Skip to main content

Nitric Oxide – A Small Molecule with Big Impacts on Plants Under Heavy Metal Stress

  • Chapter
  • First Online:
Gasotransmitters Signaling in Plants under Challenging Environment

Part of the book series: Plant in Challenging Environments ((PCE,volume 5))

  • 73 Accesses

Abstract

Plants produce signalling molecules as a stress-response mechanism, triggering a cascade of stress-adaptation reactions that result in either programmed cell death or plant acclimation. Nitric oxide (NO) is a small gaseous molecule which, with its bioactive nature, it is capable of regulating redox signalling in living cells. The importance of NO in abiotic stress response, particularly in heavy metal stress tolerance, is widely acknowledged by experts in the area. It is also worth noting that NO is involved in a variety of physiological processes, including seed germination, growth and development, flowering behaviour, senescence, and others. Because of its crucial role in regulating gene expression, post-translational modifications, and synergistic or antagonistic effects as a signalling molecule, several authors refer to NO as a gasotransmitter molecule. A relationship between NO accumulation and plant stress has been discovered in various studies. Exogenous NO enhances antioxidant activity in nearly all plant species and lessens the effects of stress in plants. However, the primary function of NO in the response to metal toxicity is to lessen oxidative stress by initiating antioxidant defence mechanisms. Although the pathways are largely species-specific, in this chapter we have attempted to provide an update on NO production, interactions, possible cross-talk with other chemicals and/or hormones, and several pathways involved in heavy metal stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Kader DZE-A (2007) Role of nitric oxide, glutathione and sulfhydryl groups in zinc homeostasis in plants. Am J Plant Physiol 2(2):59–75. https://doi.org/10.3923/ajpp.2007.59.75

  • Aguirre E, Rodríguez-Juárez F, Bellelli A, Gnaiger E, Cadenas S (2010) Kinetic model of the inhibition of respiration by endogenous nitric oxide in intact cells. Biochim Biophys Acta Bioenerg 1797(5):557–565. https://doi.org/10.1016/j.bbabio.2010.01.033

    Article  CAS  Google Scholar 

  • Ahmad P, Ahanger MA, Alyemeni MN, Wijaya L, Alam P (2018) Exogenous application of nitric oxide modulates osmolyte metabolism, antioxidants, enzymes of ascorbate-glutathione cycle and promotes growth under cadmium stress in tomato. Protoplasma 255(1):79–93

    Article  PubMed  CAS  Google Scholar 

  • Ahmad P, Alyemeni MN, Wijaya L, Ahanger MA, Ashraf M, Alam P et al (2021) Nitric oxide donor, sodium nitroprusside, mitigates mercury toxicity in different cultivars of soybean. J Hazard Mater 408:124852. https://doi.org/10.1016/j.jhazmat.2020.124852

    Article  PubMed  CAS  Google Scholar 

  • Akladious SA, Mohamed HI (2017) Physiological role of exogenous nitric oxide in improving performance, yield and some biochemical aspects of sunflower plant under zinc stress. Acta Biol Hung 68(1):101–114

    Article  PubMed  CAS  Google Scholar 

  • Anand P, Stamler JS (2012) Enzymatic mechanisms regulating protein S-nitrosylation: implications in health and disease. J Mol Med 90(3):233–244

    Article  PubMed  CAS  Google Scholar 

  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Kubiś J (2009) Involvement of nitric oxide in water stress-induced responses of cucumber roots. Plant Sci 177(6):682–690. https://doi.org/10.1016/j.plantsci.2009.09.007

    Article  CAS  Google Scholar 

  • Bai X, Dong Y, Wang Q, Xu L, Kong J, Liu S (2015) Effects of lead and nitric oxide on photosynthesis, antioxidative ability, and mineral element content of perennial ryegrass. Biol Plant 59(1):163–170

    Article  CAS  Google Scholar 

  • Banerjee A, Tripathi DK, Roychoudhury A (2018) Hydrogen sulphide trapeze: environmental stress amelioration and phytohormone crosstalk. Plant Physiol Biochem 132:46–53. https://doi.org/10.1016/j.plaphy.2018.08.028

    Article  PubMed  CAS  Google Scholar 

  • Basalah MO, Ali HM, Al-Whaibi MH, Siddiqui MH, Sakran AM, Al Sahli AA (2013) Nitric oxide and salicylic acid mitigate cadmium stress in wheat seedlings. J Pure Appl Microbiol 7:139–148

    CAS  Google Scholar 

  • Begara-Morales JC, Chaki M, Valderrama R, Sánchez-Calvo B, Mata-Pérez C, Padilla MN et al (2018) Nitric oxide buffering and conditional nitric oxide release in stress response. J Exp Bot 69(14):3425–3438

    Article  PubMed  CAS  Google Scholar 

  • Bhat JA, Ahmad P, Corpas FJ (2021) Main nitric oxide (NO) hallmarks to relieve arsenic stress in higher plants. J Hazard Mater 406:124289. https://doi.org/10.1016/j.jhazmat.2020.124289

    Article  PubMed  CAS  Google Scholar 

  • Buet A, Galatro A, Ramos-Artuso F, Simontacchi M (2019) Nitric oxide and plant mineral nutrition: current knowledge. J Exp Bot 70(17):4461–4476. https://doi.org/10.1093/jxb/erz129

    Article  PubMed  CAS  Google Scholar 

  • Chen WW, Yang JL, Qin C, Jin CW, Mo JH, Ye T, Zheng SJ (2010) Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis. Plant Physiol 154(2):810–819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corpas FJ, Barroso JB (2014) Peroxynitrite (ONOO) is endogenously produced in Arabidopsis peroxisomes and is overproduced under cadmium stress. Ann Bot 113(1):87–96. https://doi.org/10.1093/aob/mct260

    Article  PubMed  CAS  Google Scholar 

  • Corpas FJ, Barroso JB (2017) Lead-induced stress, which triggers the production of nitric oxide (NO) and superoxide anion (O2·-) in Arabidopsis peroxisomes, affects catalase activity. Nitric Oxide 68:103–110

