Skip to main content

Leuconostoc spp. as Starters and Their Beneficial Roles in Fermented Foods

  • Chapter
Beneficial Microorganisms in Food and Nutraceuticals

Part of the book series: Microbiology Monographs ((MICROMONO,volume 27))

Abstract

Leuconostoc spp. are gram-positive and heterofermentative bacteria, which are capable of transforming glucose molecules into carbon dioxide, ethanol, and lactate. Leuconostoc spp. exist in vegetables, silage, fermented food products, and feces, among other places. These bacteria are used as a starter culture in food and beverage fermentation in order to improve the nutritional and organoleptic quality and to extend shelf life. They produce exo-polysaccharides (dextran or levan), oligosaccharides, mannitol, bacteriocins, and vitamins. In this chapter, we present an extensive discussion on Leuconostoc spp., especially general information including morphology, taxonomy, growth characteristics, metabolism, starter uses in fermented foods, and beneficial health effects as potential probiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AFRC RF (1989) Probiotics in man and animals. J Appl Bacteriol 66(5):365–378

    Article  Google Scholar 

  • Agarwal K, Bhasin S (2002) Feasibility studies to control acute diarrhoea in children by feeding fermented milk preparations Actimel and Indian Dahi. Eur J Clin Nutr 56:S56–S59

    Article  PubMed  Google Scholar 

  • Ahn G-H, Moon JS, Shin S-Y, Min WK, Han NS, Seo J-H (2015) A competitive quantitative polymerase chain reaction method for characterizing the population dynamics during kimchi fermentation. J Ind Microbiol Biotechnol 42:49–55

    Article  CAS  PubMed  Google Scholar 

  • Auge B, Donnio P, Le Deaut P, Avril J (1987) Influence of vancomycin by venous route on salivary and fecal aerobic floras. Pathol Biol 35(5):673–675

    CAS  PubMed  Google Scholar 

  • Benmechernene Z, Chentouf HF, Yahia B, Fatima G, Quintela-Baluja M, Calo-Mata P, Barros-Velázquez J (2013) Technological aptitude and applications of Leuconostoc mesenteroides bioactive strains isolated from algerian raw camel milk. BioMed Res Int. doi:10.1155/2013/418132

    PubMed Central  PubMed  Google Scholar 

  • Björkroth J, Holzapfel W (2006) Genera Leuconostoc, Oenococcus and Weissella. In: The prokaryotes. Springer, Berlin, pp 267–319

    Google Scholar 

  • Bozonnet S, Dols-Laffargue M, Fabre E, Pizzut S, Remaud-Simeon M, Monsan P, Willemot R-M (2002) Molecular characterization of DSR-E, an α-1, 2 linkage-synthesizing dextransucrase with two catalytic domains. J Bacteriol 184(20):5753–5761

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Budde BB, Hornbaek T, Jacobsen T, Barkholt V, Koch AG (2003) Leuconostoc carnosum 4010 has the potential for use as a protective culture for vacuum-packed meats: culture isolation, bacteriocin identification, and meat application experiments. Int J Food Microbiol 83(2):171–184

    Article  PubMed  Google Scholar 

  • Caplice E, Fitzgerald GF (1999) Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol 50(1):131–149

    Article  CAS  PubMed  Google Scholar 

  • Carr FJ, Chill D, Maida N (2002) The lactic acid bacteria: a literature survey. Crit Rev Microbiol 28(4):281–370

    Article  CAS  PubMed  Google Scholar 

  • Carvalheiro F, Moniz P, Duarte LC, Esteves MP, Gírio FM (2011) Mannitol production by lactic acid bacteria grown in supplemented carob syrup. J Ind Microbiol Biotechnol 38(1):221–227

    Article  CAS  PubMed  Google Scholar 

  • Cho SK, Eom H-J, Moon JS, Lim S-B, Kim YK, Lee KW, Han NS (2014) An improved process of isomaltooligosaccharide production in kimchi involving the addition of a Leuconostoc starter and sugars. Int J Food Microbiol 170:61–64

    Article  CAS  PubMed  Google Scholar 

  • Choi H, Kim Y-W, Hwang I, Kim J, Yoon S (2012) Evaluation of Leuconostoc citreum HO12 and Weissella koreensis HO20 isolated from kimchi as a starter culture for whole wheat sourdough. Food Chem 134(4):2208–2216

