Skip to main content

The TRPCs–STIM1–Orai Interaction

  • Chapter
  • First Online:
Mammalian Transient Receptor Potential (TRP) Cation Channels

Abstract

Ca2+ signaling entails receptor-stimulated Ca2+ release from the ER stores that serves as a signal to activate Ca2+ influx channels present at the plasma membrane, the store-operated Ca2+ channels (SOCs). The two known SOCs are the Orai and TRPC channels. The SOC-dependent Ca2+ influx mediates and sustains virtually all Ca2+-dependent regulatory functions. The signal that transmits the Ca2+ content of the ER stores to the plasma membrane is the ER resident, Ca2+-binding protein STIM1. STIM1 is a multidomain protein that clusters and dimerizes in response to Ca2+ store depletion leading to activation of Orai and TRPC channels. Activation of the Orais by STIM1 is obligatory for their function as SOCs, while TRPC channels can function as both STIM1-dependent and STIM1-independent channels. Here we discuss the different mechanisms by which STIM1 activates the Orai and TRPC channels, the emerging specific and non-overlapping physiological functions of Ca2+ influx mediated by the two channel types, and argue that the TRPC channels should be the preferred therapeutic target to control the toxic effect of excess Ca2+ influx.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alevizos I, Illei GG (2010) MicroRNAs in Sjogren’s syndrome as a prototypic autoimmune disease. Autoimmun Rev 9(9):618–621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Almassy J, Won JH, Begenisich TB, Yule DI (2012) Apical Ca2+-activated potassium channels in mouse parotid acinar cells. J Gen Physiol 139(2):121–133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Antigny F, Koenig S, Bernheim L, Frieden M (2013) During post-natal human myogenesis, normal myotube size requires TRPC1 and TRPC4 mediated Ca2+ entry. J Cell Sci 126(Pt 11):2525–2533

    Article  CAS  PubMed  Google Scholar 

  • Jha A, Ahuja M, Maléth J, Moreno CM, Yuan JP, Kim MS, Muallem S (2013) The STIM1 CTID domain determines access of SARAF to SOAR to regulate Orai1 channel function. J Cell Biol 202(1):71–79

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Balghi H et al (2011) Enhanced Ca2+ entry due to Orai1 plasma membrane insertion increases IL-8 secretion by cystic fibrosis airways. FASEB J 25(12):4274–4291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bandyopadhyay BC et al (2005) Apical localization of a functional TRPC3/TRPC6-Ca2+-signaling complex in polarized epithelial cells. Role in apical Ca2+ influx. J Biol Chem 280(13):12908–12916

    Article  CAS  PubMed  Google Scholar 

  • Blair NT, Kaczmarek JS, Clapham DE (2009) Intracellular calcium strongly potentiates agonist-activated TRPC5 channels. J Gen Physiol 133(5):525–546

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng KT, Liu X, Ong HL, Swaim W, Ambudkar IS (2011) Local Ca entry via Orai1 regulates plasma membrane recruitment of TRPC1 and controls cytosolic Ca signals required for specific cell functions. PLoS Biol 9(3):e1001025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng KT et al (2012) STIM1 and STIM2 protein deficiency in T lymphocytes underlies development of the exocrine gland autoimmune disease, Sjogren’s syndrome. Proc Natl Acad Sci U S A 109(36):14544–14549

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Darbellay B et al (2010) Human muscle economy myoblast differentiation and excitation-contraction coupling use the same molecular partners, STIM1 and STIM2. J Biol Chem 285(29):22437–22447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Demuro A et al (2011) Subunit stoichiometry of human Orai1 and Orai3 channels in closed and open states. Proc Natl Acad Sci U S A 108(43):17832–17837

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Derler I et al (2009) A Ca2(+)release-activated Ca2(+) (CRAC) modulatory domain (CMD) within STIM1 mediates fast Ca2(+)-dependent inactivation of ORAI1 channels. J Biol Chem 284(37):24933–24938

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Di A, Malik AB (2010) TRP channels and the control of vascular function. Curr Opin Pharmacol 10(2):127–132

    Article  CAS  PubMed  Google Scholar 

  • Dietrich A et al (2005) Increased vascular smooth muscle contractility in TRPC6-/- mice. Mol Cell Biol 25(16):6980–6989