    Article  PubMed  CAS  Google Scholar 

  • Corpas FJ, Barroso JB, Carreras A, Quirós M, León AM, Romero-Puertas MC et al (2004) Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. Plant Physiol 136(1):2722–2733. https://doi.org/10.1104/pp.104.042812

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corpas FJ, Barroso JB, Carreras A, Valderrama R, Palma JM, León AM et al (2006) Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development. Planta 224(2):246–254. https://doi.org/10.1007/s00425-005-0205-9

    Article  PubMed  CAS  Google Scholar 

  • Corpas FJ, Chaki M, Leterrier M, Barroso JB (2009a) Protein tyrosine nitration: a new challenge in plants. Plant Signal Behav 4(10):920–923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corpas FJ, Hayashi M, Mano S, Nishimura M, Barroso JB (2009b) Peroxisomes are required for in vivo nitric oxide accumulation in the cytosol following salinity stress of Arabidopsis plants. Plant Physiol 151(4):2083–2094

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corpas FJ, Rodríguez-Ruiz M, Muñoz-Vargas MA, González-Gordo S, Reiter RJ, Palma JM (2022) Interactions of melatonin, reactive oxygen species, and nitric oxide during fruit ripening: an update and prospective view. J Exp Bot 73(17):5947–5960. https://doi.org/10.1093/jxb/erac128

  • Crawford NM (2006) Mechanisms for nitric oxide synthesis in plants. J Exp Bot 57(3):471–478. https://doi.org/10.1093/jxb/erj050

    Article  PubMed  CAS  Google Scholar 

  • Cui X, Zhang Y, Chen X, Jin H, Wu X (2009) Effects of exogenous nitric oxide protects tomato plants under copper stress. 2009 3rd international conference on bioinformatics and biomedical engineering

    Google Scholar 

  • Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H et al (2010) Cadmium stress: an oxidative challenge. Biometals 23(5):927–940

    Article  PubMed  CAS  Google Scholar 

  • da-Silva CJ, Canatto RA, Cardoso AA, Ribeiro C, de Oliveira JA (2018) Oxidative stress triggered by arsenic in a tropical macrophyte is alleviated by endogenous and exogenous nitric oxide. Rev Bras Bot 41(1):21–28. https://doi.org/10.1007/s40415-017-0431-y

    Article  Google Scholar 

  • Dawood M, Cao F, Jahangir MM, Zhang G, Wu F (2012) Alleviation of aluminum toxicity by hydrogen sulfide is related to elevated ATPase, and suppressed aluminum uptake and oxidative stress in barley. J Hazard Mater 209:121–128

    Article  PubMed  Google Scholar 

  • Delledonne M (2005) NO news is good news for plants. Curr Opin Plant Biol 8(4):390–396

    Article  PubMed  CAS  Google Scholar 

  • Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot 109:212–228

    Article  CAS  Google Scholar 

  • Domingos P, Prado AM, Wong A, Gehring C, Feijo JA (2015) Nitric oxide: a multitasked signaling gas in plants. Mol Plant 8(4):506–520. https://doi.org/10.1016/j.molp.2014.12.010

    Article  PubMed  CAS  Google Scholar 

  • Duan X, Li X, Ding F, Zhao J, Guo A, Zhang L et al (2015) Interaction of nitric oxide and reactive oxygen species and associated regulation of root growth in wheat seedlings under zinc stress. Ecotoxicol Environ Saf 113:95–102

    Article  PubMed  CAS  Google Scholar 

  • Fancy NN, Bahlmann AK, Loake GJ (2017) Nitric oxide function in plant abiotic stress. Plant Cell Environ 40(4):462–472. https://doi.org/10.1111/pce.12707

    Article  PubMed  CAS  Google Scholar 

  • Farnese FS, de Oliveira JA, Gusman GS, Leão GA, Ribeiro C, Siman LI, Cambraia J (2013) Plant responses to arsenic: the role of nitric oxide. Water Air Soil Pollut 224(9):1–11

    Article  CAS  Google Scholar 

  • Farnese FS, Oliveira JA, Paiva EA, Menezes-Silva PE, da Silva AA, Campos FV, Ribeiro C (2017) The involvement of nitric oxide in integration of plant physiological and ultrastructural adjustments in response to arsenic. Front Plant Sci 8:516

    PubMed  PubMed Central  Google Scholar 

  • Feechan A, Kwon E, Yun B-W, Wang Y, Pallas JA, Loake GJ (2005) A central role for S-nitrosothiols in plant disease resistance. Proc Natl Acad Sci 102(22):8054–8059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flores T, Todd CD, Tovar-Mendez A, Dhanoa PK, Correa-Aragunde N, Hoyos ME et al (2008) Arginase-negative mutants of Arabidopsis exhibit increased nitric oxide signaling in root development. Plant Physiol 147(4):1936–1946. https://doi.org/10.1104/pp.108.121459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fröhlich A, Durner J (2011) The hunt for plant nitric oxide synthase (NOS): is one really needed? Plant Sci 181(4):401–404. https://doi.org/10.1016/j.plantsci.2011.07.014

    Article  PubMed  CAS  Google Scholar 

  • Gallego SM, Kogan MJ, Azpilicueta CE, Pena C, Tomaro ML (2005) Glutathione-mediated antioxidative mechanisms in sunflower (Helianthus annuus L.) cells in response to cadmium stress. Plant Growth Regul 46(3):267–276

    Article  CAS  Google Scholar 

  • Gong B, Nie W, Yan Y, Gao Z, Shi Q (2017) Unravelling cadmium toxicity and nitric oxide induced tolerance in Cucumis sativus: insight into regulatory mechanisms using proteomics. J Hazard Mater 336:202–213

    Article  PubMed  CAS  Google Scholar 

  • Greenacre SA, Ischiropoulos H (2001) Tyrosine nitration: localisation, quantification, consequences for protein function and signal transduction. Free Radic Res 34(6):541–581