    Article  CAS  PubMed  Google Scholar 

  • Cogan TM, Jordan KN (1994) Metabolism of Leuconostoc bacteria. J Dairy Sci 77(9):2704–2717

    Article  CAS  Google Scholar 

  • Collins M, Samelis J, Metaxopoulos J, Wallbanks S (1993) Taxonomic studies on some Leuconostoc‐like organisms from fermented sausages: description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J Appl Bacteriol 75(6):595–603

    Article  CAS  PubMed  Google Scholar 

  • Condon S (1987) Responses of lactic acid bacteria to oxygen. FEMS Microbiol Lett 46(3):269–280

    Article  CAS  Google Scholar 

  • Dal Bello F, Walter J, Hammes W, Hertel C (2003) Increased complexity of the species composition of lactic acid bacteria in human feces revealed by alternative incubation condition. Microb Ecol 45(4):455–463

    Article  CAS  PubMed  Google Scholar 

  • Devoyod J, POULLAIN F (1988) Les Leuconostocs. Propriétés: leur rôle en technologie laitière. Lait 68(3):249–279

    Article  Google Scholar 

  • Dicks L, Dellaglio F, Collins M (1995) Proposal to reclassify Leuconostoc oenos as Oenococcus oeni [corrig.] gen. nov., comb. nov. Int J Syst Bacteriol 45(2):395–397

    Article  CAS  PubMed  Google Scholar 

  • Drosinos EH, Mataragas M, Xiraphi N, Moschonas G, Gaitis F, Metaxopoulos J (2005) Characterization of the microbial flora from a traditional Greek fermented sausage. Meat Sci 69(2):307–317

    Article  CAS  PubMed  Google Scholar 

  • Duboc P, Mollet B (2001) Applications of exopolysaccharides in the dairy industry. Int Dairy J 11(9):759–768

    Article  CAS  Google Scholar 

  • Ennahar S, Cai Y, Fujita Y (2003) Phylogenetic diversity of lactic acid bacteria associated with paddy rice silage as determined by 16S ribosomal DNA analysis. Appl Environ Microbiol 69(1):444–451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eom H-J, Seo DM, Han NS (2007) Selection of psychrotrophic Leuconostoc spp. producing highly active dextransucrase from lactate fermented vegetables. Int J Food Microbiol 117:61–67

    Article  CAS  PubMed  Google Scholar 

  • Eom H-J, Park JM, Seo MJ, Kim MD, Han NS (2008) Monitoring of Leuconostoc mesenteroides DRC starter in fermented vegetable by random integration of chloramphenicol acetyltransferase gene. J Ind Microbiol Biotechnol 35(9):953–959

    Article  CAS  PubMed  Google Scholar 

  • Euzéby JP (1997) List of bacterial names with standing in nomenclature: a folder available on the Internet. Int J Syst Bacteriol 47(2):590–592

    Article  PubMed  Google Scholar 

  • FAO/WHO (1974) Toxicological evaluation of certain food additives with a review of general principles and of specifications. Seventeenth report of the Joint FAO-WHO Expert Committee on Food Additives. WHO Technical Report Series, vol 539. WHO, pp 1–40

    Google Scholar 

  • FAO/WHO (2002) Guidelines for the evaluation of probiotics in food. Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food. FAO/WHO, Rome

    Google Scholar 

  • Foucaud C, Francois A, Richard J (1997) Development of a chemically defined medium for the growth of Leuconostoc mesenteroides. Appl Environ Microbiol 63(1):301–304

    PubMed Central  CAS  PubMed  Google Scholar 

  • Galle S, Schwab C, Arendt E, Ganzle M (2010) Exopolysaccharide-forming Weissella strains as starter cultures for sorghum and wheat sourdoughs. J Agric Food Chem 58(9):5834–5841

    Article  CAS  PubMed  Google Scholar 

  • Gänzle M, Schwab C (2009) Ecology of exopolysaccharide formation by lactic acid bacteria: sucrose utilization, stress tolerance, and biofilm formation. In: Ullrich M (ed) Bacterial polysaccharides: current innovations and future trends. Caister Academic, Norfolk, pp 263–278

