Skip to main content

High-Throughput Genetics Strategies for Identifying New Components of Lipid Metabolism in the Green Alga Chlamydomonas reinhardtii

  • Chapter
  • First Online:
Lipids in Plant and Algae Development

Part of the book series: Subcellular Biochemistry ((SCBI,volume 86))

Abstract

Microalgal lipid metabolism is of broad interest because microalgae accumulate large amounts of triacylglycerols (TAGs) that can be used for biodiesel production (Durrett et al Plant J 54(4):593–607, 2008; Hu et al Plant J 54(4):621–639, 2008). Additionally, green algae are close relatives of land plants and serve as models to understand conserved lipid metabolism pathways in the green lineage. The green alga Chlamydomonas reinhardtii (Chlamydomonas hereafter) is a powerful model organism for understanding algal lipid metabolism. Various methods have been used to screen Chlamydomonas mutants for lipid amount or composition, and for identification of the mutated loci in mutants of interest. In this chapter, we summarize the advantages and caveats for each of these methods with a focus on screens for mutants with perturbed TAG content. We also discuss technical opportunities and new tools that are becoming available for screens of mutants altered in TAG content or perturbed in other processes in Chlamydomonas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berthold P, Schmitt R, Mages W (2002) An engineered Streptomyces hygroscopicus aph 7″ gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. Protist 153(4):401–412. doi:10.1078/14344610260450136

    Article  CAS  PubMed  Google Scholar 

  • Blaby IK, Glaesener AG, Mettler T, Fitz-Gibbon ST, Gallaher SD, Liu B, Boyle NR, Kropat J, Stitt M, Johnson S, Benning C, Pellegrini M, Casero D, Merchant SS (2013) Systems-level analysis of nitrogen starvation-induced modifications of carbon metabolism in a Chlamydomonas reinhardtii starchless mutant. Plant Cell 25(11):4305–4323. doi:10.1105/tpc.113.117580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyle NR, Page MD, Liu B, Blaby IK, Casero D, Kropat J, Cokus SJ, Hong-Hermesdorf A, Shaw J, Karpowicz SJ, Gallaher SD, Johnson S, Benning C, Pellegrini M, Grossman A, Merchant SS (2012) Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas. J Biol Chem 287(19):15811–15825. doi:10.1074/jbc.M111.334052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB et al (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240(4858):1534–1538

    Article  CAS  PubMed  Google Scholar 

  • Brunke KJ, Anthony JG, Sternberg EJ, Weeks DP (1984) Repeated consensus sequence and pseudopromoters in the four coordinately regulated tubulin genes of Chlamydomonas reinhardi. Mol Cell Biol 4(6):1115–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cagnon C, Mirabella B, Nguyen HM, Beyly-Adriano A, Bouvet S, Cuine S, Beisson F, Peltier G, Li-Beisson Y (2013) Development of a forward genetic screen to isolate oil mutants in the green microalga Chlamydomonas reinhardtii. Biotechnol Biofuels 6(1):178. doi:10.1186/1754-6834-6-178

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen W, Sommerfeld M, Hu Q (2011) Microwave-assisted nile red method for in vivo quantification of neutral lipids in microalgae. Bioresour Technol 102(1):135–141. doi:10.1016/j.biortech.2010.06.076

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306. doi:10.1016/j.biotechadv.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  • Cirulis JT, Strasser BC, Scott JA, Ross GM (2012) Optimization of staining conditions for microalgae with three lipophilic dyes to reduce precipitation and fluorescence variability. Cytometry A 81:618–626

    Google Scholar 

  • Danielewicz MA, Anderson LA, Franz AK (2011) Triacylglycerol profiling of marine microalgae by mass spectrometry. J Lipid Res 52(11):2101–2108. doi:10.1194/jlr.D018408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debuchy R, Purton S, Rochaix JD (1989) The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. EMBO J 8(10):2803–2809