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Engh A, Somasundaram A, Prakriya M (2012) Permeation and gating mechanisms in store-operated CRAC channels. Front Biosci 17:1613–1626

    Article  CAS  Google Scholar 

  • Feske S et al (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441(7090):179–185

    Article  CAS  PubMed  Google Scholar 

  • Feske S, Picard C, Fischer A (2010) Immunodeficiency due to mutations in ORAI1 and STIM1. Clin Immunol 135(2):169–182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Freichel M et al (2005) Functional role of TRPC proteins in native systems: implications from knockout and knock-down studies. J Physiol 567(Pt 1):59–66

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frischauf I et al (2009) Molecular determinants of the coupling between STIM1 and Orai channels: differential activation of Orai1-3 channels by a STIM1 coiled-coil mutant. J Biol Chem 284(32):21696–21706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grigoriev I et al (2008) STIM1 is a MT-plus-end-tracking protein involved in remodeling of the ER. Curr Biol 18(3):177–182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hartmann J et al (2008) TRPC3 channels are required for synaptic transmission and motor coordination. Neuron 59(3):392–398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hawkins BJ et al (2010) S-glutathionylation activates STIM1 and alters mitochondrial homeostasis. J Cell Biol 190(3):391–405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hong JH et al (2011) Polarized but differential localization and recruitment of STIM1, Orai1 and TRPC channels in secretory cells. Traffic 12(2):232–245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hou X, Pedi L, Diver MM, Long SB (2012) Crystal structure of the calcium release-activated calcium channel Orai. Science 338(6112):1308–1313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang GN et al (2006) STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat Cell Biol 8(9):1003–1010

    Article  CAS  PubMed  Google Scholar 

  • Jeon JP et al (2012) Selective Galphai subunits as novel direct activators of transient receptor potential canonical (TRPC)4 and TRPC5 channels. J Biol Chem 287(21):17029–17039

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ji W et al (2008) Functional stoichiometry of the unitary calcium-release-activated calcium channel. Proc Natl Acad Sci U S A 105(36):13668–13673

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kasai H, Augustine GJ (1990) Cytosolic Ca2+ gradients triggering unidirectional fluid secretion from exocrine pancreas. Nature 348(6303):735–738

    Article  CAS  PubMed  Google Scholar 

  • Kim JY et al (2006) Homer 1 mediates store- and inositol 1,4,5-trisphosphate receptor-dependent translocation and retrieval of TRPC3 to the plasma membrane. J Biol Chem 281(43):32540–32549

    Article  CAS  PubMed  Google Scholar 

  • Kim MS et al (2009a) Native store-operated Ca2+ influx requires the channel function of Orai1 and TRPC1. J Biol Chem 284(15):9733–9741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim MS et al (2009b) Deletion of TRPC3 in mice reduces store-operated Ca2+ influx and the severity of acute pancreatitis. Gastroenterology 137(4):1509–1517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim MS et al (2011) Genetic and pharmacologic inhibition of the Ca2+ influx channel TRPC3 protects secretory epithelia from Ca2+ -dependent toxicity. Gastroenterology 140(7):2107–2115, 2115.e2101–2104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kiselyov K, Shin DM, Muallem S (2003) Signalling specificity in GPCR-dependent Ca2+ signalling. Cell Signal 15(3):243–253

    Article  CAS  PubMed  Google Scholar 

  • Kiselyov K, Wang X, Shin DM, Zang W, Muallem S (2006) Calcium signaling complexes in microdomains of polarized secretory cells. Cell Calcium 40(5–6):451–459

    Article  CAS  PubMed  Google Scholar 

  • Kiyonaka S et al (2009) Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. Proc Natl Acad Sci U S A 106(13):5400–5405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Korzeniowski MK, Manjarres IM, Varnai P, Balla T (2010) Activation of STIM1-Orai1 involves an intramolecular switching mechanism. Sci Signal 3(148):ra82

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuwahara K et al (2006) TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J Clin Invest 116(12):3114–3126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee MG et al (1997) Polarized expression of Ca2+ channels in pancreatic and salivary gland cells. Correlation with initiation and propagation of [Ca2+]i waves. J Biol Chem 272(25):15765–15770