    Google Scholar 

  • Garvie E (1967) The growth factor and amino acid requirements of species of the genus Leuconostoc, including Leuconostoc paramesenteroides (sp. nov.) and Leuconostoc oenos. J Gen Microbiol 48(3):439–447

    Article  CAS  PubMed  Google Scholar 

  • Garvie E (1986) Genus Leuconostoc. In: Garrity GM (ed) Bergey’s manual of systematic bacteriology, vol 2. William and Wilkins, Baltimore, pp 1071–1075

    Google Scholar 

  • Gavett SH, O’Hearn DJ, Li X, Huang SK, Findelman FD, Wills-Karp M (1995) Interleukin 12 inhibits antigen-induced airway hyperresponsiveness, inflammation, and Th2 cytokine expression in mice. J Exp Med 182:1527–1536

    Article  CAS  PubMed  Google Scholar 

  • Ghoreishi S, Shahrestani R (2009) Subcritical water extraction of mannitol from olive leaves. J Food Eng 93(4):474–481

    Article  CAS  Google Scholar 

  • Granato D, Branco GF, Nazzaro F, Cruz AG, Faria JA (2010) Functional foods and nondairy probiotic food development: trends, concepts, and products. Comp Rev Food Sci Food Saf 9(3):292–302

    Article  CAS  Google Scholar 

  • Greppi A, Ferrocino I, La Storia A, Rantsiou K, Ercolini D, Cocolin L (2015) Monitoring of the microbiota of fermented sausages by culture independent rRNA-based approaches. Int J Food Microbiol. doi:10.1016/j.ijfoodmicro.2015.01.016

    Google Scholar 

  • Gueguen Y, Chemardin P, Labrot P, Arnaud A, Galzy P (1997) Purification and characterization of an intracellular β‐glucosidase from a new strain of Leuconostoc mesenteroides isolated from cassava. J Appl Microbiol 82(4):469–476

    Article  CAS  Google Scholar 

  • Hamasaki Y, Ayaki M, Fuchu H, Sugiyama M, Morita H (2003) Behavior of psychrotrophic lactic acid bacteria isolated from spoiling cooked meat products. Appl Environ Microbiol 69(6):3668–3671

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Han H, Lim C-R, Park H-K (1990) Determination of microbial community as an indicator of kimchi fermentation. Korean J Food Sci Technol 22(1):26–32

    Google Scholar 

  • Hastings JW, Stiles ME, von Holy A (1994) Bacteriocins of Leuconostocs isolated from meat. Int J Food Microbiol 24(1):75–81

    Article  CAS  PubMed  Google Scholar 

  • Héchard Y, Berjeaud J-M, Cenatiempo Y (1999) Characterization of the mesB gene and expression of bacteriocins by Leuconostoc mesenteroides Y105. Curr Microbiol 39(5):265–269

    Article  PubMed  Google Scholar 

  • Hemme D, Foucaud-Scheunemann C (2004) Leuconostoc, characteristics, use in dairy technology and prospects in functional foods. Int Dairy J 14(6):467–494

    Article  Google Scholar 

  • Holt S, Al‐Sheikh H, Shin KJ (2001) Characterization of dextran‐producing Leuconostoc strains. Lett Appl Microbiol 32(3):185–189

    Article  CAS  PubMed  Google Scholar 

  • Jin Q, Yoon H-S, Han NS, Lee J, Han JS (2006) Effect of lactic acid bacteria on D-and L-lactic acid contents of kimchi. Food Sci Biotechnol 15(6):948–953

    CAS  Google Scholar 

  • Jin Q, Jung JY, Kim YJ, Eom HJ, Kim SY, Kim TJ, Han NS (2009) Production of L-lactate in Leuconostoc citreum via heterologous expression of L-lactate dehydrogenase gene. J Biotechnol 144(2):160–164

    Article  CAS  PubMed  Google Scholar 

  • Jin Q, Li L, Kim YJ, Han NS (2014) Construction of a dextran-free Leuconostoc citreum mutant by targeted destruction of the dextransucrase gene. J Appl Microbiol 117:1104–1112

