Skip to main content
Log in

Induction of the acid tolerance response in Leuconostoc mesenteroides ATCC 8293 by pre-adaptation in acidic condition

  • Research Note
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Leuconostoc mesenteroides is a commercially important lactic acid bacterium which is used as a starter culture in various fermentation processes. However, because of its sensitivity to acid stress, high cell-density culture has not been accomplished yet. Therefore, we investigated the effect of preadaptation of L. mesenteroides under mildly acidic conditions for resistance to normally lethal levels of acid stress. For this, the cells grown to the early-exponential phase at pH 7.0 were incubated at pH 6.5, 6.0, and 5.0 for 1 h, and then the survival rates of acid-adapted cells in pH 4.0 solution was determined. Acid-adapted cells at pH 5.0 exhibited maximum increase in tolerance, showing an increased survival of approximately 2,500 folds compared to the control (pH 7.0).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eom HJ, Park JM, Seo MJ, Kim MD, Han NS. Mornitoring of Leuconostoc mesenteroides DRC starter in fermented vegetable by random integration of chloramphenicol acetyltransferase. J. Ind. Microbiol. Biotechnol. 35: 953–959 (2008)

    Article  CAS  Google Scholar 

  2. Kristek S, Bešlo D, Pavloviæ H, Kristek A. Effect of starter cultures L. mesenteroides and L. lactis spp. lactis on sauerkraut fermentation and quality. Czech J. Food Sci. 22: 125–132 (2004)

    Google Scholar 

  3. Kaletunc G, Lee J, Alpas H, Bozoglu F. Evaluation of structural changes induced by high hydrostatic pressure in Leuconostoc mesenteroides. Appl. Environ. Microbiol. 70: 1116–1122 (2004)

    Article  CAS  Google Scholar 

  4. McDonald LC, Fleming HP, Hassan HM. Acid tolerance of Leuconostoc mesenteroides and Lactobacillus plantarum. Appl. Environ. Microbiol. 56: 2120–2124 (1990)

    CAS  Google Scholar 

  5. Kobayashi H, Murakami N, Unemoto T. Regulation of the cytoplasmic pH in Streptococcus faecalis. J. Biol. Chem. 257: 13246–13252 (1982)

    CAS  Google Scholar 

  6. Herrero AA. End-product inhibition in anaerobic fermentations. Trends Biotechnol. 1: 49–53 (1983)

    Article  CAS  Google Scholar 

  7. O’Sullivan E, Condon S. Intracellular pH is a major factor in the induction of tolerance to acid and other stresses in Lactococcus lactis. Appl. Environ. Microbiol. 63: 4210–4215 (1997)

    Google Scholar 

  8. Rallu F, Gruss A, Ehrlich SD, Maguin E. Acid- and multistressresistant mutants of Lactococcus lactis: Identification of intracellular stress signals. Mol. Microbiol. 35: 517–528 (2000)

    Article  CAS  Google Scholar 

  9. Slonczewski JL, Foster JW. pH-Regulated genes and survival at extreme pH. Vol. 1, pp. 1539–1549. In: Escherichia coli and Salmonella: Cellular and Molecular Biology. Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds). 2nd ed. ASM Press, Washington, DC, USA (1996)

    Google Scholar 

  10. Foster JW. Low pH adaptation and the acid tolerance response of S. typhimurium. Crit. Rev. Microbiol. 21: 215–237 (1995)

    Article  CAS  Google Scholar 

  11. Minton KW, Karmin P, Hahn GM, Minton AP. Nonspecific stabilization of stress-susceptible proteins by stress resistant proteins: A model for the biological role of heat shock proteins. P. Natl. Acad. Sci. USA 79: 7107–7111 (1982)

    Article  CAS  Google Scholar 

  12. Budin-Verneuil A, Pichereau V, Auffray Y, Ehrlich DS, Maguin E. Proteomic characterization of the acid tolerance response in Lactococcus lactis MG1363. Proteomics 5: 4794–4807 (2005)

    Article  CAS  Google Scholar 

  13. Kwon HY, Kim SW, Choi MH, Ogunniyi AD, Paton JC, Park SH, Pyo SN, Rhee DK. Effect of heat shock and mutations in ClpL and ClpP on virulence gene expression in Streptococcus pneumonia. Infect. Immun. 71: 3757–3765 (2003)

    Article  CAS  Google Scholar 

  14. Lorca GL, Valdez GF. A low-pH-inducible, stationary-phase acid tolerance response in Lactobacillus acidophilus CRL 639. Curr. Microbiol. 42: 21–25 (2001)

    Article  CAS  Google Scholar 

  15. Len AC, Harty DW, Jacques NA. Stress-responsive proteins as upregulated in Streptococcus mutans during acid tolerance. Microbiology 150: 1339–1351 (2004)

    Article  CAS  Google Scholar 

  16. Martín-Galiano AJ, Overweg K, Ferrándiz MJ, Reuter M, Wells JM, de la Campa AG. Transcritptional analysis of the acid tolerance response in Streptococcus pneumonia. Microbiology 151: 3935–3946 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam Soo Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.E., Eom, HJ., Li, L. et al. Induction of the acid tolerance response in Leuconostoc mesenteroides ATCC 8293 by pre-adaptation in acidic condition. Food Sci Biotechnol 23, 221–224 (2014). https://doi.org/10.1007/s10068-014-0030-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-014-0030-7

Keywords

Navigation