    Article  PubMed  CAS  Google Scholar 

  • Groppa M, Rosales E, Iannone M, Benavides M (2008) Nitric oxide, polyamines and Cd-induced phytotoxicity in wheat roots. Phytochemistry 69(14):2609–2615. https://doi.org/10.1016/j.phytochem.2008.07.016

    Article  PubMed  CAS  Google Scholar 

  • Hancock JT (2012) NO synthase? Generation of nitric oxide in plants. Period Biol 114(1):19–24

    Google Scholar 

  • Handa N, Kohli S, Sharma A, Thukral A, Bhardwaj R, Alyemeni M et al (2018) Selenium ameliorates chromium toxicity through modifications in pigment system, antioxidative capacity, osmotic system, and metal chelators in Brassica juncea seedlings. S Afr J Bot 119:1–10

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Fujita M (2013) Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. Ecotoxicology 22:584–596. https://doi.org/10.1007/s10646-013-1050-4

    Article  PubMed  CAS  Google Scholar 

  • Hawrylak-Nowak B, Dresler S, Matraszek R (2015) Exogenous malic and acetic acids reduce cadmium phytotoxicity and enhance cadmium accumulation in roots of sunflower plants. Plant Physiol Biochem 94:225–234. https://doi.org/10.1016/j.plaphy.2015.06.012

    Article  PubMed  CAS  Google Scholar 

  • He J, Chen JP (2014) A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools. Bioresour Technol 160:67–78. https://doi.org/10.1016/j.biortech.2014.01.068

    Article  PubMed  CAS  Google Scholar 

  • He H, Zhan J, He L, Gu M (2012) Nitric oxide signaling in aluminum stress in plants. Protoplasma 249(3):483–492

    Article  PubMed  CAS  Google Scholar 

  • He H, Li Y, He L-F (2019) Role of nitric oxide and hydrogen sulfide in plant aluminum tolerance. Biometals 32(1):1–9. https://doi.org/10.1007/s10534-018-0156-9

    Article  PubMed  CAS  Google Scholar 

  • Hill BG, Dranka BP, Bailey SM, Lancaster JR, Darley-Usmar VM (2010) What part of NO don’t you understand? Some answers to the cardinal questions in nitric oxide biology. J Biol Chem 285(26):19699–19704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hsu YT, Kao CH (2004) Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regul 42(3):227–238

    Article  CAS  Google Scholar 

  • Hu J, Huang X, Chen L, Sun X, Lu C, Zhang L et al (2015a) Site-specific nitrosoproteomic identification of endogenously S-nitrosylated proteins in Arabidopsis. Plant Physiol 167(4):1731–1746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu Y, You J, Liang X (2015b) Nitrate reductase-mediated nitric oxide production is involved in copper tolerance in shoots of hulless barley. Plant Cell Rep 34(3):367–379

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Yang H, Mu J, Lu T, Peng J, Deng X et al (2017) Nitric oxide regulates protein methylation during stress responses in plants. Mol Cell 67(4):702–710.e704

    Article  PubMed  CAS  Google Scholar 

  • Huang M, Ai H, Xu X, Chen K, Niu H, Zhu H et al (2018) Nitric oxide alleviates toxicity of hexavalent chromium on tall fescue and improves performance of photosystem II. Ecotoxicol Environ Saf 164:32–40

    Article  PubMed  CAS  Google Scholar 

  • Ismail GSM (2012) Protective role of nitric oxide against arsenic-induced damages in germinating mung bean seeds. Acta Physiol Plant 34(4):1303–1311

    Article  CAS  Google Scholar 

  • Jiang J-L, Tian Y, Li L, Yu M, Hou R-P, Ren X-M (2019) H2S alleviates salinity stress in cucumber by maintaining the Na+/K+ balance and regulating H2S metabolism and oxidative stress response. Front Plant Sci 10:678

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones DL, Kochian LV (1997) Aluminum interaction with plasma membrane lipids and enzyme metal binding sites and its potential role in Al cytotoxicity. FEBS Lett 400(1):51–57

    Article  PubMed  CAS  Google Scholar 

  • Kaur G, Singh HP, Batish DR, Mahajan P, Kohli RK, Rishi V (2015) Exogenous nitric oxide (NO) interferes with lead (Pb)-induced toxicity by detoxifying reactive oxygen species in hydroponically grown wheat (Triticum aestivum) roots. PLoS One 10(9):e0138713

    Article  PubMed  PubMed Central  Google Scholar 

  • Kazemi N, Khavari-Nejad RA, Fahimi H, Saadatmand S, Nejad-Sattari T (2010) Effects of exogenous salicylic acid and nitric oxide on lipid peroxidation and antioxidant enzyme activities in leaves of Brassica napus L. under nickel stress. Sci Hortic 126(3):402–407

    Article  CAS  Google Scholar 

  • Khairy AIH, Oh MJ, Lee SM, Roh KS (2016) Nitric oxide overcomes Cd and Cu toxicity in in vitro-grown tobacco plants through increasing contents and activities of rubisco and rubisco activase. Biochimie Open 2:41–51

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan MN, Siddiqui MH, AlSolami MA, Alamri S, Hu Y, Ali HM et al (2020) Crosstalk of hydrogen sulfide and nitric oxide requires calcium to mitigate impaired photosynthesis under cadmium stress by activating defense mechanisms in Vigna radiata. Plant Physiol Biochem 156:278–290. https://doi.org/10.1016/j.plaphy.2020.09.017

    Article  PubMed  CAS  Google Scholar 

  • Klepper L (1979) Nitric oxide (NO) and nitrogen dioxide (NO2) emissions from herbicide-treated soybean plants. Atmos Environ 13(4):537–542

    Google Scholar 

  • Klepper L (1990) Comparison between NOx evolution mechanisms of wild-type and nr1 mutant soybean leaves. Plant Physiol 93(1):26–32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kohli SK, Handa N, Bali S, Arora S, Sharma A, Kaur R, Bhardwaj R (2018) Modulation of antioxidative defense expression and osmolyte content by co-application of 24-epibrassinolide and salicylic acid in Pb exposed Indian mustard plants. Ecotoxicol Environ Saf 147:382–393

