Skip to main content

Apomixis as a Facilitator of Range Expansion and Diversification in Plants

  • Chapter
  • First Online:
Evolutionary Biology: Biodiversification from Genotype to Phenotype

Abstract

Apomixis , the asexual reproduction via seed, often occurs in huge plant polyploid complexes with large geographical distributions. However, the long-term evolutionary fate of asexuals traditionally was regarded as doomed by extinction. A seven-step evolutionary model is presented to explain the role of sex → apomixis shifts on geographical cytotype distributions, and the potential consequences of reversals apomixis → sex on plant diversity. Accordingly, apomictic polyploid genotypes act as facilitators for range expansions of asexual taxa in agamic complexes by functioning as pioneer explorers of new niches . High intragenomic (allelic) diversity and epigenetic variability may help for rapid adaptation. Therefore, they could rapidly expand the distribution areas of their progenitor sexual populations by occupying new ecological niches and geographical areas. Hence, apomixis would result in divergent patterns of geographic distribution between sexual and asexuals, a pattern described as “geographical parthenogenesis,” in which apomicts occupy extensive geographical areas and higher latitudinal zones while sexual relatives are restricted to small refugees. Later on, reversals to complete sexuality would allow for the establishment of new sexual populations in different habitats without the long-term disadvantages of asexuality. The new sexual recombinants will be genetically isolated from the original sexual populations and consequently predisposed to a divergent evolution, and potentially enabled to evolve into new sexual species. The present model stresses a previously unidentified evolutionary significance of the geographical parthenogenesis as a motor for plant diversification .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aliyu OM, Schranz ME, Sharbel TF (2010) Quantitative variation for apomictic reproduction in the genus Boechera (Brassicaceae). Am J Bot 97:1719–1731

    Article  PubMed  Google Scholar 

  • Andersen SL, Sekelsky J (2010) Meiotic versus mitotic recombination: two different routes for double-strand break repair. The different functions of meiotic versus mitotic DSB repair are reflected in different pathway usage and different outcomes. BioEssays 32:1058–1066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Asker SE, Jerling L (1992) Apomixis in plants. CRC Press, Boca Raton

    Google Scholar 

  • Austerlitz F, Jung-Muller B, Godelle B, Gouyon P-H (1997) Evolution of coalescence times, genetic diversity and structure during colonization. Theor Pop Biol 51:148–164

    Article  Google Scholar 

  • Avise JC (2008) Clonality: the genetics, ecology, and evolution of sexual abstinence in vertebrate animals. Oxford University Press, Inc, New York

    Book  Google Scholar 

  • Babcock EB, Stebbins GL (1938) The American species of Crepis: their interrelationships and distribution as affected by polyploidy and apomixis. Carnegie Institution of Washington, Publication number 504, Washington DC

    Google Scholar 

  • Baker HG (1955) Self-compatibility and establishment after long distance dispersal. Evolution 9:347–349

    Article  Google Scholar 

  • Baker HG (1965) Characteristics and modes of origin of weeds. In: Baker HG, Stebbins GL (eds) The genetics of colonizing species. Academic Press, New York, pp 147–168

    Google Scholar 

  • Baker HG, Stebbins GL (1965) The genetics of colonizing species. Academic Press, New York

    Google Scholar 

  • Barrett SCH, Colautti RI, Eckert CG (2008) Plant reproductive systems and evolution during biological invasion. Mol Ecol 17:373–383

    Article  PubMed  Google Scholar 

  • Beck JB, Alexander PJ, Allphin L, Al-Shehbaz IA, Rushworth C, Bailey CD, Windham MD (2011) Does hybridization drive the transition to asexuality in diploid Boechera? Evolution 66:985–995

    Article  PubMed  Google Scholar 

  • Bengtsson BO (2003) Genetic variation in organisms with sexual and asexual reproduction. J Evol Biol 16:189–199

