Skip to main content

Role of Nitric Oxide in Heavy Metal Stress

  • Chapter
  • First Online:
Nitric Oxide Action in Abiotic Stress Responses in Plants

Abstract

Nitric oxide (NO) is a diffusible gaseous molecule first identified in mammalian systems as the endothelium-derived relaxing factor, a potent endogenous vasodilatator. NO is also synthesized and released by plants, where it is involved in several physiological processes and in adaptative response against different stresses; hence, NO is considered to be a general signal molecule in plant and animal cells. In recent years, heavy metals (HMs), naturally present or added to the soil through diverse anthropogenic activities, have become a problem of agricultural and environmental significance. Although the mechanism by which HMs affect plants integrity is not fully understood, there is increasing evidence suggesting that an important component of the responses against HM stress is NO. This chapter presents an overview on the effects of HMs on endogenous NO content. In addition, the role of exogenous-applied NO in alleviating HM toxicity is summarized and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Kader DZE (2007) Role of nitric oxide, glutathione and sulfhydryl groups in zinc homeostasis in plants. Am J Plant Physiol 2:59–75

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Arasimowicz M, Floryszak-Wieczorek J (2007) Nitric oxide as a bioactive signalling molecule in plant stress responses. Plant Sci 172:876–887

    Article  CAS  Google Scholar 

  • Arnaud N, Murgia I, Boucherez J et al (2006) An iron-induced nitric oxide burst precedes ubiquitin-dependent protein degradation for Arabidopsis AtFer1 ferritin gene expression. J Biol Chem 281:23578–23588

    Article  Google Scholar 

  • Bartha B, Kolbert Z, Erdei L (2005) Nitric oxide production induced by heavy metals in Brassica juncea L. Czern. and Pisum sativum L. Acta Biol Szeged 49:9–12

    Google Scholar 

  • Besson-Bard A, Gravot A, Richaud P et al (2009) Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. Plant Physiol 149:1302–1315

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bethke PC, Badger MR, Jones RL (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16:332–341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brune B, von Knethen A, Sandau KB (1998) Nitric oxide and its role in apoptosis. Eur J Pharmacol 351:261–271

    Article  CAS  PubMed  Google Scholar 

  • Butt YK, Lum JH, Lo SC (2003) Proteomic identification of plant proteins probed by mammalian nitric oxide synthase antibodies. Planta 216:762–771

    CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB, Carreras A et al (2007) Nitrosative stress in plants: A new approach to understand the role of NO in abiotic stress. In: Lamattina L, Polacco JC (eds) Nitric oxide in plant growth. Springer, Berlin, pp 187–205

    Google Scholar 

  • De Michele R, Vurro E, Rigo C et al (2009) Nitric oxide is involved in cadmium-induced programmed cell death in Arabidopsis suspension cultures. Plant Physiol 150:217–228

    Article  PubMed Central  PubMed  Google Scholar 

  • Delledonne M (2005) No news is good news for plants. Curr Opin Plant Biol 8:390–396

    Article  CAS  PubMed  Google Scholar 

  • Faller P, Kienzler K, Krieger-Liszkay A (2005) Mechanism of Cd2+ toxicity: Cd2+ inhibits photoactivation of Photosystem II by competitive binding to the essential Ca2+ site. Biochim Biophys Acta 1706:158–164

    Article  CAS  PubMed  Google Scholar 

  • Foresi N, Correa-Aragunde N, Parisi G et al (2010) Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent. Plant Cell 22:3816–3830

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gill SS, Hasanuzzaman M, Nahar K, Macovei A, Tuteja N (2013) Importance of nitric oxide in cadmium stress tolerance in crop plants. Plant Physiol Biochem 63:254–261

    Article  CAS  PubMed  Google Scholar 

  • Griffith OW, Stuehr JF (1995) Nitric oxide synthase: properties and catalytic mechanisms. Ann Rev Physiol 57:707–736

    Article  CAS  Google Scholar 

  • Groppa MD, Rosales EP, Iannone MF, Benavides MP (2008) Nitric oxide, polyamines and Cd-induced phytotoxicity in wheat roots. Phytochemistry 69:2609–2615

    Article  CAS  PubMed  Google Scholar 

  • Grün S, Lindermayr C, Sell J, Dumer J (2006) Nitric oxide and gene regulation in plants. J Exp Bot 57:507–516

    Article  PubMed  Google Scholar 

  • Gupta KJ, Igamberdiev AU (2013) Recommendations of using at least two different methods for measuring NO. Front Plant Sci 4:1–4

    Article  Google Scholar 

  • He H, Zhan J, He L, Gu M (2012) Nitric oxide signaling in aluminum stress in plants. Protoplasma 249:483–492

    Article  CAS  PubMed  Google Scholar 

  • Illéš P, Schlicht M, Pavlovkin J et al (2006) Aluminium toxicity in plants: internalization of aluminium into cells of the transition zone in Arabidopsis root apices related to changes in plasma membrane potential, endosomal behaviour, and nitric oxide production. J Exp Botany 57:4201–4213

    Article  Google Scholar 

  • Kopyra M, Gwóźdź EA (2003) Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol Biochem 41:1011–1017

    Article  CAS  Google Scholar 

  • Kopyra M, Stachoń-Wilk M, Gwóźdź EA (2006) Effects of exogenous nitric oxide on the antioxidant capacity of cadmium-treated soybean cell suspension. Acta Physiol Plant 28:525–536

    Article  CAS  Google Scholar 

  • Lamattina L, García-Mata C, Magdalena Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136