    Article  CAS  PubMed  Google Scholar 

  • Lee KP et al (2009) Molecular determinants of fast Ca2+-dependent inactivation and gating of the Orai channels. Proc Natl Acad Sci U S A 106(34):14687–14692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee KP et al (2010a) An endoplasmic reticulum/plasma membrane junction: STIM1/Orai1/TRPCs. FEBS Lett 584(10):2022–2027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee KP, Yuan JP, So I, Worley PF, Muallem S (2010b) STIM1-dependent and STIM1-independent function of transient receptor potential canonical (TRPC) channels tunes their store-operated mode. J Biol Chem 285(49):38666–38673

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee KP, Choi S, Hong JH, Ahuja M, Graham S, Ma R, So I, Shin DM, Muallem S, Yuan J (2014) Molecular determinants mediating gating of transient receptor potential canonical (TRPC) channels by stromal interaction molecule 1 (STIM1). J Biol Chem [Epub ahead of print]. PMID: 24464579

    Google Scholar 

  • Li M, Chen C, Zhou Z, Xu S, Yu Z (2012) A TRPC1-mediated increase in store-operated Ca2+ entry is required for the proliferation of adult hippocampal neural progenitor cells. Cell Calcium 51(6):486–496

    Article  CAS  PubMed  Google Scholar 

  • Liao Y et al (2007) Orai proteins interact with TRPC channels and confer responsiveness to store depletion. Proc Natl Acad Sci U S A 104(11):4682–4687

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liao Y et al (2008) Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/Icrac channels. Proc Natl Acad Sci U S A 105(8):2895–2900

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liao Y et al (2009) A role for Orai in TRPC-mediated Ca2+ entry suggests that a TRPC:Orai complex may mediate store and receptor operated Ca2+ entry. Proc Natl Acad Sci U S A 106(9):3202–3206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liou J et al (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15(13):1235–1241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liou J, Fivaz M, Inoue T, Meyer T (2007) Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc Natl Acad Sci U S A 104(22):9301–9306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lis A et al (2007) CRACM1, CRACM2, and CRACM3 are store-operated Ca(2+) channels with distinct functional properties. Curr Biol 17(9):794–800

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Bandyopadhyay BC, Singh BB, Groschner K, Ambudkar IS (2005) Molecular analysis of a store-operated and 2-acetyl-sn-glycerol-sensitive non-selective cation channel. Heteromeric assembly of TRPC1-TRPC3. J Biol Chem 280(22):21600–21606

    Article  CAS  PubMed  Google Scholar 

  • Liu X et al (2007) Attenuation of store-operated Ca2+ current impairs salivary gland fluid secretion in TRPC1(-/-) mice. Proc Natl Acad Sci U S A 104(44):17542–17547

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McCarl CA et al (2009) ORAI1 deficiency and lack of store-operated Ca2+ entry cause immunodeficiency, myopathy, and ectodermal dysplasia. J Allergy Clin Immunol 124(6):1311–1318, e1317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McNally BA, Somasundaram A, Yamashita M, Prakriya M (2012) Gated regulation of CRAC channel ion selectivity by STIM1. Nature 482(7384):241–245

    CAS  PubMed Central  PubMed  Google Scholar 

  • McNally BA, Somasundaram A, Jairaman A, Yamashita M, Prakriya M (2013) The C- and N-terminal STIM1 binding sites on Orai1 are required for both trapping and gating CRAC channels. J Physiol 591(Pt 11):2833–2850

    CAS  PubMed Central  PubMed  Google Scholar 

  • Millay DP et al (2009) Calcium influx is sufficient to induce muscular dystrophy through a TRPC-dependent mechanism. Proc Natl Acad Sci U S A 106(45):19023–19028

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muallem S, Schoeffield MS, Fimmel CJ, Pandol SJ (1988) Agonist-sensitive calcium pool in the pancreatic acinar cell. II. Characterization of reloading. Am J Physiol 255(2 Pt 1):G229–G235

    CAS  PubMed  Google Scholar 

  • Muik M et al (2008) Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J Biol Chem 283(12):8014–8022

    Article  CAS  PubMed  Google Scholar 

  • Muik M et al (2011) STIM1 couples to ORAI1 via an intramolecular transition into an extended conformation. EMBO J 30(9):1678–1689

