Skip to main content

Plant Growth-Promoting Rhizobacteria of Medicinal Plants in NW Himalayas: Current Status and Future Prospects

  • Chapter
  • First Online:
Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants

Part of the book series: Soil Biology ((SOILBIOL,volume 42))

Abstract

Plant species are considered to be one of the most important factors in shaping rhizobacterial communities and driving plant–microbe interactions in the rhizosphere. Based on their effects on the plant, the microbes interacting with plants can be pathogenic, saprophytic or beneficial. In recent years, there is much interest in the conservation of economically important and endangered medicinal plants in order to meet the great demand of biologically active compounds used by food, pharmaceutical and health-care industries. Plant growth-promoting rhizobacteria (PGPRs) have been used as cost-effective, eco-friendly inoculants for sustainable agricultural practice, but their role as a supplement to improve the growth and yield of medicinal plants has not evinced much interest. PGPRs are able to improve plant growth by improving seed germination, speeding up seedling emergence, minimizing the adverse effects of abiotic stresses and protecting plants from soil-borne pathogens and diseases. This chapter provides methods for the exploitation of beneficial microorganisms occurring in the rhizosphere as biofertilizer or bioprotectant. The review covers the studies published so far on the improvement of growth of endangered and economically important medicinal plants through the use of PGPRs and emphasizes some researchable issues for future attention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahemad M, Malik A (2011) Bioaccumulation of heavy metals by zinc resistant bacteria isolated from agricultural soils irrigated with wastewater. Bacteriol J 2:12–21

    Article  Google Scholar 

  • Alikhani HA, Saleh-Rastin N, Antoun H (2006) Phosphate solubilization activity of rhizobia native to Iranian soils. Plant Soil 287:35–41

    Article  CAS  Google Scholar 

  • Ardakani SS, Heydari A, Tayebi L, Mohammadi M (2010) Promotion of cotton seedlings growth characteristics by development and use of new bioformulations. Int J Bot 6:95–100

    Article  Google Scholar 

  • Ashrafuzzaman M, Hossen FA, Ismail MR, Hoque MA, Islam MZ, Shahidullah SM, Meon S (2009) Efficiency of plant growth promoting Rhizobacteria (PGPR) for the enhancement of rice growth. Afr J Biotechnol 8:1247–1252

    CAS  Google Scholar 

  • Baker PD, Schippers MN (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas sp. mediated plant growth stimulation. Soil Biol Biochem 19:451–457

    Article  Google Scholar 

  • Bashan Y, Holguin G (1997) Azospirillum-plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol 43:103–121

    Article  CAS  Google Scholar 

  • Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Berger LR, Reynolds DM (1958) The chitinase system of a strain of Streptomyces griseus. Biochim Biophys Acta 29:522–534

    Article  CAS  PubMed  Google Scholar 

  • Braun V, Braun M (2002) Active transport of iron and siderophore antibiotics. Curr Opin Microbiol 5:194–201

    Article  CAS  PubMed  Google Scholar 

  • Bray RH, Kurtz LT (1945) Determination of total organic and available forms of phosphorus in soils. Soil Sci 59:39–46

    Article  CAS  Google Scholar 

  • Bringhurst RM, Cardon ZG, Gage DJ (2001) Galactosides in the rhizosphere: utilization by Sinorhizobium meliloti and development of a biosensor. Proc Natl Acad Sci USA 98:4540–4545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Budi SW, van Tuinen D, Arnould C, Dumas-Gaudut E, Gianinazzi-Pearson V, Gianinazzi S (2000) Hydrolytic enzyme activity of Paenibacillus sp. strain B2 and effect of antagonistic bacterium on cell wall integrity of two soil-borne pathogenic fungi. Appl Soil Ecol 15:191–199

    Article  Google Scholar 

  • Cakmakci RM, Erat UG, Donmez MF (2007) The influence of PGPR on growth parameters, antioxidant and pentose phosphate oxidative cycle enzymes in wheat and spinach plants. J Plant Nutr Soil Sci 170:288–295