    Article  CAS  PubMed  Google Scholar 

  • Bicknell RA, Lambie SC, Butler RC (2003) Quantification of progeny classes in two facultatively apomictic accessions of Hieracium. Hereditas 138: 11–20. ISSN 0018-0661

    Google Scholar 

  • Bierzychudek P (1985) Patterns in plant parthenogenesis. Experientia 41:1255–1264

    Article  Google Scholar 

  • Bossdorf O, Richards CL, Pigliucci M (2008) Epigenetics for ecologists. Ecol Lett 11:106–115

    PubMed  Google Scholar 

  • Carman JG (1997) Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biol J Lin Soc 61:51–94

    Article  Google Scholar 

  • Chapman MA, Abbott RJ (2010) Introgression of fitness genes across a ploidy barrier. New Phytol 186:63–71

    Article  CAS  PubMed  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846

    Article  CAS  PubMed  Google Scholar 

  • Cosendai A-C, Hörandl E (2010) Cytotype stability, facultative apomixis and geographical parthenogenesis in Ranunculus kuepferi (Ranunculaceae). Ann Bot 105:457–470

    Article  PubMed Central  PubMed  Google Scholar 

  • Cosendai A-C, Wagner J, Ladinig U, Rosche C, Hörandl E (2013) Geographical parthenogenesis and population genetic structure in the alpine species Ranunculus kuepferi (Ranunculaceae). Heredity 110: 560–569

    Google Scholar 

  • Courchamp F, Berec J, Gascoigne J (2008) Allee effects in ecology and conservation. Oxford, New York, USA: Oxford University Press

    Google Scholar 

  • Dalrymple RL, Buswell JM, Moles AT (2015) Asexual plants change just as often and just as fast as do sexual plants when introduced to a new range. Oikos 124:196–205

    Article  Google Scholar 

  • Darlington CD (1939) The evolution of genetic systems. Cambridge University Press, Cambridge

    Google Scholar 

  • Datta A, Miyono H, Lipsitch M, Jinks-Robertson S (1997) Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast. Proc Natl Acad Sci USA 94:9757–9762

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Daurelio LD, Espinoza F, Quarin CL, Pessino SC (2004) Genetic diversity in sexual diploid and apomictic tetraploid populations of Paspalum notatum situated in sympatry or allopatry. Plant Syst Evol 244:189–199

    Article  CAS  Google Scholar 

  • Davis HG, Taylor CM, Lambrinos JG, Strong DR (2004) Pollen limitation causes an Allee effect in a wind-pollinated invasive grass (Spartina alterniflora). Proc Natl Acad Sci 101: 13804–13807. doi:10.1073/pnas.0405230101

  • de Wide LC, Stöcklin J (2010) Longevity of clonal plants: why it matters and how to measure it. Ann Bot 106:859–870

    Article  Google Scholar 

  • DeWalt SJ, Hamrick JL (2004) Genetic variation of introduced Hawaiian and native Costa Rican populations of an invasive tropical shrub, Clidemia hirta (Melastomataceae). Amer J Bot 91:1155–1163

    Article  Google Scholar 

  • Dobeš C, Mitchell-Olds T, Koch MA (2004a) Extensive chloroplast haplotype variation indicates Pleistocene hybridization and radiation of North American Arabis drummondii, A. × divaricarpa, and A. holboellii (Brassicaceae). Mol Ecol 13:349–370

    Article  PubMed  Google Scholar 

  • Dobeš C, Mitchell-Olds T, Koch MA (2004b) Intraspecific diversification in North American Boechera stricta (= Arabis drummondii), Boechera × divaricarpa, and Boechera holboellii (Brassicaceae) inferred from nuclear and chloroplast molecular markers—an integrative approach. Am J Bot 91:2087–2101

    Article  PubMed  Google Scholar 

  • Douhovnikoff V, Dodd RS (2015) Epigenetics: a potential mechanism for clonal plant success. Plant Ecol 216:227–233