    Article  CAS  PubMed  Google Scholar 

  • Johanningsmeier S, McFeeters RF, Fleming HP, Thompson RL (2007) Effects of Leuconostoc mesenteroides starter culture on fermentation of cabbage with reduced salt concentrations. J Food Sci 72(5):M166–M172

    Article  CAS  PubMed  Google Scholar 

  • Jung JY, Lee SH, Lee HJ, Seo HY, Park WS, Jeon CO (2012) Effects of Leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation. Int J Food Microbiol 153(3):378–387

    Article  CAS  PubMed  Google Scholar 

  • Jung JY, Lee SH, Jeon CO (2014) Kimchi microflora: history, current status, and perspectives for industrial kimchi production. Appl Microbiol Biotechnol 98(6):2385–2393

    Article  CAS  PubMed  Google Scholar 

  • Kang H, Oh YJ, Ahn KS, Eom HJ, Han N, Kim YB, Sohn NW (2009) Leuconostoc citreum HJ-P4 (KACC 91035) regulates immunoglobulin E in an ovalbumin-induced allergy model and induces interleukin-12 through nuclear factor-kappa B and p38/c-Jun N-terminal kinases signaling in macrophages. Microbiol Immunol 53(6):331–339

    Article  CAS  PubMed  Google Scholar 

  • Kang HK, Yun SI, Lim TY, Xia Y-M, Kim D (2011) Cloning of levansucrase from Leuconostoc mesenteroides and its expression in Pichia pastoris. Food Sci Biotechnol 20(1):277–281

    Article  CAS  Google Scholar 

  • Keenan T (1968) Production of acetic acid and other volatile compounds by Leuconostoc citrovorum and Leuconostoc dextranicum. Appl Microbiol 16(12):1881–1885

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kekkonen RA, Kajasto E, Miettinen M, Veckman V, Korpela R, Julkunen I (2008) Probiotic Leuconostoc mesenteroides ssp. cremoris and Streptococcus thermophilus induce IL-12 and IFN-γ production. World J Gastroenterol 14(8):1192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim JE, Eom H-J, Kim Y, Ahn JE, Kim JH, Han NS (2012a) Enhancing acid tolerance of Leuconostoc mesenteroides with glutathione. Biotechnol Lett 34:683–687

    Article  CAS  PubMed  Google Scholar 

  • Kim YJ, Eom H-J, Seo E-Y, Lee DY, Kim JH, Han NS (2012b) Development a chemically defined minimal medium for the exponential growth of Leuconostoc mesenteroides ATCC8293. J Microbiol Biotechnol 22(11):1518–1522

    Article  CAS  PubMed  Google Scholar 

  • Kim JE, Eom H-J, Li L, Yoo K-S, Han NS (2014) Induction of the acid tolerance response in Leuconostoc mesenteroides ATCC 8293 by pre-adaptation in acidic condition. Food Sci Biotechnol 23(1):221–224

    Article  CAS  Google Scholar 

  • Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12(1‐3):39–85

    Article  CAS  PubMed  Google Scholar 

  • Kuipers OP, Buist G, Kok J (2000) Current strategies for improving food bacteria. Res Microbiol 151(10):815–822

    Article  CAS  PubMed  Google Scholar 

  • LeBlanc J, Laiño J, del Valle MJ, Vannini V, Van Sinderen D, Taranto M, de Valdez G, de Giori GS, Sesma F (2011) B‐Group vitamin production by lactic acid bacteria–current knowledge and potential applications. J Appl Microbiol 111(6):1297–1309

    Article  CAS  PubMed  Google Scholar 

  • Leroy F, De Vuyst L (2004) Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol 15(2):67–78

    Article  CAS  Google Scholar 

  • Levata-Jovanovic M, Sandine WE (1997) A method to use Leuconostoc mesenteroides ssp. cremoris 91404 to improve milk fermentations. J Dairy Sci 80(1):11–18

    Article  CAS  Google Scholar 

  • Li L, Shin S-Y, Lee KW, Han NS (2014) Production of natural antimicrobial compound D-phenyllactic acid using Leuconostoc mesenteroides ATCC 8293 whole cells involving highly active D-lactate dehydrogenase. Lett Appl Microbiol 59:404–411