    Article  CAS  Google Scholar 

  • Cassan F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45:28–35

    Article  CAS  Google Scholar 

  • Cello FDI, Bevivino A, Chiarini L, Fani R, Paffetti D, Tabacchioni S, Dalmastri C (1997) Biodiversity of a Burkholderia cepacia population isolated from the maize rhizosphere at different plant growth stages. Appl Environ Microbiol 63:4485–4493

    PubMed Central  PubMed  Google Scholar 

  • Chauhan A, Balgir PP, Shirkot CK (2014) Characterization of Aneurinibacillus aneurinilyticus strain CKMV1 as a plant growth promoting rhizobacteria. Int J Agric Environ Biotechnol 7:37–45

    Article  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tri-calcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Costacurta A, Vanderleyden J (1995) Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol 21:1–18

    Article  PubMed  Google Scholar 

  • Dalal J, Kulkarni N (2013) Antagonistic and plant growth promoting potentials of indigenous endophytic bacteria of soybean (Glycine max (L) Merril). Curr Res Microbiol Biotechnol 1:62–69

    Google Scholar 

  • Das AJ, Kumar M, Kumar R (2013) Plant growth promoting rhizobacteria (PGPR): an alternative of chemical fertilizer for sustainable, environment friendly agriculture. Res J Agric Forest Sci 1:21–23

    Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159:371–394

    Article  CAS  PubMed  Google Scholar 

  • Duffy BK, Defago G (1997) Zinc improves biocontrol of Fusarium Crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis. Phytopathology 87:1250–1257

    Article  CAS  PubMed  Google Scholar 

  • Edi-Premono M, Moawad AM, Vlek PLG (1996) Effect of phosphate-solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere. Indones J Crop Sci 11:13–23

    Google Scholar 

  • Egamberdieva D (2011) Survival of Pseudomonas extremorientalis TSAU20 and P. chlororaphis TSAU13 in the rhizosphere of common bean (Phaseolus vulgaris) under saline conditions. Plant Soil Environ 57:122–127

    Google Scholar 

  • Egamberdieva D, Kucharova Z, Davranov K, Berg G, Makarova N, Azarova T, Chebotar V, Tikhonovich I, Kamilova F, Validov S, Lugtenberg B (2011) Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biol Fertil Soils 47:197–205

    Article  CAS  Google Scholar 

  • Elad Y, Chet I (1987) Possible role of competition for nutrition in biocontrol of Pythium-damping-off by bacteria. Phytopathology 77:190–195

    Article  Google Scholar 

  • Fleming HP, Etchells JL, Costilus RH (1975) Microbial inhibition by an isolate of Pediococcus from cucumber brines. Appl Microbiol 30:1040–1042

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frindlender M, Inbar J, Chet I (1993) Biological control of soil-borne plant pathogens by a ß-1, 3-glucanase producing Pseudomonas cepacia. Soil Biol Biochem 25:1211–1221

    Article  Google Scholar 

  • Ghodsalavi B, Ahmadzaeh M, Soleimani M, Madloo PB, Taghizad-Farid R (2013) Isolation and characterization of rhizobacteria and their effects on root extracts of Valeriana officinalis. Aust J Crop Sci 7:338–344

    CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 1–15

    Google Scholar 

  • Goldstein AH (1986) Bacterial solubilization of mineral phosphates: historical perspective and future prospects. Am J Altern Agric 1:51–57

    Google Scholar 

  • Gorden SA, Paleg LG (1957) Observations on the quantitative determination of indoleacetic acid. Physiol Plantarum 10:37–48

    Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signalling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Hardy RWF, Holsten RD, Jackson EK, Burns RC (1968) The acetylene-ethylene assay for N2 fixation: Laboratory and Field Evaluation. Plant Physiol 43:1185–1207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Hemavathi VN, Sivakumar BS, Suresh CK, Earanna N (2006) Effect of Glomus fasciculatum and plant growth promoting rhizobacteria on growth and yield of Ocimum basilicum. Karnataka J Agric Sci 19:17–20