    Article  Google Scholar 

  • Kohli SK, Handa N, Bali S, Khanna K, Arora S, Sharma A, Bhardwaj R (2019) Current scenario of Pb toxicity in plants: unraveling plethora of physiological responses. Rev Environ Contam Toxicol 249:153–197

    Google Scholar 

  • Kolbert Z (2016) Implication of nitric oxide (NO) in excess element-induced morphogenic responses of the root system. Plant Physiol Biochem 101:149–161. https://doi.org/10.1016/j.plaphy.2016.02.003

    Article  PubMed  CAS  Google Scholar 

  • Kolbert Z, Ördög A (2021) Involvement of nitric oxide (NO) in plant responses to metalloids. J Hazard Mater 420:126606

    Article  PubMed  CAS  Google Scholar 

  • Kolbert Z, Feigl G, Bordé Á, Molnár Á, Erdei L (2017) Protein tyrosine nitration in plants: present knowledge, computational prediction and future perspectives. Plant Physiol Biochem 113:56–63

    Article  PubMed  CAS  Google Scholar 

  • Kopyra M, Stachoń-Wilk M, Gwóźdź EA (2006) Effects of exogenous nitric oxide on the antioxidant capacity of cadmium-treated soybean cell suspension. Acta Physiol Plant 28(6):525–536

    Article  CAS  Google Scholar 

  • Kováčik J, Babula P, Klejdus B, Hedbavny J, Jarošova M (2014) Unexpected behavior of some nitric oxide modulators under cadmium excess in plant tissue. PLoS One 9(3):e91685

    Article  PubMed  PubMed Central  Google Scholar 

  • Kroemer G, El-Deiry W, Golstein P, Peter M, Vaux D, Vandenabeele P et al (2005) Classification of cell death: recommendations of the nomenclature committee on cell death. Cell Death Differ 12(12):1463–1467. https://doi.org/10.1038/sj.cdd.4401724

    Article  PubMed  CAS  Google Scholar 

  • Kulik A, Anielska-Mazur A, Bucholc M, Koen E, Szymańska K, Żmieńko A et al (2012) SNF1-related protein kinases type 2 are involved in plant responses to cadmium stress. Plant Physiol 160(2):868–883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kushwaha BK, Singh S, Tripathi DK, Sharma S, Prasad SM, Chauhan DK et al (2019) New adventitious root formation and primary root biomass accumulation are regulated by nitric oxide and reactive oxygen species in rice seedlings under arsenate stress. J Hazard Mater 361:134–140

    Article  PubMed  CAS  Google Scholar 

  • Kwon E, Feechan A, Yun B-W, Hwang B-H, Pallas JA, Kang J-G, Loake GJ (2012) AtGSNOR1 function is required for multiple developmental programs in Arabidopsis. Planta 236(3):887–900

    Article  PubMed  CAS  Google Scholar 

  • Laspina N, Groppa M, Tomaro M, Benavides M (2005) Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Sci 169(2):323–330

    Article  CAS  Google Scholar 

  • Leterrier M, Airaki M, Palma JM, Chaki M, Barroso JB, Corpas FJ (2012) Arsenic triggers the nitric oxide (NO) and S-nitrosoglutathione (GSNO) metabolism in Arabidopsis. Environ Pollut 166:136–143

    Article  PubMed  CAS  Google Scholar 

  • Li Y-J, Chen J, Xian M, Zhou L-G, Han FX, Gan L-J, Shi Z-Q (2014) In site bioimaging of hydrogen sulfide uncovers its pivotal role in regulating nitric oxide-induced lateral root formation. PLoS One 9(2):e90340. https://doi.org/10.1371/journal.pone.0090340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Z-G, Min X, Zhou Z-H (2016) Hydrogen sulfide: a signal molecule in plant cross-adaptation. Front Plant Sci 7:1621. https://doi.org/10.3389/fpls.2016.01621

    Article  PubMed  PubMed Central  Google Scholar 

  • Lionetti V, Fabri E, De Caroli M, Hansen AR, Willats WG, Piro G, Bellincampi D (2017) Three pectin methylesterase inhibitors protect cell wall integrity for Arabidopsis immunity to Botrytis. Plant Physiol 173(3):1844–1863. https://doi.org/10.1104/pp.16.01185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu S, Yang R, Pan Y, Wang M, Zhao Y, Wu M et al (2015) Exogenous NO depletes Cd-induced toxicity by eliminating oxidative damage, re-establishing ATPase activity, and maintaining stress-related hormone equilibrium in white clover plants. Environ Sci Pollut Res 22(21):16843–16856

    Article  CAS  Google Scholar 

  • Liu X, Yin L, Deng X, Gong D, Du S, Wang S, Zhang Z (2020) Combined application of silicon and nitric oxide jointly alleviated cadmium accumulation and toxicity in maize. J Hazard Mater 395:122679

    Article  PubMed  CAS  Google Scholar 

  • Luo S, Tang Z, Yu J, Liao W, Xie J, Lv J et al (2020) Hydrogen sulfide negatively regulates cd-induced cell death in cucumber (Cucumis sativus L) root tip cells. BMC Plant Biol 20(1):1–13. https://doi.org/10.1186/s12870-020-02687-8

    Article  CAS  Google Scholar 

  • Malar S, Manikandan R, Favas PJ, Sahi SV, Venkatachalam P (2014) Effect of lead on phytotoxicity, growth, biochemical alterations and its role on genomic template stability in Sesbania grandiflora: a potential plant for phytoremediation. Ecotoxicol Environ Saf 108:249–257. https://doi.org/10.1016/j.ecoenv.2014.05.018

    Article  PubMed  CAS  Google Scholar 

  • Martens-Habbena W, Qin W, Horak RE, Urakawa H, Schauer AJ, Moffett JW et al (2015) The production of nitric oxide by marine ammonia-oxidizing archaea and inhibition of archaeal ammonia oxidation by a nitric oxide scavenger. Environ Microbiol 17(7):2261–2274. https://doi.org/10.1111/1462-2920.12677