    Article  Google Scholar 

  • Early R, Sax DF (2014) Climatic niche shifts between species’ native and naturalized ranges raise concern for ecological forecasts during invasions and climate change. Global Ecol Biog 23:1356–1365

    Article  Google Scholar 

  • Fischer M, van Kleunen M, Schmid B (2000) Genetic Allee effects on performance, plasticity and developmental stability in a clonal plant. Ecol Lett 3: 530–539

    Google Scholar 

  • Gorelick R (2014) Defining clonality and individuals in plant evolution. Ideas Ecol Evol 7:84–88

    Google Scholar 

  • Gould FW (1959) Notes on apomixis in sideoats grama. J Range Manage 12:25–28

    Article  Google Scholar 

  • Grant V (1981) Plant speciation. Columbia University Press, New York. 2nd edition

    Google Scholar 

  • Grimanelli D, García M, Kaszas E, Perotti E, Leblanc O (2003) Heterochronic expression of sexual reproductive programs during apomictic development in Tripsacum. Genetics 165:1521–1531

    PubMed Central  PubMed  Google Scholar 

  • Groom MJ (1998) Allee effects limit population viability of an annual plant. Am Nat 151: 487–496

    Google Scholar 

  • Grosberg RK, Strathmann RR (2007) The Evolution of multicellularity: a minor major transition? Annu. Rev. Ecol. Evol. Syst. 38:621–54

    Google Scholar 

  • Gustafsson Å (1946) Apomixis in higher plants. I. The mechanism of apomixis. Lunds Univ. Årsskrift 42: 1–67

    Google Scholar 

  • Gustafsson Å (1947) Apomixis in higher plants. III. Biotype and species formation. Lunds Univ. Årsskrift 43: 181–370

    Google Scholar 

  • Guo M, Rupe MA, Zinselmeier C, Habben J, Bowen BA, Smith OS (2004) Allelic variation of gene expression in maize hybrids. The Plant Cell 16: 1707–1716

    Google Scholar 

  • Hardesty BD, Le Roux JJ, Rocha OJ, Meyer JY, Westcott D, Wieczorek AM (2012) Getting here from there: testing the genetic paradigm underpinning introduction histories and invasion success. Divers Distrib 18:147–157

    Article  Google Scholar 

  • Haveman R (2013) Freakish patterns—species and species concepts in apomicts. Nordic J Bot 31:257–269

    Article  Google Scholar 

  • Hojsgaard D, Hörandl E (2015) A little bit of sex matters for genome evolution in asexual plants. Front Plant Sci 6:82. doi:10.3389/fpls.2015.00082

    Article  PubMed Central  PubMed  Google Scholar 

  • Hojsgaard DH, Schegg E, Valls JFM, Martinez EJ, Quarin CL (2008) Sexuality, apomixis, ploidy levels, and genomic relationships among four Paspalum species of the subgenus Anachyris (Poaceae). Flora 203:535–547

    Article  Google Scholar 

  • Hojsgaard DH, Martinez EJ, Quarin CL (2013) Competition between meiotic and apomictic pathways during ovule and seed development results in clonality. New Phytol 197:336–347

    Article  PubMed  Google Scholar 

  • Hojsgaard DH, Klatt S, Baier R, Carman JG, Hörandl E (2014a) Taxonomy and biogeography of apomixis in Angiosperms and associated biodiversity characteristics. Crit Rev Pl Sci 33:1–14

    Article  Google Scholar 

  • Hojsgaard D, Greilhuber J, Pellino M, Paun O, Sharbel TF, Hörandl E (2014b) Emergence of apospory and bypass of meiosis via apomixis after sexual hybridisation and polyploidisation. New Phytol 204:1000–1012

    Article  PubMed Central  PubMed  Google Scholar 

  • Hörandl E (1998) Species concepts in agamic complexes: applications in the Ranunculus auricomus complex and general perspectives. Folia Geobot 33:335–348