    Google Scholar 

  • Hiltner L (1904) Uber neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbaksteriologie und unter besonderer Berücksichtigung der Gründüngung und Brache. Arb Dtsch Landwirt Ges 98:59–78

    Google Scholar 

  • Husen E (2003) Screening of soil bacteria for plant growth promoting activities in vitro. Indones J Agric Sci 4:27–31

    Google Scholar 

  • Illmer P, Schinner F (1995) Solubilization of inorganic calcium phosphates-solubilization mechanisms. Soil Biol Biochem 27:257–263

    Article  CAS  Google Scholar 

  • Jansen PH, Yates PS, Grinton BE, Taylor PM, Sait M (2002) Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria and Verrucomicrobia. Appl Environ Microbiol 68:2391–2396

    Article  Google Scholar 

  • Joshi R, Nailwal TK, Tewari LM, Shukla A (2010) Exploring biotechnology for conserving Himalayan biodiversity. Life Sci J 7:20–28

    Google Scholar 

  • Kajimura Y, Kaneda M (1997) Fusaricidins B, C and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT-8. Isolation, structure elucidation and biological activity. J Antibiot 50:220–228

    Article  CAS  Google Scholar 

  • Kala CP, Dhyani PP, Sajwan BS (2006) Developing the medicinal plants sector in northern India: challenges and opportunities. J Ethnobiol Ethnomed 2:32

    Article  PubMed Central  Google Scholar 

  • Karthikeyan B, Jaleel CA, Lakshmannan G, Deiveekasundaram M (2008) Studies on the microbial bio diversity of some commercially important medicinal plants. Colloids Surf B 62:143–145

    Article  CAS  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogenic bacteria, angers, France, pp 879–882

    Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus sp. Phytopathology 94:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Lankford CE (1973) Bacterial assimilation of iron. Crit Rev Microbiol 2:273–331

    Article  CAS  Google Scholar 

  • Lemanceau P (1992) Effets bénéfiques de rhizobactéries sur les plantes: exemple des Pseudomonas spp. fluorescents. Agronomie 12:413–437

    Article  Google Scholar 

  • Lugtenberg BJ, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Mahafee WF, Kloepper JW (1997) Temporal changes in the bacterial communities of soil, rhizosphere and endorhiza associated with field-grown cucumber (Cucumis sativus L.). Microbiol Ecol 34:210–223

    Article  Google Scholar 

  • Malleswari D, Bagyanarayana G (2013) In vitro screening of rhizobacteria isolated from the rhizosphere of medicinal and aromatic plants for multiple plant growth promoting activities. J Microbiol Biotech Res 3:84–91

    CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • McGrath JW, Wisdom GB, McMullan G, Lrakin MJ, Quinn JP (1995) The purification and properties of phosphonoacetate hydrolase, a novel carbon-phosphorus bond-cleaving enzyme from Pseudomonas fluorescens 23F. Eur J Biochem 234:225–30

    Article  CAS  PubMed  Google Scholar 

  • Mehta P, Chauhan A, Mahajan R, Mahajan PK, Shirkot CK (2010) Strain of Bacillus circulans isolated from apple rhizosphere showing plant growth promoting potential. Curr Sci 98:538–542

    CAS  Google Scholar 

  • Mehta P, Walia A, Chauhan A, Shirkot CK (2013) Plant growth promoting traits of phosphate-solubilizing rhizobacteria isolated from apple trees in trans Himalayan region of Himachal Pradesh. Arch Microbiol 195:357–369

    Article  CAS  PubMed  Google Scholar 

  • Mishra RK, Prakash O, Alam M, Dikshit A (2010) Influence of plant growth promoting rhizobacteria (PGPR) on the productivity of Pelargonium Graveolens l. herit. Recent Res Sci Technol 2:53–57