    Article  PubMed  CAS  Google Scholar 

  • Mata-Pérez C, Begara-Morales JC, Chaki M, Sánchez-Calvo B, Valderrama R, Padilla MN et al (2016) Protein tyrosine nitration during development and abiotic stress response in plants. Front Plant Sci 7:1699

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra V, Singh P, Tripathi DK, Corpas FJ, Singh VP (2021) Nitric oxide and hydrogen sulfide: an indispensable combination for plant functioning. Trends Plant Sci 26(12):1270–1285. https://doi.org/10.1016/j.tplants.2021.07.016

    Article  PubMed  CAS  Google Scholar 

  • Mohamed HI, Latif HH, Hanafy RS (2016) Influence of nitric oxide application on some biochemical aspects, endogenous hormones, minerals and phenolic compounds of Vicia faba plant grown under arsenic stress. Gesunde Pflanzen 68(2):99–107

    Article  CAS  Google Scholar 

  • Moreau M, Lee GI, Wang Y, Crane BR, Klessig DF (2008) AtNOS/AtNOA1 is a functional Arabidopsis thaliana cGTPase and not a nitric-oxide synthase. J Biol Chem 283(47):32957–32967. https://doi.org/10.1074/jbc.M804838200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moreau M, Lindermayr C, Durner J, Klessig DF (2010) NO synthesis and signaling in plants–where do we stand? Physiol Plant 138(4):372–383. https://doi.org/10.1111/j.1399-3054.2009.01308.x

    Article  PubMed  CAS  Google Scholar 

  • Mostofa MG, Seraj ZI, Fujita M (2014) Exogenous sodium nitroprusside and glutathione alleviate copper toxicity by reducing copper uptake and oxidative damage in rice (Oryza sativa L.) seedlings. Protoplasma 251(6):1373–1386

    Article  PubMed  CAS  Google Scholar 

  • Nabi RBS, Tayade R, Hussain A, Kulkarni KP, Imran QM, Mun B-G, Yun B-W (2019) Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environ Exp Bot 161:120–133

    Article  CAS  Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam MM, Rahman A, Suzuki T, Fujita M (2016) Polyamine and nitric oxide crosstalk: antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense and methylglyoxal detoxification systems. Ecotoxicol Environ Saf 126:245–255

    Article  PubMed  CAS  Google Scholar 

  • Namdjoyan S, Kermanian H, Abolhasani Soorki A, Modarres Tabatabaei S, Elyasi N (2017) Interactive effects of salicylic acid and nitric oxide in alleviating zinc toxicity of Safflower (Carthamus tinctorius L.). Ecotoxicology 26(6):752–761

    Article  PubMed  CAS  Google Scholar 

  • Ninnemann H, Maier J (1996) Indications for the occurrence of nitric oxide synthases in fungi and plants and the involvement in Photoconidiation of Neurospora crassa. Photochem Photobiol 64(2):393–398. https://doi.org/10.1111/j.1751-1097.1996.tb02477.x

  • Nishimura H, Hayamizu T, Yanagisawa Y (1986) Reduction of nitrogen oxide (NO2) to nitrogen oxide (NO) by rush and other plants. Environ Sci Technol 20(4):413–416

    Article  PubMed  CAS  Google Scholar 

  • Okant M, Kaya C (2019) The role of endogenous nitric oxide in melatonin-improved tolerance to lead toxicity in maize plants. Environ Sci Pollut Res 26(12):11864–11874

    Article  CAS  Google Scholar 

  • Ortega-Villasante C, Rellán-Alvarez R, Del Campo FF, Carpena-Ruiz RO, Hernández LE (2005) Cellular damage induced by cadmium and mercury in Medicago sativa. J Exp Bot 56(418):2239–2251. https://doi.org/10.1093/jxb/eri223

    Article  PubMed  CAS  Google Scholar 

  • Peng J-S, Wang Y-J, Ding G, Ma H-L, Zhang Y-J, Gong J-M (2017) A pivotal role of cell wall in cadmium accumulation in the Crassulaceae hyperaccumulator Sedum plumbizincicola. Mol Plant 10(5):771–774. https://doi.org/10.1016/j.molp.2016.12.007

    Article  PubMed  CAS  Google Scholar 

  • Per TS, Masood A, Khan NA (2017) Nitric oxide improves S-assimilation and GSH production to prevent inhibitory effects of cadmium stress on photosynthesis in mustard (Brassica juncea L.). Nitric Oxide 68:111–124

    Article  PubMed  CAS  Google Scholar 

  • Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32(4):539–548

    Article  PubMed  CAS  Google Scholar 

  • Pető A, Lehotai N, Feigl G, Tugyi N, Ördög A, Gémes K et al (2013) Nitric oxide contributes to copper tolerance by influencing ROS metabolism in Arabidopsis. Plant Cell Rep 32(12):1913–1923. https://doi.org/10.1007/s00299-013-1503-5

    Article  PubMed  CAS  Google Scholar 

  • Piacentini D, Corpas FJ, D'Angeli S, Altamura M, Falasca G (2020) Cadmium and arsenic-induced-stress differentially modulates Arabidopsis root architecture, peroxisome distribution, enzymatic activities and their nitric oxide content. Plant Physiol Biochem 148:312–323. https://doi.org/10.1016/j.plaphy.2020.01.026

    Article  PubMed  CAS  Google Scholar 

  • Planchet E, Kaiser WM (2006a) Nitric oxide (NO) detection by DAF fluorescence and chemiluminescence: a comparison using abiotic and biotic NO sources. J Exp Bot 57(12):3043–3055. https://doi.org/10.1093/jxb/erl070

    Article  PubMed  CAS  Google Scholar 

  • Planchet E, Kaiser WM (2006b) Nitric oxide production in plants: facts and fictions. Plant Signal Behav 1(2):46–51. https://doi.org/10.4161/psb.1.2.2435