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muik M, Schindl R, Fahrner M, Romanin C (2012) Ca(2+) release-activated Ca(2+) (CRAC) current, structure, and function. Cell Mol Life Sci 69(24):4163–4176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mullins FM, Park CY, Dolmetsch RE, Lewis RS (2009) STIM1 and calmodulin interact with Orai1 to induce Ca2+-dependent inactivation of CRAC channels. Proc Natl Acad Sci U S A 106(36):15495–15500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Munakata M et al (2013) Transient receptor potential canonical 3 inhibitor Pyr3 improves outcomes and attenuates astrogliosis after intracerebral hemorrhage in mice. Stroke 44(7):1981–1987

    Article  CAS  PubMed  Google Scholar 

  • Ng LC et al (2012) TRPC1 and Orai1 interact with STIM1 and mediate capacitative Ca(2+) entry caused by acute hypoxia in mouse pulmonary arterial smooth muscle cells. Am J Physiol Cell Physiol 303(11):C1156–C1172

    Article  CAS  PubMed  Google Scholar 

  • Nilius B, Owsianik G (2011) The transient receptor potential family of ion channels. Genome Biol 12(3):218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87(1):165–217

    Article  CAS  PubMed  Google Scholar 

  • Ong HL et al (2007) Dynamic assembly of TRPC1/STIM1/Orai1 ternary complex is involved in store operated calcium influx: evidence for similarities in SOC and CRAC channel components. J Biol Chem 282(12):9105–9116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ong HL, Jang SI, Ambudkar IS (2012) Distinct contributions of Orai1 and TRPC1 to agonist-induced [Ca(2+)](i) signals determine specificity of Ca(2+)-dependent gene expression. PLoS One 7(10):e47146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Palty R, Raveh A, Kaminsky I, Meller R, Reuveny E (2012) SARAF inactivates the store operated calcium entry machinery to prevent excess calcium refilling. Cell 149(2):425–438

    Article  CAS  PubMed  Google Scholar 

  • Pandol SJ, Schoeffield MS, Fimmel CJ, Muallem S (1987) The agonist-sensitive calcium pool in the pancreatic acinar cell. Activation of plasma membrane Ca2+ influx mechanism. J Biol Chem 262(35):16963–16968

    CAS  PubMed  Google Scholar 

  • Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85(2):757–810

    Article  CAS  PubMed  Google Scholar 

  • Park CY et al (2009) STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136(5):876–890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pedersen SF, Owsianik G, Nilius B (2005) TRP channels: an overview. Cell Calcium 38(3–4):233–252

    Article  CAS  PubMed  Google Scholar 

  • Penna A et al (2008) The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers. Nature 456(7218):116–120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petersen OH, Sutton R (2006) Ca2+ signalling and pancreatitis: effects of alcohol, bile and coffee. Trends Pharmacol Sci 27(2):113–120

    Article  CAS  PubMed  Google Scholar 

  • Petersen OH, Sutton R, Criddle DN (2006) Failure of calcium microdomain generation and pathological consequences. Cell Calcium 40(5–6):593–600

    Article  CAS  PubMed  Google Scholar 

  • Qureshi AI, Mendelow AD, Hanley DF (2009) Intracerebral haemorrhage. Lancet 373(9675):1632–1644

    Article  PubMed Central  PubMed  Google Scholar 

  • Rao JN et al (2012) Polyamines regulate intestinal epithelial restitution through TRPC1-mediated Ca(2)+ signaling by differentially modulating STIM1 and STIM2. Am J Physiol Cell Physiol 303(3):C308–C317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Riccio A et al (2009) Essential role for TRPC5 in amygdala function and fear-related behavior. Cell 137(4):761–772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roos J et al (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169(3):435–445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sah RP, Garg P, Saluja AK (2012) Pathogenic mechanisms of acute pancreatitis. Curr Opin Gastroenterol 28(5):507–515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Selvaraj S et al (2012) Neurotoxin-induced ER stress in mouse dopaminergic neurons involves downregulation of TRPC1 and inhibition of AKT/mTOR signaling. J Clin Invest 122(4):1354–1367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shaw PJ, Feske S (2012) Physiological and pathophysiological functions of SOCE in the immune system. Front Biosci (Elite Ed) 4:2253–2268

    Article  Google Scholar 

  • Shin HY et al (2010) A role of canonical transient receptor potential 5 channel in neuronal differentiation from A2B5 neural progenitor cells. PLoS One 5(5):e10359

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shinde AV et al (2013) STIM1 controls endothelial barrier function independently of Orai1 and Ca2+ entry. Sci Signal 6(267):ra18