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Murcia A, Collins M (1991) A phylogenetic analysis of an atypical Leuconostoc: description of Leuconostoc fallax sp. nov. FEMS Microbiol Lett 82(1):55–59

    Article  CAS  Google Scholar 

  • Martley F, Crow V (1993) Interactions between non-starter microorganisms during cheese manufacture and repening. Int Dairy J 3(4):461–483

    Article  Google Scholar 

  • Masuda Y, Ono H, Kitagawa H, Ito H, Mu F, Sawa N, Zendo T, Sonomoto K (2011) Identification and characterization of leucocyclicin Q, a novel cyclic bacteriocin produced by Leuconostoc mesenteroides TK41401. Appl Environ Microbiol 77(22):8164–8170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McSweeney PL, Sousa MJ (2000) Biochemical pathways for the production of flavour compounds in cheeses during ripening: A review. Lait 80(3):293–324

    Article  CAS  Google Scholar 

  • Monchois V, Willemot RM, Monsan P (1999) Glucansucrases: mechanism of action and structure–function relationships. FEMS Microbiol Rev 23(2):131–151

    Article  CAS  PubMed  Google Scholar 

  • Monedero V, Pérez-Martínez G, Yebra MJ (2010) Perspectives of engineering lactic acid bacteria for biotechnological polyol production. Appl Microbiol Biotechnol 86(4):1003–1015

    Article  CAS  PubMed  Google Scholar 

  • Morishita T, Tamura N, Makino T, Kudo S (1999) Production of menaquinones by lactic acid bacteria. J Dairy Sci 82(9):1897–1903

    Article  CAS  PubMed  Google Scholar 

  • Nissen-Meyer J, Oppegård C, Rogne P, Haugen HS, Kristiansen PE (2010) Structure and mode-of-action of the two-peptide (class-IIb) bacteriocins. Probiotics Antimicrob Proteins 2(1):52–60

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Olson RE (1984) The function and metabolism of vitamin K. Annu Rev Nutr 4(1):281–337

    Article  CAS  PubMed  Google Scholar 

  • Otgonbayar GE, Eom HJ, Kim BS, Ko JH, Han NS (2011) Mannitol production by Leuconostoc citreum KACC 91348P isolated from Kimchi. J Microbiol Biotechnol 21(9):968–971

    Article  CAS  PubMed  Google Scholar 

  • Papathanasopoulos MA, Krier F, Revol-Junelles A-M, Lefebvre G, Le Caer JP, von Holy A, Hastings JW (1997) Multiple bacteriocin production by Leuconostoc mesenteroides TA33a and other Leuconostoc/Weissella strains. Curr Microbiol 35(6):331–335

    Article  CAS  PubMed  Google Scholar 

  • Patra F, Tomar S, Arora S (2009) Technological and functional applications of low‐calorie sweeteners from lactic acid bacteria. J Food Sci 74(1):R16–R23

    Article  CAS  PubMed  Google Scholar 

  • Plengvidhya V, Breidt F, Lu Z, Fleming HP (2007) DNA fingerprinting of lactic acid bacteria in sauerkraut fermentations. Appl Environ Microbiol 73(23):7697–7702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rhee SK, Song KB, Kim CH, Park BS, Jang EK, Jang KH (2002) Levan. In: Baets S, Vandamme EJ, Steinbuchel A (eds) Biopolymers, polysaccharides I: Polysaccharides from prokaryotes, vol V. Wiley-VCH, Weinheim, pp 351–377

    Google Scholar 

  • Sanchez JI, Martinez B, Rodriguez A (2005) Rational selection of Leuconostoc strains for mixed starters based on the physiological biodiversity found in raw milk fermentations. Int J Microbiol 105(3):377–387

    Article  CAS  Google Scholar 

  • Sandine W (1996) Commercial production of dairy starter cultures. VCH, New York

    Google Scholar 

  • Sanz ML, Cote GL, Gibson GR, Rastall RA (2005) Prebiotic properties of alternansucrase maltose-acceptor oligosaccharides. J Agric Food Chem 53(15):5911–5916