    Article  PubMed  PubMed Central  Google Scholar 

  • Prochazkova D, Haisel D, Pavlikova D (2014) Nitric oxide biosynthesis in plants-the short overview. Plant Soil Environ 60(3):129–134

    Article  Google Scholar 

  • Qin Q, Li X, Wu H, Zhang Y, Feng Q, Tai P (2013) Characterization of cadmium (108Cd) distribution and accumulation in Tagetes erecta L. seedlings: effect of split-root and of remove-xylem/phloem. Chemosphere 93(10):2284–2288. https://doi.org/10.1016/j.chemosphere.2013.07.084

    Article  PubMed  CAS  Google Scholar 

  • Rezayian M, Ebrahimzadeh H, Niknam V (2020) Nitric oxide stimulates antioxidant system and osmotic adjustment in soybean under drought stress. J Soil Sci Plant Nutr 20(3):1122–1132. https://doi.org/10.1007/s42729-020-00198-x

    Article  CAS  Google Scholar 

  • Richter J, Ploderer M, Mongelard G, Gutierrez L, Hauser M-T (2017) Role of CrRLK1L cell wall sensors HERCULES1 and 2, THESEUS1, and FERONIA in growth adaptation triggered by heavy metals and trace elements. Front Plant Sci 8:1554. https://doi.org/10.3389/fpls.2017.01554

    Article  PubMed  PubMed Central  Google Scholar 

  • Rizwan M, Mostofa MG, Ahmad MZ, Imtiaz M, Mehmood S, Adeel M et al (2018) Nitric oxide induces rice tolerance to excessive nickel by regulating nickel uptake, reactive oxygen species detoxification and defense-related gene expression. Chemosphere 191:23–35

    Article  PubMed  CAS  Google Scholar 

  • Robinson NJ, Winge DR (2010) Copper metallochaperones. Annu Rev Biochem 79:537–562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodríguez-Ruiz M, Aparicio-Chacón MV, Palma JM, Corpas FJ (2019) Arsenate disrupts ion balance, sulfur and nitric oxide metabolisms in roots and leaves of pea (Pisum sativum L.) plants. Environ Exp Bot 161:143–156

    Article  Google Scholar 

  • Sadeghipour O (2017) Nitric oxide increases Pb tolerance by lowering Pb uptake and translocation as well as phytohormonal changes in cowpea (Vigna unguiculata (L.) Walp.). Sains Malaysiana 46(2):189–195

    Article  CAS  Google Scholar 

  • Salgado I, Carmen Martínez M, Oliveira HC, Frungillo L (2013) Nitric oxide signaling and homeostasis in plants: a focus on nitrate reductase and S-nitrosoglutathione reductase in stress-related responses. Rev Bras Bot 36(2):89–98. https://doi.org/10.1007/s40415-013-0013-6

    Article  Google Scholar 

  • Sami F, Faizan M, Faraz A, Siddiqui H, Yusuf M, Hayat S (2018) Nitric oxide-mediated integrative alterations in plant metabolism to confer abiotic stress tolerance, NO crosstalk with phytohormones and NO-mediated post translational modifications in modulating diverse plant stress. Nitric Oxide 73:22–38

    Article  PubMed  CAS  Google Scholar 

  • Sandalio L, Dalurzo H, Gomez M, Romero-Puertas M, Del Rio L (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52(364):2115–2126

    Article  PubMed  CAS  Google Scholar 

  • Seabra AB, Oliveira HC (2016) How nitric oxide donors can protect plants in a changing environment: what we know so far and perspectives. AIMS Mol Sci 3(4):692–718

    Article  CAS  Google Scholar 

  • Sehrawat A, Deswal R (2012) Protein tyrosine nitration in abiotic stress in plants. Plant Stress 6:77–88

    Google Scholar 

  • Shahzad B, Tanveer M, Rehman A, Cheema SA, Fahad S, Rehman S, Sharma A (2018) Nickel; whether toxic or essential for plants and environment-A review. Plant Physiol Biochem 132:641–651

    Article  PubMed  CAS  Google Scholar 

  • Shams M, Yildirim E, Guleray A, Ercisli S, Dursun A, Ekinci M, Raziye K (2018) Nitric oxide alleviates copper toxicity in germinating seed and seedling growth of Lactuca sativa L. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 46(1):167–172

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz K-J (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14(1):43–50. https://doi.org/10.1016/j.tplants.2008.10.007

    Article  PubMed  CAS  Google Scholar 

  • Sharma A, Kumar V, Kumar R, Shahzad B, Thukral AK, Bhardwaj R (2018) Brassinosteroid-mediated pesticide detoxification in plants: a mini-review. Cogent Food Agric 4(1):1436212

    Article  Google Scholar 

  • Shi H, Ye T, Chan Z (2014) Nitric oxide-activated hydrogen sulfide is essential for cadmium stress response in bermudagrass (Cynodon dactylon (L). Pers.). Plant Physiol Biochem 74:99–107

    Article  PubMed  CAS  Google Scholar 

  • Shivaraj SM, Vats S, Bhat JA, Dhakte P, Goyal V, Khatri P et al (2020) Nitric oxide and hydrogen sulfide crosstalk during heavy metal stress in plants. Physiol Plant 168(2):437–455. https://doi.org/10.1111/ppl.13028

    Article  PubMed  CAS  Google Scholar 

  • Singh HP, Batish DR, Kaur G, Arora K, Kohli RK (2008) Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots. Environ Exp Bot 63(1–3):158–167

    Article  CAS  Google Scholar 

  • Singh HP, Kaur S, Batish DR, Sharma VP, Sharma N, Kohli RK (2009) Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice). Nitric Oxide 20(4):289–297

    Article  PubMed  CAS  Google Scholar 

  • Singh VP, Singh S, Kumar J, Prasad SM (2015) Hydrogen sulfide alleviates toxic effects of arsenate in pea seedlings through up-regulation of the ascorbate–glutathione cycle: possible involvement of nitric oxide. J Plant Physiol 181:20–29