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol 137(2):545–556. doi:10.1104/pp. 104.055244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doan TY, Obbard JP (2011) Improved Nile Red staining of Nannochloropsis sp. J Appl Phycol 23(5):895–901. doi:10.1007/s10811-010-9608-5

    Article  CAS  Google Scholar 

  • Durrett TP, Benning C, Ohlrogge J (2008) Plant triacylglycerols as feedstocks for the production of biofuels. Plant J 54(4):593–607. doi:10.1111/j.1365-313X.2008.03442.x

    Article  CAS  PubMed  Google Scholar 

  • Fan J, Andre C, Xu C (2011) A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii. FEBS Lett 585(12):1985–1991. doi:10.1016/j.febslet.2011.05.018

    Article  CAS  PubMed  Google Scholar 

  • Farese RV Jr, Walther TC (2009) Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 139(5):855–860. doi:10.1016/j.cell.2009.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferris PJ (1995) Localization of the nic-7, ac-29 and thi-10 genes within the mating-type locus of Chlamydomonas reinhardtii. Genetics 141(2):543–549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer N, Rochaix JD (2001) The flanking regions of PsaD drive efficient gene expression in the nucleus of the green alga Chlamydomonas reinhardtii. Mol Genet Genomics 265(5):888–894

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Ballester D, de Montaigu A, Galvan A, Fernandez E (2005a) Restriction enzyme site-directed amplification PCR: a tool to identify regions flanking a marker DNA. Anal Biochem 340(2):330–335. doi:10.1016/j.ab.2005.01.031

    Article  CAS  PubMed  Google Scholar 

  • González-Ballester D, de Montaigu A, Higuera JJ, Galván A, Fernández E (2005b) Functional genomics of the regulation of the nitrate assimilation pathway in Chlamydomonas. Plant Physiol 137:522–533. doi:10.1104/pp.104.050914

    Google Scholar 

  • Goodenough U, Blaby I, Casero D, Gallaher SD, Goodson C, Johnson S, Lee JH, Merchant SS, Pellegrini M, Roth R, Rusch J, Singh M, Umen JG, Weiss TL, Wulan T (2014) The path to triacylglyceride obesity in the sta6 strain of Chlamydomonas reinhardtii. Eukaryot Cell 13(5):591–613. doi:10.1128/EC.00013-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodson C, Roth R, Wang ZT, Goodenough U (2011) Structural correlates of cytoplasmic and chloroplast lipid body synthesis in Chlamydomonas reinhardtii and stimulation of lipid body production with acetate boost. Eukaryot Cell 10(12):1592–1606. doi:10.1128/EC.05242-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govender T, Ramanna L, Rawat I, Bux F (2012) BODIPY staining, an alternative to the Nile Red fluorescence method for the evaluation of intracellular lipids in microalgae. Bioresour Technol 114:507–511. doi:10.1016/j.biortech.2012.03.024

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Walther TC, Rao M, Stuurman N, Goshima G, Terayama K, Wong JS, Vale RD, Walter P, Farese RV (2008) Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 453(7195):657–661. doi:10.1038/nature06928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris EH, Stern DB, Witman GB (2009) The Chlamydomonas sourcebook. Academic Press, Oxford

    Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639. doi:10.1111/j.1365-313X.2008.03492.x

    Article  CAS  PubMed  Google Scholar 

  • Jander G, Norris SR, Rounsley SD, Bush DF, Levin IM, Last RL (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol 129(2):440–450. doi:10.1104/pp. 003533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji Y, He Y, Cui Y, Wang T, Wang Y, Li Y, Huang WE, Xu J (2014) Raman spectroscopy provides a rapid, non-invasive method for quantitation of starch in live, unicellular microalgae. Biotechnol J 9(12):1512–1518. doi:10.1002/biot.201400165