    Article  Google Scholar 

  • Hörandl E (2006) The complex causality of geographical parthenogenesis. New Phytol 171:525–538

    PubMed  Google Scholar 

  • Hörandl E (2009) A combinational theory for maintenance of sex. Heredity 103:445–457

    Article  PubMed Central  PubMed  Google Scholar 

  • Hörandl E (2010) The evolution of self-fertility in apomictic plants. Sex Pl Repr 23:73–86

    Article  Google Scholar 

  • Hörandl E, Hojsgaard D (2012) The evolution of apomixis in angiosperms: a reappraisal. Plant Biosyst 146:681–693

    Google Scholar 

  • Hörandl E, Paun O (2007) Patterns and sources of genetic diversity in apomictic plants: implications for evolutionary potentials. In: Hörandl E, Grossniklaus U, van Dijk P, Sharbel T (eds) Apomixis: evolution, mechanisms and perspectives. Gantner, Liechtenstein, pp 169–194

    Google Scholar 

  • Hörandl E, Temsch E (2009) Introgression of apomixis into sexual species is in the Ranunculus auricomus complex inhibited by mentor effects and ploidy barriers. Ann Bot 104:81–89

    Article  PubMed Central  PubMed  Google Scholar 

  • Hörandl E, Cosendai A-C, Temsch EM (2008) Understanding the geographic distributions of apomictic plants: a case for a pluralistic approach. Plant Ecol Divers 1:309–320

    Article  PubMed Central  PubMed  Google Scholar 

  • Hörandl E, Greilhuber J, Klímova K, Paun O, Temsch E, Emadzade K, Hodálová I (2009) Reticulate evolution and taxonomic concepts in the Ranunculus auricomus complex (Ranunculaceae): insights from analysis of morphological, karyological and molecular data. Taxon 58:1194–1215

    PubMed Central  PubMed  Google Scholar 

  • Jacobson J, Grossniklaus U (2011) Selected aspects of transgenerational epigenetic inheritance and resetting in plants. Curr Opin Plant Biol 14:195–203

    Article  Google Scholar 

  • Janzen D (1977) What are dandelions and aphids? Am Nat 111:586–589

    Article  Google Scholar 

  • Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, dePamphilis CW (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473: 97–100

    Google Scholar 

  • Kearney M (2005) Hybridization, glaciation and geographical parthenogenesis. TREE 20:495–502

    PubMed  Google Scholar 

  • Koch MA, Dobeš C, Mitchell-Olds T (2003) Multiple hybrid formation in natural populations: concerted evolution of the internal transcribed spacer of nuclear ribosomal DNA (ITS) in North American Arabis divaricarpa (Brassicaceae). Mol Biol Evol 20: 338–350

    Google Scholar 

  • Levin DA (2000) The origin, expansion, and demise of plant species. Oxford University Press, New York

    Google Scholar 

  • Lo EYY, Stefanović S, Dickinson TA (2010) Reconstructing reticulation history in a phylogenetic framework and the potential of allopatric speciation driven by polyploidy in an agamic complex in Crataegus (Rosaceae). Evolution 64:3593–3608

    Article  PubMed  Google Scholar 

  • Lo EYY, Stefanović S, Dickinson TA (2013) Geographical parthenogenesis in Pacific Northwest hawthorns (Crataegus; Rosaceae). Botany 91:107–116

    Article  CAS  Google Scholar 

  • Lynch M (1984) Destabilizing hybridization, general-purpose genotypes and geographical parthenogenesis. Quart Rev Biol 59:257–290

    Article  Google Scholar 

  • Majeský Ľ (2013) Microevolutionary processes in apomictic genus Taraxacum. Dissertation, Palacký University, Olomouc

    Google Scholar 

  • Martin GM (2005) Epigenetic drift in aging identical twins. Proc Natl Acad Sci USA 102:10413–10414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mau M, Lovell JT, Corral JM, Kiefer C, Koch MA, Aliyu OM, Sharbel TF (2015) Hybrid apomicts trapped in the ecological niches of their sexual ancestors. Proc Natl Acad Sci. doi:10.1073/pnas.1423447112

