Scholar 

  128. Zhang ZY, Pan LJ, Zhang ZM (2010) Functional interactions among STIM1, Orai1 and TRPC1 on the activation of SOCs in HL-7702 cells. Amino Acids 39(1):195–204

    Article  CAS  PubMed  Google Scholar 

  129. Almirza WH, Peters PH, van Zoelen EJ, Theuvenet AP (2012) Role of Trpc channels, Stim1 and Orai1 in PGF-induced calcium signaling in NRK fibroblasts. Cell Calcium 51(1):12–21

    Article  CAS  PubMed  Google Scholar 

  130. Cioffi DL, Wu S, Chen H, Alexeyev M, St Croix CM, Pitt BR, Uhlig S, Stevens T (2012) Orai1 determines calcium selectivity of an endogenous TRPC heterotetramer channel. Circ Res 110(11):1435–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lockwich TP, Liu X, Singh BB, Jadlowiec J, Weiland S, Ambudkar IS (2000) Assembly of Trp1 in a signaling complex associated with caveolin-scaffolding lipid raft domains. J Biol Chem 275(16):11934–11942

    Article  CAS  PubMed  Google Scholar 

  132. Dionisio N, Galan C, Jardin I, Salido GM, Rosado JA (2011) Lipid rafts are essential for the regulation of SOCE by plasma membrane resident STIM1 in human platelets. Biochim Biophys Acta 1813(3):431–437

    Article  CAS  PubMed  Google Scholar 

  133. Galan C, Woodard GE, Dionisio N, Salido GM, Rosado JA (2010) Lipid rafts modulate the activation but not the maintenance of store-operated Ca2+ entry. Biochim Biophys Acta 1803(9):1083–1093

    Article  CAS  PubMed  Google Scholar 

  134. Liao Y, Erxleben C, Abramowitz J, Flockerzi V, Zhu MX, Armstrong DL, Birnbaumer L (2008) Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/Icrac channels. Proc Natl Acad Sci U S A 105(8):2895–2900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Liao Y, Plummer NW, George MD, Abramowitz J, Zhu MX, Birnbaumer L (2009) A role for Orai in TRPC-mediated Ca2+ entry suggests that a TRPC:Orai complex may mediate store and receptor operated Ca2+ entry. Proc Natl Acad Sci U S A 106(9):3202–3206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chvanov M, Walsh CM, Haynes LP, Voronina SG, Lur G, Gerasimenko OV, Barraclough R, Rudland PS, Petersen OH, Burgoyne RD, Tepikin AV (2008) ATP depletion induces translocation of STIM1 to puncta and formation of STIM1-ORAI1 clusters: translocation and re-translocation of STIM1 does not require ATP. Pflugers Arch: Eur J Physiol 457(2):505–517

    Article  CAS  Google Scholar 

  137. Korzeniowski MK, Popovic MA, Szentpetery Z, Varnai P, Stojilkovic SS, Balla T (2009) Dependence of STIM1/Orai1-mediated calcium entry on plasma membrane phosphoinositides. J Biol Chem 284(31):21027–21035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Walsh CM, Chvanov M, Haynes LP, Petersen OH, Tepikin AV, Burgoyne RD (2010) Role of phosphoinositides in STIM1 dynamics and store-operated calcium entry. Biochem J 425(1):159–168

    Article  CAS  PubMed Central  Google Scholar 

  139. Calloway N, Owens T, Corwith K, Rodgers W, Holowka D, Baird B (2011) Stimulated association of STIM1 and Orai1 is regulated by the balance of PtdIns(4,5)P2 between distinct membrane pools. J Cell Sci 124(Pt 15):2602–2610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Park CY, Hoover PJ, Mullins FM, Bachhawat P, Covington ED, Raunser S, Walz T, Garcia KC, Dolmetsch RE, Lewis RS (2009) STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136(5):876–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Sharma S, Quintana A, Findlay GM, Mettlen M, Baust B, Jain M, Nilsson R, Rao A, Hogan PG (2013) An siRNA screen for NFAT activation identifies septins as coordinators of store-operated Ca2+ entry. Nature 499(7457):238–242