    Article  CAS  PubMed  Google Scholar 

  • Kind T, Meissen JK, Yang D, Nocito F, Vaniya A, Cheng YS, Vandergheynst JS, Fiehn O (2012) Qualitative analysis of algal secretions with multiple mass spectrometric platforms. J Chromatogr A 1244:139–147. doi:10.1016/j.chroma.2012.04.074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 87(3):1228–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kindle KL, Schnell RA, Fernandez E, Lefebvre PA (1989) Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase. J Cell Biol 109(6 Pt 1):2589–2601

    Article  CAS  PubMed  Google Scholar 

  • Kovar JL, Zhang J, Funke RP, Weeks DP (2002) Molecular analysis of the acetolactate synthase gene of Chlamydomonas reinhardtii and development of a genetically engineered gene as a dominant selectable marker for genetic transformation. Plant J 29(1):109–117

    Article  CAS  PubMed  Google Scholar 

  • Kozminski KG, Diener DR, Rosenbaum JL (1993) High level expression of nonacetylatable alpha-tubulin in Chlamydomonas reinhardtii. Cell Motil Cytoskeleton 25(2):158–170. doi:10.1002/cm.970250205

    Article  CAS  PubMed  Google Scholar 

  • Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11(12):2283–2290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar SV, Misquitta RW, Reddy VS, Rao BJ, Rajam MV (2004) Genetic transformation of the green alga—Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci 166(3):731–738. doi:10.1111/pbi.12190

    Article  CAS  Google Scholar 

  • Lee B, Choi GG, Choi YE, Sung M, Park MS, Yang JW (2014) Enhancement of lipid productivity by ethyl methane sulfonate-mediated random mutagenesis and proteomic analysis in Chlamydomonas reinhardtii. Korean J Chem Eng 31(6):1036–1042. doi:10.1007/s11814-014-0007-5

    Article  CAS  Google Scholar 

  • Li M, Xu J, Romero-Gonzalez M, Banwart SA, Huang WE (2012a) Single cell Raman spectroscopy for cell sorting and imaging. Curr Opin Biotechnol 23(1):56–63. doi:10.1016/j.copbio.2011.11.019

    Article  CAS  PubMed  Google Scholar 

  • Li X, Benning C, Kuo MH (2012b) Rapid triacylglycerol turnover in Chlamydomonas reinhardtii requires a lipase with broad substrate specificity. Eukaryot Cell 11(12):1451–1462. doi:10.1128/EC.00268-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Moellering ER, Liu B, Johnny C, Fedewa M, Sears BB, Kuo MH, Benning C (2012c) A galactoglycerolipid lipase is required for triacylglycerol accumulation and survival following nitrogen deprivation in Chlamydomonas reinhardtii. Plant Cell 24(11):4670–4686. doi:10.1105/tpc.112.105106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Umen JG, Jonikas MC (2014) Waking sleeping algal cells. Proc Natl Acad Sci U S A 111(44):15610–15611. doi:10.1073/pnas.1418295111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Vieler A, Li C, Jones AD, Benning C (2013) Triacylglycerol profiling of microalgae Chlamydomonas reinhardtii and Nannochloropsis oceanica. Bioresour Technol 146:310–316. doi:10.1016/j.biortech.2013.07.088

    Article  CAS  PubMed  Google Scholar 

  • Lumbreras V, Purton S (1998) Recent advances in chlamydomonas transgenics. Protist 149(1):23–27. doi:10.1016/S1434-4610(98)70006-9