    PubMed Central  PubMed  Google Scholar 

  • McLeod KA, Scascitelli M, Vellend M (2012) Detecting small-scale genotype–environment interactions in apomictic dandelion (Taraxacum officinale) populations. J Evol Biol 25:1667–1675

    Article  CAS  PubMed  Google Scholar 

  • Mogie M (1992) The evolution of asexual reproduction in plants. Chapman and Hall, London

    Google Scholar 

  • Molina-Montenegro MA, Plama-Rojas C, Alcayaga-Oliveras Y, Oses R, Corcuera LJ, Cavieres LA, Gianoli E (2013) Ecophysiological plasticity and local differentiation help explain the invasion success of Taraxacum officinale (dandelion) in South America. Ecography 36:718–730

    Article  Google Scholar 

  • Molins MP, Corral JM, Aliyu OM, Koch MA, Betzin A, Maron JL, Sharbel TF (2014) Biogeographic variation in genetic variability, apomixis expression and ploidy of St. John’s wort (Hypericum perforatum) across its native and introduced range. Ann Bot 113:417–427

    Article  PubMed Central  PubMed  Google Scholar 

  • Müller HJ (1964) The relation of recombination to mutational advance. Mutat Res 1: 2–9

    Google Scholar 

  • Noyes RD, Givens AD (2013) Quantitative assessment of megasporogenesis for the facultative apomicts Erigeron annuus and Erigeron strigosus (Asteraceae). Int J Plant Sci 174:1239–1250

    Article  Google Scholar 

  • Paun O, Greilhuber J, Temsch E, Hörandl E (2006) Patterns, sources and ecological implications of clonal diversity in apomictic Ranunculus carpaticola (Ranunculus auricomus) complex, Ranunculaceae. Mol Ecol 15:897–930

    Article  CAS  PubMed  Google Scholar 

  • Pearman PB, Guisan A, Broennimann O, Randin CF (2007) Niche dynamics in space and time. TREE 23:149–158

    Google Scholar 

  • Pellino M, Hojsgaard D, Schmutzer T, Scholz U, Hörandl E, Vogel H, Sharbel TF (2013) Asexual genome evolution in the apomictic Ranunculus auricomus complex: examining the effects of hybridization and mutation accumulation. Mol Ecol 22:5908–5921

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro F, de Barros F, Palma-Silva C, Meyer D, Fay MF, Suzuki RM, Lexer C, Cozzolino S (2010) Hybridization and introgression across different ploidy levels in the Neotropical orchids Epidendrum fulgens and E. puniceoluteum (Orchidaceae). Mol Ecol 19:3981–3994

    Article  PubMed  Google Scholar 

  • Polegri L, Calderini O, Arcioni S, Pupilli F (2010) Specific expression of apomixis-linked alleles revealed by comparative transcriptomic analysis of sexual and apomictic Paspalum simplex Morong flowers. J Exp Bot 61:1869–1883

    Article  CAS  PubMed  Google Scholar 

  • Pontecorvo G, Käfer E (1958) Genetic analysis based on mitotic recombination. Adv Genet 9:71–104

    Article  CAS  PubMed  Google Scholar 

  • Poulin J, Weller SG, Sakai AK (2005) Genetic diversity does not affect the invasiveness of fountain grass (Pennisetum setaceum) in Arizona, California and Hawaii. Divers Distrib 11(3):241–247

    Article  Google Scholar 

  • Prentis PJ, Wilson JRU, Dormontt EE, Richardson DM, Lowe AJ (2008) Adaptive evolution in invasive species. Trends Plant Sci 13(6):288–294