    Article  PubMed  CAS  Google Scholar 

  • Singh AP, Dixit G, Kumar A, Mishra S, Singh PK, Dwivedi S et al (2016) Nitric oxide alleviated arsenic toxicity by modulation of antioxidants and thiol metabolism in rice (Oryza sativa L.). Front Plant Sci 6:1272. https://doi.org/10.3389/fpls.2015.01272

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh AP, Dixit G, Kumar A, Mishra S, Kumar N, Dixit S et al (2017a) A protective role for nitric oxide and salicylic acid for arsenite phytotoxicity in rice (Oryza sativa L.). Plant Physiol Biochem 115:163–173. https://doi.org/10.1016/j.plaphy.2017.02.019

    Article  PubMed  CAS  Google Scholar 

  • Singh PK, Indoliya Y, Chauhan AS, Singh SP, Singh AP, Dwivedi S et al (2017b) Nitric oxide mediated transcriptional modulation enhances plant adaptive responses to arsenic stress. Sci Rep 7(1):1–13

    Google Scholar 

  • Soares C, Carvalho ME, Azevedo RA, Fidalgo F (2019) Plants facing oxidative challenges—a little help from the antioxidant networks. Environ Exp Bot 161:4–25

    Article  CAS  Google Scholar 

  • Souri Z, Karimi N, Farooq MA, Sandalio LM (2020) Nitric oxide improves tolerance to arsenic stress in Isatis cappadocica desv shoots by enhancing antioxidant defenses. Chemosphere 239:124523

    Article  PubMed  CAS  Google Scholar 

  • Stöhr C, Stremlau S (2006) Formation and possible roles of nitric oxide in plant roots. J Exp Bot 57(3):463–470. https://doi.org/10.1093/jxb/erj058

    Article  PubMed  CAS  Google Scholar 

  • Sun F, Guo G, Du J, Guo W, Peng H, Ni Z et al (2014) Whole-genome discovery of miRNAs and their targets in wheat (Triticum aestivum L.). BMC Plant Biol 14(1):1–17

    Article  Google Scholar 

  • Sun C, Liu L, Yu Y, Liu W, Lu L, Jin C, Lin X (2015a) Nitric oxide alleviates aluminum-induced oxidative damage through regulating the ascorbate-glutathione cycle in roots of wheat. J Integr Plant Biol 57(6):550–561

    Article  PubMed  CAS  Google Scholar 

  • Sun T, Wang Y, Wang M, Li T, Zhou Y, Wang X et al (2015b) Identification and comprehensive analyses of the CBL and CIPK gene families in wheat (Triticum aestivum L.). BMC Plant Biol 15(1):1–17

    Article  Google Scholar 

  • Sun C, Zhang Y, Liu L, Liu X, Li B, Jin C, Lin X (2021) Molecular functions of nitric oxide and its potential applications in horticultural crops. Horticul Res 8. https://doi.org/10.1038/s41438-021-00500-7

  • Sytar O, Kumar A, Latowski D, Kuczynska P, Strzałka K, Prasad MNV (2013) Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol Plant 35(4):985–999

    Article  CAS  Google Scholar 

  • Tain Y-L, Freshour G, Dikalova A, Griendling K, Baylis C (2007) Vitamin E reduces glomerulosclerosis, restores renal neuronal NOS, and suppresses oxidative stress in the 5/6 nephrectomized rat. Am J Physiol Renal Physiol 292(5):F1404–F1410

    Article  PubMed  CAS  Google Scholar 

  • Talukdar D (2013) Arsenic-induced oxidative stress in the common bean legume, Phaseolus vulgaris L seedlings and its amelioration by exogenous nitric oxide. Physiol Mol Biol Plants 19:69–79. https://doi.org/10.1007/s12298-012-0140-8

    Article  PubMed  CAS  Google Scholar 

  • Tamás L, Demecsová L, Zelinová V (2018) L-NAME decreases the amount of nitric oxide and enhances the toxicity of cadmium via superoxide generation in barley root tip. J Plant Physiol 224:68–74. https://doi.org/10.1016/j.jplph.2018.03.007

    Article  PubMed  CAS  Google Scholar 

  • Tanveer M, Shahzad B, Sharma A, Khan EA (2019) 24-Epibrassinolide application in plants: an implication for improving drought stress tolerance in plants. Plant Physiol Biochem 135:295–303

    Article  PubMed  CAS  Google Scholar 

  • Tewari RK, Hahn E-J, Paek K-Y (2008) Modulation of copper toxicity-induced oxidative damage by nitric oxide supply in the adventitious roots of Panax ginseng. Plant Cell Rep 27(1):171–181

    Article  PubMed  CAS  Google Scholar 

  • Tun NN, Santa-Catarina C, Begum T, Silveira V, Handro W, Floh EIS, Scherer GF (2006) Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol 47(3):346–354. https://doi.org/10.1093/pcp/pci252

    Article  PubMed  CAS  Google Scholar 

  • Verma K, Mehta S, Shekhawat G (2013) Nitric oxide (NO) counteracts cadmium induced cytotoxic processes mediated by reactive oxygen species (ROS) in Brassica juncea: cross-talk between ROS, NO and antioxidant responses. Biometals 26:255–269. https://doi.org/10.1007/s10534-013-9608-4

    Article  PubMed  CAS  Google Scholar 

  • Wang Y-Q, Feechan A, Yun B-W, Shafiei R, Hofmann A, Taylor P et al (2009) S-nitrosylation of AtSABP3 antagonizes the expression of plant immunity. J Biol Chem 284(4):2131–2137

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Li L, Cui W, Xu S, Shen W, Wang R (2012) Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway. Plant Soil 351(1):107–119

    Article  CAS  Google Scholar 

  • Wang Y, Loake GJ, Chu C (2013) Cross-talk of nitric oxide and reactive oxygen species in plant programed cell death. Front Plant Sci 4:314

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang P, Du Y, Hou Y-J, Zhao Y, Hsu C-C, Yuan F et al (2015) Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proc Natl Acad Sci 112(2):613–618