    Article  CAS  PubMed  Google Scholar 

  • Laspina NV, Groppa MD, Tomaro ML, Benavides MP (2005) Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Sci 169:323–330

    Article  CAS  Google Scholar 

  • Leitner M, Vandelle E, Gaupels F et al (2009) NO signals in the haze: nitric oxide signaling in plant defense. Curr Opin Plant Biol 12:451–458

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Xu W, Xu H et al (2010) Nitric oxide modulates cadmium influx during cadmium-induced programmed cell death in tobacco BY-2 cells. Planta 232:325–335

    Article  CAS  PubMed  Google Scholar 

  • Mahalingam R, Fedoroff N (2003) Stress response, cell death and signalling: the many faces of reactive oxygen species. Physiol Plant 119:56–68

    Article  CAS  Google Scholar 

  • Mahmood T, Gupta KJ, Kaiser WM (2009) Cadmium stress stimulates nitric oxide production by wheat roots. Pak J Bot 41:1285–1290

    CAS  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Pazmiño DM et al (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol 150:229–243

    Article  PubMed Central  PubMed  Google Scholar 

  • Schmidt HHHW, Walter U (1994) NO at work. Cell 78:919–925

    CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2008) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    Article  PubMed  Google Scholar 

  • Shi H-T, Li R-J, Cai W et al (2012) Increasing nitric oxide content in Arabidopsis thaliana by expressing rat neuronal nitric oxide synthase resulted in enhanced stress tolerance. Plant Cell Physiol 53:344–357

    Article  CAS  PubMed  Google Scholar 

  • Singh HP, Kaur S, Batish DR et al (2009) Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice). Nitric Oxide 20:289–297

    Article  CAS  PubMed  Google Scholar 

  • Tewari RK, Hahn E-J, Paek K-Y (2008) Modulation of copper toxicity-induced oxidative damage by nitric oxide supply in the adventitious roots of Panax ginseng. Plant Cell Rep 27:171–181

    Article  CAS  PubMed  Google Scholar 

  • Tian Q-Y, Sun D-H, Zhao M-G, Zhang W-H (2007) Inhibition of nitric oxide synthase (NOS) underlies aluminum-induced inhibition of root elongation in Hibiscus moscheutos. New Phytol 174:322–331

    Article  CAS  PubMed  Google Scholar 

  • Valentovicová K, Halusková L, Huttová J et al (2010) Effect of cadmium on diaphorase activity and nitric oxide production in barley root tips. J Plant Physiol 167:10–14

    Article  PubMed  Google Scholar 

  • Vandelle E, Delledonne M (2011) Peroxynitrite formation and function in plants. Plant Sci 181:534–539

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Yang L, Yang F et al (2010a) Involvements of H2O2 and metallothionein in NO-mediated tomato tolerance to copper toxicity. J Plant Physiol 167:1298–1306

    Article  CAS  PubMed  Google Scholar 

  • Wang SH, Zhang H, Jiang SJ et al (2010b) Effects of the nitric oxide donor sodium nitroprusside on antioxidant enzymes in wheat seedling roots under nickel stress. Russian J Plant Physiol 57:833–839

    Article  CAS  Google Scholar 

  • Wendehenne D, Lamotte O, Pugin A (2003) Plant iNOS: conquest of the Holy Grail. Trends Plant Sci 8:465–468

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson JQ, Crawford NM (1993) Identification and characterization of a chlorate resistant mutant of Arabidopsis with mutations in both NIA1 and NIA2 nitrate reductase structural genes. Mol Gen Genet 239:289–297

    CAS  PubMed  Google Scholar 

  • Xiong J, An L, Lu H, Zhu C (2009a) Exogenous nitric oxide enhances cadmium tolerance by increasing pectin and hemicellulose contents in root cell wall. Planta 230:755–765

    Article  CAS  PubMed  Google Scholar 

  • Xiong J, Lu H, Lu K et al (2009b) Cadmium decreases crown root number by decreasing endogenous nitric oxide, which is indispensable for crown root primordia initiation in rice seedlings. Planta 230:599–610

    Article  CAS  PubMed  Google Scholar 

  • Xu YC, Zhao BL (2003) The main origin of endogenous NO in higher non-leguminous plants. Plant Physiol Biochem 41:833–838

    Article  CAS  Google Scholar 

  • Xu J, Wang W, Yin H et al (2010a) Exogenous nitric oxide improves antioxidative capacity and reduces auxin degradation in roots of Medicago truncatula seedlings under cadmium stress. Plant Soil 326:321–330

    Article  CAS  Google Scholar 

  • Xu J, Yin H, Li Y, Liu X (2010b) Nitric oxide is associated with long-term zinc tolerance in Solanum nigrum. Plant Physiol 154:1319–1334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang L-T, Qi Y-P, Chen L-S et al (2012) Nitric oxide protects sour pummelo (Citrus grandis) seedlings against aluminum-induced inhibition of growth and photosynthesis. Environ Exp Bot 82:1–13

    Article  CAS  Google Scholar 

  • Zhang LP, Mehta SK, Liu ZP, Yang ZM (2008) Copper-induced proline synthesis is associated with nitric oxide generation in Chlamydomonas reinhardtii. Plant Cell Physiol 49:411–419

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Cerana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cerana, R., Malerba, M. (2015). Role of Nitric Oxide in Heavy Metal Stress. In: Khan, M., Mobin, M., Mohammad, F., Corpas, F. (eds) Nitric Oxide Action in Abiotic Stress Responses in Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-17804-2_12

Download citation

Publish with us

Policies and ethics