    Article  CAS  PubMed  Google Scholar 

  • Quarin CL (1986) Seasonal changes in the incidence of apomixis of diploid, triploid, and tetraploid plants of Paspalum cromyorrhizon. Euphytica 35:515–522

    Article  Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annual Review of Ecology and Systematics 29: 467–501

    Google Scholar 

  • Rebozzio RN, Sartor ME, Quarin CL, Espinoza F (2011) Residual sexuality and its seasonal variation in natural apomictic Paspalum notatum accessions. Biol Plant 55:391–395

    Article  CAS  Google Scholar 

  • Richards AJ (1997) Plant breeding systems, 2nd edn. Chapman & Hall, London

    Book  Google Scholar 

  • Roiloa SR, Antelo B, Retuerto R (2014) Physiological integration modifies d15 N in the clonal plant Fragaria vesca, suggesting preferential transport of nitrogen to water-stressed offspring. Ann Bot 114:399–411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rois AS, Rodríguez López CM, Cortinhas A, Erben M, Espírito-Santo D, Wilkinson MJ, Caperta AD (2013) Epigenetic rather than genetic factors may explain phenotypic divergence between coastal populations of diploid and tetraploid Limonium spp. (Plumbaginaceae) in Portugal. BMC Plant Biol 13:205

    Article  PubMed Central  PubMed  Google Scholar 

  • Sharbel TF, Mitchell-Olds T, Dobesˇ C, Kantama L, de Jong H (2005) Biogeographic distribution of polyploidy and B chromosomes in the apomictic Boechera holboellii complex. Cytogenet Genome Res 109:283–292

    Article  CAS  PubMed  Google Scholar 

  • Sharbel TF, Voigt M-L, Corral JM, Galla G, Kumlehn J, Klukas C, Schreiber F, Vogel H, Rotter B (2010) Apomictic and sexual ovules of Boechera display heterochronic global gene expression patterns. Plant Cell 22:655–671

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sochor M, Vašut RJ, Sharbel TF, Trávnícěk B (2015) How just a few makes a lot: Speciation via reticulation and apomixis on example of European brambles (Rubus subgen. Rubus, Rosaceae) Mol Phyl Evol 89: 13–27. http://dx.doi.org/10.1016/j.ympev.2015.04.007

  • Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annu Rev Plant Biol 60:561–588

    Article  CAS  PubMed  Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Stebbins GL (1959) The role of hybridization in evolution. Proc Am Philos Soc 103:231–251

    Google Scholar 

  • Steward AJA, John EA, Hutchings MJ (2000) The world is heterogeneous: ecological consequences of living in a patchy environment. In: Hutchings MJ, John EA, Steward AJA (eds) The ecological consequences of environmental heterogeneity. Cambridge University Press, England, pp 1–8

    Google Scholar 

  • Stratton DA (1994) Genotype-by-environment interactions for fitness of erigeron annuus show fine-scale selective heterogeneity. Evolution 48:1607–1618

    Article  Google Scholar 

  • Tingley R, Vallinoto M, Sequeira F, Kearney MR (2014) Realized niche shift during a global biological invasion. Proc Natl Acad Sci 111:10233–10238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thompson SL, Whitton J (2006) Patterns of recurrent evolution and geographic parthenogenesis within apomictic polyploid Easter daises (Townsendia hookeri). Molecular Ecology 15: 3389–3400 doi: 10.1111/j.1365-294X.2006.03020.x

  • Urbani MH, Quarin CL, Espinoza F, Penteado MIO, Rodrigues IF (2002) Cytogeography and reproduction of the Paspalum simplex polyploid complex. Plant Syst Evol 236:99–105

    Article  Google Scholar 

  • Van Dijk PJ (2003) Ecological and evolutionary opportunities of apomixis: Insights from Taraxacum and Chondrilla. Philos Trans R Soc Lond Ser B-Biol Sci 358:1113–1120