    Article  PubMed  CAS  Google Scholar 

  • Wang Y-J, Dong Y-X, Wang J, Cui X-M (2016) Alleviating effects of exogenous NO on tomato seedlings under combined Cu and Cd stress. Environ Sci Pollut Res 23(5):4826–4836

    Article  CAS  Google Scholar 

  • Wang L, Li R, Yan X, Liang X, Sun Y, Xu Y (2020) Pivotal role for root cell wall polysaccharides in cultivar-dependent cadmium accumulation in Brassica chinensis L. Ecotoxicol Environ Saf 194:110369. https://doi.org/10.1016/j.ecoenv.2020.110369

    Article  PubMed  CAS  Google Scholar 

  • Wiseman DA, Thurmond DC (2012) The good and bad effects of cysteine S-nitrosylation and tyrosine nitration upon insulin exocytosis: a balancing act. Curr Diabetes Rev 8(4):303–315. https://doi.org/10.2174/157339912800840514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wodala B, Deák Z, Vass I, Erdei L, Altorjay I, Horváth F (2008) In vivo target sites of nitric oxide in photosynthetic electron transport as studied by chlorophyll fluorescence in pea leaves. Plant Physiol 146(4):1920–1927

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Int Scholar Res Not 2011. https://doi.org/10.5402/2011/402647

  • Xu J, Wang W, Yin H, Liu X, Sun H, Mi Q (2010) Exogenous nitric oxide improves antioxidative capacity and reduces auxin degradation in roots of Medicago truncatula seedlings under cadmium stress. Plant Soil 326(1):321–330

    Article  CAS  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Devi SR, Rikiishi S, Matsumoto H (2002) Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiol 128(1):63–72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamasaki H, Cohen MF (2016) Biological consilience of hydrogen sulfide and nitric oxide in plants: gases of primordial earth linking plant, microbial and animal physiologies. Nitric Oxide 55-56:91–100. https://doi.org/10.1016/j.niox.2016.04.002

    Article  PubMed  CAS  Google Scholar 

  • Yang L-T, Qi Y-P, Chen L-S, Sang W, Lin X-J, Wu Y-L, Yang C-J (2012) Nitric oxide protects sour pummelo (Citrus grandis) seedlings against aluminum-induced inhibition of growth and photosynthesis. Environ Exp Bot 82:1–13

    Article  CAS  Google Scholar 

  • Yang H, Mu J, Chen L, Feng J, Hu J, Li L et al (2015) S-nitrosylation positively regulates ascorbate peroxidase activity during plant stress responses. Plant Physiol 167(4):1604–1615

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang, H., Yu, H., Wu, Y., Huang, H., Zhang, X., Ye, D., . . . Li, T. (2022). Nitric oxide amplifies cadmium binding in root cell wall of a high cadmium-accumulating rice (Oryza sativa L.) line by promoting hemicellulose synthesis and pectin demethylesterification. Ecotoxicol Environ Safety, 234, 113404. https://doi.org/10.1016/j.ecoenv.2022.113404

    Article  PubMed  CAS  Google Scholar 

  • Ye Y, Li Z, Xing D (2013) Nitric oxide promotes MPK6-mediated caspase-3-like activation in cadmium-induced Arabidopsis thaliana programmed cell death. Plant Cell Environ 36(1):1–15

    Article  PubMed  CAS  Google Scholar 

  • Yu Q, Sun L, Jin H, Chen Q, Chen Z, Xu M (2012) Lead-induced nitric oxide generation plays a critical role in lead uptake by Pogonatherum crinitum root cells. Plant Cell Physiol 53(10):1728–1736

    Article  PubMed  CAS  Google Scholar 

  • Zhang LP, Mehta SK, Liu ZP, Yang ZM (2008) Copper-induced proline synthesis is associated with nitric oxide generation in Chlamydomonas reinhardtii. Plant Cell Physiol 49(3):411–419

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Gao M, Hu J, Zhang X, Wang K, Ashraf M (2012) Modulation role of abscisic acid (ABA) on growth, water relations and glycinebetaine metabolism in two maize (Zea mays L.) cultivars under drought stress. Int J Mol Sci 13(3):3189–3202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang L, Pei Y, Wang H, Jin Z, Liu Z, Qiao Z et al (2015) Hydrogen sulfide alleviates cadmium-induced cell death through restraining ROS accumulation in roots of Brassica rapa L ssp pekinensis. Oxid Med Cell Longev:2015. https://doi.org/10.1155/2015/804603

  • Zhao M-G, Tian Q-Y, Zhang W-H (2007) Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiol 144(1):206–217. https://doi.org/10.1104/pp.107.096842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao H, Jin Q, Wang Y, Chu L, Li X, Xu Y (2016) Effects of nitric oxide on alleviating cadmium stress in Typha angustifolia. Plant Growth Regul 78(2):243–251

    Article  CAS  Google Scholar 

  • Zheng C, Jiang D, Liu F, Dai T, Liu W, Jing Q, Cao W (2009) Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity. Environ Exp Bot 67(1):222–227. https://doi.org/10.1016/j.envexpbot.2009.05.002

    Article  CAS  Google Scholar 

  • Zhou C, Wu C, Li D, Zhang X, Bi H, Ai X (2018) Hydrogen sulfide promotes chilling tolerance of cucumber seedlings by alleviating low-temperature photoinhibition. Plant Physiol J 54(3):411–420

    Google Scholar 

  • Zhu CQ, Zhang JH, Sun LM, Zhu LF, Abliz B, Hu WJ et al (2018) Hydrogen sulfide alleviates aluminum toxicity via decreasing apoplast and symplast Al contents in rice. Front Plant Sci 9:294

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bera, K., Ball, K., Dutta, P., Sadhukhan, S. (2023). Nitric Oxide – A Small Molecule with Big Impacts on Plants Under Heavy Metal Stress. In: Aftab, T., Corpas, F.J. (eds) Gasotransmitters Signaling in Plants under Challenging Environment. Plant in Challenging Environments, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-031-43029-9_7

Download citation

Publish with us

Policies and ethics