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Smyth JT, Beg AM, Wu S, Putney JW Jr, Rusan NM (2012) Phosphoregulation of STIM1 leads to exclusion of the endoplasmic reticulum from the mitotic spindle. Curr Biol 22(16):1487–1493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stathopulos PB, Zheng L, Li GY, Plevin MJ, Ikura M (2008) Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry. Cell 135(1):110–122

    Article  CAS  PubMed  Google Scholar 

  • Sundivakkam PC et al (2012) The Ca(2+) sensor stromal interaction molecule 1 (STIM1) is necessary and sufficient for the store-operated Ca(2+) entry function of transient receptor potential canonical (TRPC) 1 and 4 channels in endothelial cells. Mol Pharmacol 81(4):510–526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi N, Mori Y (2011) TRP channels as sensors and signal integrators of redox status changes. Front Pharmacol 2:58

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thorn P, Lawrie AM, Smith PM, Gallacher DV, Petersen OH (1993) Local and global cytosolic Ca2+ oscillations in exocrine cells evoked by agonists and inositol trisphosphate. Cell 74(4):661–668

    Article  CAS  PubMed  Google Scholar 

  • Vig M et al (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312(5777):1220–1223

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Eder P, Chang B, Molkentin JD (2010) TRPC channels are necessary mediators of pathologic cardiac hypertrophy. Proc Natl Acad Sci U S A 107(15):7000–7005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu SZ et al (2008) TRPC channel activation by extracellular thioredoxin. Nature 451(7174):69–72

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang X, Jin H, Cai X, Li S, Shen Y (2012) Structural and mechanistic insights into the activation of Stromal interaction molecule 1 (STIM1). Proc Natl Acad Sci U S A 109(15):5657–5662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yao H, Duan M, Yang L, Buch S (2012) Platelet-derived growth factor-BB restores human immunodeficiency virus Tat-cocaine-mediated impairment of neurogenesis: role of TRPC1 channels. J Neurosci 32(29):9835–9847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu F, Sun L, Courjaret R, Machaca K (2011) Role of the STIM1 C-terminal domain in STIM1 clustering. J Biol Chem 286(10):8375–8384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu F, Sun L, Hubrack S, Selvaraj S, Machaca K (2013) Intramolecular shielding maintains STIM1 in an inactive conformation. J Cell Sci 126(Pt 11):2401–2410

    Article  CAS  PubMed  Google Scholar 

  • Yuan JP, Zeng W, Huang GN, Worley PF, Muallem S (2007) STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nat Cell Biol 9(6):636–645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yuan JP et al (2009) SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol 11(3):337–343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yule DI, Ernst SA, Ohnishi H, Wojcikiewicz RJ (1997) Evidence that zymogen granules are not a physiologically relevant calcium pool. Defining the distribution of inositol 1,4,5-trisphosphate receptors in pancreatic acinar cells. J Biol Chem 272(14):9093–9098

    Article  CAS  PubMed  Google Scholar 

  • Zeng W et al (2008) STIM1 gates TRPC channels, but not Orai1, by electrostatic interaction. Mol Cell 32(3):439–448

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang SL et al (2006) Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity. Proc Natl Acad Sci U S A 103(24):9357–9362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang ZY, Pan LJ, Zhang ZM (2010) Functional interactions among STIM1, Orai1 and TRPC1 on the activation of SOCs in HL-7702 cells. Amino Acids 39(1):195–204

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Stathopulos PB, Li GY, Ikura M (2008) Biophysical characterization of the EF-hand and SAM domain containing Ca2+ sensory region of STIM1 and STIM2. Biochem Biophys Res Commun 369(1):240–246

    Article  CAS  PubMed  Google Scholar 

  • Zheng H et al (2013) Differential roles of the C and N termini of Orai1 protein in interacting with stromal interaction molecule 1 (STIM1) for Ca2+ release-activated Ca2+ (CRAC) channel activation. J Biol Chem 288(16):11263–11272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shmuel Muallem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Choi, S. et al. (2014). The TRPCs–STIM1–Orai Interaction. In: Nilius, B., Flockerzi, V. (eds) Mammalian Transient Receptor Potential (TRP) Cation Channels. Handbook of Experimental Pharmacology, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-319-05161-1_13

Download citation

Publish with us

Policies and ethics