    Article  CAS  PubMed  Google Scholar 

  142. Wollman R, Meyer T (2012) Coordinated oscillations in cortical actin and Ca2+ correlate with cycles of vesicle secretion. Nat Cell Biol 14(12):1261–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Maleth J, Choi S, Muallem S, Ahuja M (2014) Translocation between PI(4,5)P2-poor and PI(4,5)P2-rich microdomains during store depletion determines STIM1 conformation and Orai1 gating. Nat Commun 5:5843

    Article  PubMed  PubMed Central  Google Scholar 

  144. Ong HL, Ambudkar IS (2011) The dynamic complexity of the TRPC1 channelosome. Channels 5(5):424–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Brazer SC, Singh BB, Liu X, Swaim W, Ambudkar IS (2003) Caveolin-1 contributes to assembly of store-operated Ca2+ influx channels by regulating plasma membrane localization of TRPC1. J Biol Chem 278(29):27208–27215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kwiatek AM, Minshall RD, Cool DR, Skidgel RA, Malik AB, Tiruppathi C (2006) Caveolin-1 regulates store-operated Ca2+ influx by binding of its scaffolding domain to transient receptor potential channel-1 in endothelial cells. Mol Pharmacol 70(4):1174–1183

    Article  CAS  PubMed  Google Scholar 

  147. Weihuang Y, Chang SJ, Harn HI, Huang HT, Lin HH, Shen MR, Tang MJ, Chiu WT (2015) Mechanosensitive store-operated calcium entry regulates the formation of cell polarity. J Cell Physiol. doi:10.1002/jcp.24936

    Google Scholar 

  148. Rathor N, Chung HK, Wang SR, Wang JY, Turner DJ, Rao JN (2014) Caveolin-1 enhances rapid mucosal restitution by activating TRPC1-mediated Ca2+ signaling. Physiol Rep 2(11):e12193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Sundivakkam PC, Kwiatek AM, Sharma TT, Minshall RD, Malik AB, Tiruppathi C (2009) Caveolin-1 scaffold domain interacts with TRPC1 and IP3R3 to regulate Ca2+ store release-induced Ca2+ entry in endothelial cells. Am J Physiol Cell Physiol 296(3):C403–C413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Yuan JP, Kiselyov K, Shin DM, Chen J, Shcheynikov N, Kang SH, Dehoff MH, Schwarz MK, Seeburg PH, Muallem S, Worley PF (2003) Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell 114(6):777–789

    Article  CAS  PubMed  Google Scholar 

  151. Yuan JP, Lee KP, Hong JH, Muallem S (2012) The closing and opening of TRPC channels by Homer1 and STIM1. Acta Physiol 204:237–247

    Article  CAS  Google Scholar 

  152. Redondo PC, Harper AG, Salido GM, Pariente JA, Sage SO, Rosado JA (2004) A role for SNAP-25 but not VAMPs in store-mediated Ca2+ entry in human platelets. J Physiol 558(Pt 1):99–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Bollimuntha S, Cornatzer E, Singh BB (2005) Plasma membrane localization and function of TRPC1 is dependent on its interaction with beta-tubulin in retinal epithelium cells. Vis Neurosci 22(2):163–170

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in ISA’s laboratory is supported by the Intramural Research Program of the NIH, NIDCR.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hwei Ling Ong or Indu S. Ambudkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ong, H.L., de Souza, L.B., Ambudkar, I.S. (2016). Role of TRPC Channels in Store-Operated Calcium Entry. In: Rosado, J. (eds) Calcium Entry Pathways in Non-excitable Cells. Advances in Experimental Medicine and Biology, vol 898. Springer, Cham. https://doi.org/10.1007/978-3-319-26974-0_5

Download citation

Publish with us

Policies and ethics