    Article  CAS  PubMed  Google Scholar 

  • MacDougall KM, McNichol J, McGinn PJ, O’Leary SJ, Melanson JE (2011) Triacylglycerol profiling of microalgae strains for biofuel feedstock by liquid chromatography-high-resolution mass spectrometry. Anal Bioanal Chem 401(8):2609–2616. doi:10.1007/s00216-011-5376-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuo T, Okamoto K, Onai K, Niwa Y, Shimogawara K, Ishiura M (2008) A systematic forward genetic analysis identified components of the Chlamydomonas circadian system. Genes Dev 22(7):918–930. doi:10.1101/gad.1650408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maul JE, Lilly JW, Cui L, dePamphilis CW, Miller W, Harris EH, Stern DB (2002) The Chlamydomonas reinhardtii plastid chromosome: islands of genes in a sea of repeats. Plant Cell 14(11):2659–2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren QH, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen CL, Cognat V, Croft MT, Dent R, Dutcher S, Fernandez E, Fukuzawa H, Gonzalez-Ballester D, Gonzalez-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meir I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral JP, Riano-Pachon DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen CJ, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan JM, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang PF, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo YG, Martinez D, Ngau WCA, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou KM, Grigoriev IV, Rokhsar DS, Grossman AR (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318(5848):245–251. doi:10.1126/science.1143609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meslet-Cladiere L, Vallon O (2012) A new method to identify flanking sequence tags in chlamydomonas using 3′-RACE. Plant Methods 8(1):21. doi:10.1186/1746-4811-8-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller R, Wu G, Deshpande RR, Vieler A, Gartner K, Li X, Moellering ER, Zauner S, Cornish AJ, Liu B, Bullard B, Sears BB, Kuo MH, Hegg EL, Shachar-Hill Y, Shiu SH, Benning C (2010) Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiol 154(4):1737–1752. doi:10.1104/pp. 110.165159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moellering ER, Benning C (2010) RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryot Cell 9(1):97–106. doi:10.1128/EC.00203-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson JA, Savereide PB, Lefebvre PA (1994) The CRY1 gene in Chlamydomonas reinhardtii: structure and use as a dominant selectable marker for nuclear transformation. Mol Cell Biol 14(6):4011–4019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen HM, Baudet M, Cuine S, Adriano JM, Barthe D, Billon E, Bruley C, Beisson F, Peltier G, Ferro M, Li-Beisson Y (2011) Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: with focus on proteins involved in lipid metabolism. Proteomics 11(21):4266–4273. doi:10.1002/pmic.201100114

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HM, Cuine S, Beyly-Adriano A, Legeret B, Billon E, Auroy P, Beisson F, Peltier G, Li-Beisson Y (2013) The green microalga Chlamydomonas reinhardtii has a single omega-3 fatty acid desaturase that localizes to the chloroplast and impacts both plastidic and extraplastidic membrane lipids. Plant Physiol 163(2):914–928. doi:10.1104/pp. 113.223941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pflaster EL, Schwabe MJ, Becker J, Wilkinson MS, Parmer A, Clemente TE, Cahoon EB, Riekhof WR (2014) A high-throughput fatty acid profiling screen reveals novel variations in fatty acid biosynthesis in Chlamydomonas reinhardtii and related algae. Eukaryot Cell 13(11):1431–1438. doi:10.1128/EC.00128-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Randolph-Anderson BL, Boynton JE, Gillham NW, Harris EH, Johnson AM, Dorthu MP, Matagne RF (1993) Further characterization of the respiratory deficient dum-1 mutation of Chlamydomonas reinhardtii and its use as a recipient for mitochondrial transformation. Mol Gen Genet 236(2–3):235–244

    Article  CAS  PubMed  Google Scholar 

  • Rasala BA, Chao SS, Pier M, Barrera DJ, Mayfield SP (2014) Enhanced genetic tools for engineering multigene traits into green algae. PLoS One 9(4):e94028. doi:10.1371/journal.pone.0094028

    Article  PubMed  PubMed Central  Google Scholar 

  • Riekhof WR, Sears BB, Benning C (2005) Annotation of genes involved in glycerolipid biosynthesis in Chlamydomonas reinhardtii: discovery of the betaine lipid synthase BTA1Cr. Eukaryot Cell 4(2):242–252. doi:10.1128/EC.4.2.242-252.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rymarquis LA, Handley JM, Thomas M, Stern DB (2005) Beyond complementation. Map-based cloning in Chlamydomonas reinhardtii. Plant Physiol 137(2):557–566. doi:10.1104/pp. 104.054221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmollinger S, Muhlhaus T, Boyle NR, Blaby IK, Casero D, Mettler T, Moseley JL, Kropat J, Sommer F, Strenkert D, Hemme D, Pellegrini M, Grossman AR, Stitt M, Schroda M, Merchant SS (2014) Nitrogen-sparing mechanisms in Chlamydomonas affect the transcriptome, the proteome, and photosynthetic metabolism. Plant Cell 26(4):1410–1435. doi:10.1105/tpc.113.122523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroda M, Blocker D, Beck CF (2000) The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. Plant J 21(2):121–131