    Article  CAS  PubMed  Google Scholar 

  • Sarbini SR, Kolida S, Naeye T, Einenhand AW, Gibson GR, Rastall RA (2013) The prebiotic effect of α-1,2 branched, low molecular weight dextran in the batch and continuous faecal fermentation system. J Funct Foods 5(4):1938–1946

    Article  CAS  Google Scholar 

  • Schmitt P, Vasseur C, Phalip V, Huang D, Divies C, Prevost H (1997) Diacetyl and acetoin production from the co-metabolism of citrate and xylose by Leuconostoc mesenteroides subsp. mesenteroides. Appl Microbiol Biotechnol 47(6):715–718

    Article  CAS  PubMed  Google Scholar 

  • Seo DM, Kim S-Y, Eom H-J, Han NS (2007) Synbiotic synthesis of oligosaccharides during milk fermentation by addition of Leuconostoc starter and sugars. J Microbiol Biotechnol 17(11):1758–1764

    CAS  PubMed  Google Scholar 

  • Server-busson C, Foucaud C, Leveay J-Y (1999) Selection of dairy Leuconostoc isolates for important technological properties. J Dairy Res 66(02):245–256

    Article  CAS  Google Scholar 

  • Servin AL, Coconnier M-H (2003) Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract Res Clin Gastroenterol 17(5):741–754

    Article  CAS  PubMed  Google Scholar 

  • Sneath PH, Mair N, Sharpe M, Holt J (1986) Bergey’s manual of systematic bacteriology. Williams and Wilkins, Baltimore, p 9

    Google Scholar 

  • Soetaert W (1990) Production of mannitol with Leuconostoc mesenteroides. Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent 55(4):1549–1552

    CAS  Google Scholar 

  • Speckman R, Collins E (1968) Diacetyl biosynthesis in Streptococcus diacetilactis and Leuconostoc citrovorum. J Bacteriol 95(1):174–180

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stiles ME, Holzapfel WH (1997) Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol 36(1):1–29

    Article  CAS  PubMed  Google Scholar 

  • Suvarna V, Boby V (2005) Probiotics in human health: a current assessment. Curr Sci 88(11):1744–1748

    Google Scholar 

  • Sybesma W, Starrenburg M, Tijsseling L, Hoefnagel MH, Hugenholtz J (2003) Effects of cultivation conditions on folate production by lactic acid bacteria. Appl Environ Microbiol 69(8):4542–4548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thunell R (1995) Taxonomy of the Leuconostocs. J Dairy Sci 78(11):2514–2522

    Article  CAS  Google Scholar 

  • Todorov SD, Dicks LM (2004) Characterization of mesentericin ST99, a bacteriocin produced by Leuconostoc mesenteroides subsp. dextranicum ST99 isolated from boza. J Ind Microbiol Biotechnol 31(7):323–329

    Article  CAS  PubMed  Google Scholar 

  • Tolonen M, Taipale M, Viander B, Pihlava JM, Korhonen H, Ryhanen EL (2002) Plant-derived biomolecules in fermented cabbage. J Agric Food Chem 50(23):6798–6803

    Article  CAS  PubMed  Google Scholar 

  • von Weymarn N, Hujanen M, Leisola M (2002) Production of D-mannitol by heterofermentative lactic acid bacteria. Process Biochem 37(11):1207–1213

    Article  Google Scholar 

  • Vuyst L, Degeest B (1999) Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev 23(2):153–177

    Article  PubMed  Google Scholar 

  • Wiander B, Ryhänen E-L (2005) Laboratory and large-scale fermentation of white cabbage into sauerkraut and sauerkraut juice by using starters in combination with mineral salt with a low NaCl content. Eur Food Res Technol 220(2):191–195

    Article  CAS  Google Scholar 

  • Zhang W, Liu M, Dai X (2013) Biological characteristics and probiotic effect of Leuconostoc lactis strain isolated from the intestine of black porgy fish. Braz J Microbiol 44(3):685–691

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam Soo Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shin, SY., Han, N.S. (2015). Leuconostoc spp. as Starters and Their Beneficial Roles in Fermented Foods. In: Liong, MT. (eds) Beneficial Microorganisms in Food and Nutraceuticals. Microbiology Monographs, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-23177-8_5

Download citation

Publish with us

Policies and ethics