    Article  Google Scholar 

  • Van Dijk P, de Jong H, Vijverberg K, Biere A (2009) An apomixis-gene’s view on dandelions. In: Schön I, Martens K, van Dijk P (eds.), Lost Sex: The evolutionary Biology of Parthenogenesis. Springer: Germany, pp 475–493

    Google Scholar 

  • Vandel A (1928) La parthénogénèse géographique: contribution à l’édude biologique et cytologique de la parthénogénèse naturelle. Bulletin Biologique de France et Belgique 62:164–281

    Google Scholar 

  • Verhoeven KJ, Preite V (2013) Epigenetic variation in asexually reproducing organisms. Evolution 68:644–655

    Article  PubMed  Google Scholar 

  • Verhoeven KJF, Jansen JJ, van Dijk PJ, Biere A (2010a) Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol 185:1108–1118

    Article  CAS  PubMed  Google Scholar 

  • Verhoeven KJF, Van Dijk PJ, Biere A (2010b) Changes in genomic methylation patterns during the formation of triploid asexual dandelion lineages. Mol Ecol 19:315–324

    Article  CAS  PubMed  Google Scholar 

  • Vrijenhoek RC (1979) Factors affecting clonal diversity and coexistence. Am Zool 19:787–797

    Google Scholar 

  • Vrijenhoek RC (1984) Ecological differentiation among clones the frozen niche variation model. In: Woehrmann K, Loeschcke V (eds) Population biology and evolution. Springer, Berlin, pp 217–232

    Chapter  Google Scholar 

  • Vrijenhoek RC, Parker ED Jr. (2009) Geographical parthenogenesis: general purpose genotypes and frozen niche variation. In: Schön I, Martens K, van Dijk P (eds.), Lost Sex, The evolutionary biology of parthenogenesis Springer: Germany, pp 99–131

    Google Scholar 

  • Wagenius S, Lonsdorf E, Neuhauser C (2007) Patch aging and the S-Allee effect: breeding system effects on the demographic response of plants to habitat fragmentation Am. Nat. 169: 383–397

    Google Scholar 

  • Wang X-Y, Paterson AH (2011) Gene conversion in Angiosperm genomes with an emphasis on genes duplicated by polyploidization. Genes 2: 1–20; doi:10.3390/genes2010001

  • You W, Fan S, Yu D, Xie D, Liu C (2014) An invasive clonal plant benefits from clonal integration more than a co-occurring native plant in nutrient-patchy and competitive environments. PLoS ONE 9(5):e97246. doi:10.1371/journal.pone.0097246

    Article  PubMed Central  PubMed  Google Scholar 

  • Xia J, Lu J, Wang ZX, Hao BB, Wang HB, Liu GH (2013a) Pollen limitation and Allee effect related to population size and sex ratio in the endangered Ottelia acuminata (Hydrocharitaceae): implications for conservation and reintroduction. Plant Biol. 15: 376–383. doi:10.1111/j.1438-8677.2012.00653.x

  • Xia J, Sun SG, Liu GH (2013b) Evidence of a component Allee effect driven by predispersal seed predation in a plant (Pedicularis rex, Orobanchaceae). Biol Lett 9: 20130387. http://dx.doi.org/10.1098/rsbl.2013.0387

  • Zhang YY, Fischer M, Colot V, Bossdorf O (2013) Epigenetic variation creates potential for evolution of plant phenotypic plasticity. New Phytol 197:314–322

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded under by the German Research foundation (DFG projects HO 5462/1-1 to D.H. and HO 4395/1-1 to E.H.) and funds of the Universitätsbund Göttingen e.V. (to D.H.). The comments of anonymous referees are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Hojsgaard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hojsgaard, D., Hörandl, E. (2015). Apomixis as a Facilitator of Range Expansion and Diversification in Plants. In: Pontarotti, P. (eds) Evolutionary Biology: Biodiversification from Genotype to Phenotype. Springer, Cham. https://doi.org/10.1007/978-3-319-19932-0_16

Download citation

Publish with us

Policies and ethics