    Article  CAS  PubMed  Google Scholar 

  • Shimogawara K, Fujiwara S, Grossman A, Usuda H (1998) High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 148(4):1821–1828

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sizova I, Fuhrmann M, Hegemann P (2001) A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. Gene 277(1–2):221–229

    Article  CAS  PubMed  Google Scholar 

  • Spandl J, White DJ, Peychl J, Thiele C (2009) Live cell multicolor imaging of lipid droplets with a new dye, LD540. Traffic 10(11):1579–1584. doi:10.1111/j.1600-0854.2009.00980.x

    Article  CAS  PubMed  Google Scholar 

  • Stevens DR, Rochaix JD, Purton S (1996) The bacterial phleomycin resistance gene ble as a dominant selectable marker in Chlamydomonas. Mol Gen Genet 251(1):23–30

    CAS  PubMed  Google Scholar 

  • Tam LW, Lefebvre PA (1993) Cloning of flagellar genes in Chlamydomonas reinhardtii by DNA insertional mutagenesis. Genetics 135(2):375–384

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terashima M, Freeman ES, Jinkerson RE, Jonikas MC (2014) A fluorescence-activated cell sorting-based strategy for rapid isolation of high-lipid Chlamydomonas mutants. Plant J. doi:10.1111/tpj.12682

    PubMed  PubMed Central  Google Scholar 

  • Thiele C (2011) Fluorescence-based imaging and analysis of cells and cellular components using lipophilic dyes with improved specificity, spectral property and photostability. EP20090010408

    Google Scholar 

  • To A, Joubes J, Barthole G, Lecureuil A, Scagnelli A, Jasinski S, Lepiniec L, Baud S (2012) WRINKLED transcription factors orchestrate tissue-specific regulation of fatty acid biosynthesis in Arabidopsis. Plant Cell 24(12):5007–5023. doi:10.1105/tpc.112.106120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai CH, Warakanont J, Takeuchi T, Sears BB, Moellering ER, Benning C (2014) The protein Compromised Hydrolysis of Triacylglycerols 7 (CHT7) acts as a repressor of cellular quiescence in Chlamydomonas. Proc Natl Acad Sci U S A 111(44):15833–15838. doi:10.1073/pnas.1414567111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tulin F, Cross FR (2014) A microbial avenue to cell cycle control in the plant superkingdom. Plant Cell 26(10):4019–4038. doi:10.1105/tpc.114.129312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieler A, Wilhelm C, Goss R, Suss R, Schiller J (2007) The lipid composition of the unicellular green alga Chlamydomonas reinhardtii and the diatom Cyclotella meneghiniana investigated by MALDI-TOF MS and TLC. Chem Phys Lipids 150(2):143–155. doi:10.1016/j.chemphyslip.2007.06.224

    Article  CAS  PubMed  Google Scholar 

  • Wang YH (2008) How effective is T-DNA insertional mutagenesis in Arabidopsis? J Biochem Tech 1(1):11–20. doi:10.1111/pbi.12190

    CAS  Google Scholar 

  • Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U (2009) Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot Cell 8(12):1856–1868. doi:10.1128/EC.00272-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Ji Y, Wharfe ES, Meadows RS, March P, Goodacre R, Xu J, Huang WE (2013) Raman activated cell ejection for isolation of single cells. Anal Chem 85(22):10697–10701. doi:10.1021/ac403107p

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Ji Y, Wang Y, Jia J, Li J, Huang S, Han D, Hu Q, Huang WE, Xu J (2014) Quantitative dynamics of triacylglycerol accumulation in microalgae populations at single-cell resolution revealed by Raman microspectroscopy. Biotechnol Biofuels 7:58. doi:10.1186/1754-6834-7-58

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilfling F, Wang H, Haas JT, Krahmer N, Gould TJ, Uchida A, Cheng JX, Graham M, Christiano R, Frohlich F, Liu X, Buhman KK, Coleman RA, Bewersdorf J, Farese RV Jr, Walther TC (2013) Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell 24(4):384–399. doi:10.1016/j.devcel.2013.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Work VH, Radakovits R, Jinkerson RE, Meuser JE, Elliott LG, Vinyard DJ, Laurens LM, Dismukes GC, Posewitz MC (2010) Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryot Cell 9(8):1251–1261. doi:10.1128/EC.00075-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Volponi JV, Oliver AE, Parikh AN, Simmons BA, Singh S (2011) In vivo lipidomics using single-cell Raman spectroscopy. Proc Natl Acad Sci U S A 108(9):3809–3814. doi:10.1073/pnas.1009043108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie B, Stessman D, Hart JH, Dong H, Wang Y, Wright DA, Nikolau BJ, Spalding MH, Halverson LJ (2014) High-throughput fluorescence-activated cell sorting for lipid hyperaccumulating Chlamydomonas reinhardtii mutants. Plant Biotechnol J 12(7):872–882. doi:10.1111/pbi.12190

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Fan J, Riekhof W, Froehlich JE, Benning C (2003) A permease-like protein involved in ER to thylakoid lipid transfer in Arabidopsis. EMBO J 22(10):2370–2379. doi:10.1093/emboj/cdg234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan C, Fan J, Xu C (2013) Analysis of oil droplets in microalgae. Methods Cell Biol 116:71–82. doi:10.1016/B978-0-12-408051-5.00005-X

    Article  CAS  PubMed  Google Scholar 

  • Yoon K, Han D, Li Y, Sommerfeld M, Hu Q (2012) Phospholipid:diacylglycerol acyltransferase is a multifunctional enzyme involved in membrane lipid turnover and degradation while synthesizing triacylglycerol in the unicellular green microalga Chlamydomonas reinhardtii. Plant Cell 24(9):3708–3724. doi:10.1105/tpc.112.100701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Zhang P, Su Y, Mou C, Zhou T, Yang M, Xu J, Ma B (2014a) On-demand control of microfluidic flow via capillary-tuned solenoid microvalve suction. Lab Chip 14(24):4599–4603. doi:10.1039/c4lc00833b

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Patena W, Armbruster U, Gang SS, Blum SR, Jonikas MC (2014b) High-throughput genotyping of green algal mutants reveals random distribution of mutagenic insertion sites and endonucleolytic cleavage of transforming DNA. Plant Cell 26(4):1398–1409. doi:10.1105/tpc.114.124099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Ren L, Zhang X, Shan Y, Wang Y, Ji Y, Yin H, Huang WE, Xu J, Ma B (2015) Raman-activated cell sorting based on dielectrophoretic single-cell trap and release. Anal Chem. doi:10.1021/ac503974e

    Google Scholar 

Download references

Acknowledgements

We thank Arthur Grossman, Robert Jinkerson, Bensheng Liu, Liz Freeman Rosenzweig and Jian Xu for critical reading of the manuscript. This work was supported by the Carnegie Institution for Science and a grant from the National Science Foundation (MCB-1146621).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin C. Jonikas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, X., Jonikas, M.C. (2016). High-Throughput Genetics Strategies for Identifying New Components of Lipid Metabolism in the Green Alga Chlamydomonas reinhardtii . In: Nakamura, Y., Li-Beisson, Y. (eds) Lipids in Plant and Algae Development. Subcellular Biochemistry, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-319-25979-6_10

Download citation

Publish with us

Policies and ethics