    CAS  Google Scholar 

  • Mundra S, Arora R, Stobdan T (2011) Solubilization of insoluble inorganic phosphates by a novel temperature-, pH-, and salt-tolerant yeast, Rhodotorula sp. PS4, isolated from seabuckthorn rhizosphere, growing in cold desert of Ladakh, India. World J Microbiol Biotechnol 27:2387–2396

    Article  CAS  Google Scholar 

  • Nakouti I, Hobbs G (2012) Characterization of five siderophore producing actinomycetes from soil samples and the use of antibiotic resistance to differentiate the isolates. Int J Agr Sci 4:202–206

    Article  Google Scholar 

  • Nehl DB, Allen SJ, Brown JF (1997) Deleterious rhizosphere bacteria: an integrating perspective. Appl Soil Ecol 5:1–20

    Article  Google Scholar 

  • Niranjan RS, Shetty HS, Reddy MS (2005) Plant growth-promoting rhizobacteria: potential green alternative for plant productivity. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 197–216

    Google Scholar 

  • Noori MSS, Saud HM (2012) Potential plant growth-promoting activity of pseudomonas sp. isolated from paddy soil in Malaysia as biocontrol agent. J Plant Pathol Microbiol 3:2157–7471

    Google Scholar 

  • Pedraza Reyes M, Lopez Romero E (1991) Detection of nine chitinase species in germinating cells of Mucor rouxii. Curr Microbiol 22:43–46

    Article  CAS  Google Scholar 

  • Pierson LS, Thomashow LS (1992) Cloning and heterologous expression of phenazine biosynthetic locus from Pseudomonas aureofaciens. Mol Plant Microbe Interact 5:330–339

    Article  CAS  PubMed  Google Scholar 

  • Radha TK, Rao DLN (2014) Plant growth promoting bacteria from cow dung based biodynamic preparations. Indian J Microbiol. doi:10.1007/s12088-014-0468-6

    PubMed  Google Scholar 

  • Radjacommare R, Kandan A, Nanda KR, Samiyappan R (2004) Association of the hydrolytic enzyme chitinase against Rhizoctonia solani in rhizobacteria treated rice plants. J Phytopathol 152:365–370

    Article  CAS  Google Scholar 

  • Rajasekar S, Elango R (2011) Effect of microbial consortium on plant growth and improvement of alkaloid content in Withania somnifera (Ashwagandha). Curr Bot 2:27–30

    Google Scholar 

  • Rao DLN (2008) Biofertilizer research progress (2004-07). All India Network Project on Biofertilizers, IISS, Bhopal, p 105

    Google Scholar 

  • Rao DLN (2013) Soil biological health and its management. In: Tandon HLS (ed) Soil health management: productivity-sustainability-resource management. FDCO, New Delhi, pp 55–83

    Google Scholar 

  • Rao DLN, Sharma PC (1995) Alleviation of salinity stress in chickpea by Rhizobium inoculation and/or nitrate supply. Biol Plantarum 37:405–410

    Article  Google Scholar 

  • Richardson AE (1994) Soil microorganisms and phosphorous availability. In: Pankhurst CE, Doube BM, Gupta VVSR (eds) Soil biota: management in sustainable farming systems. CSIRO, Victoria, Australia

    Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorous by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  • Robert WK, Selitrennikoff CP (1988) Plant and bacterial chitinase differ in antifungal activity. J Gen Microbiol 134:169–176

    Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Castro I, Ferrol N, Barea JM (2012) Analyzing the community composition of arbuscular mycorrhizal fungi colonizing the roots of representative shrubland species in a Mediterranean ecosystems. J Arid Environ 80:1–9

    Article  Google Scholar 

  • Schippers B, Bakker A, Bakker P, van Peer R (1990) Beneficial and deleterious effects of HCN-producing Pseudomonads on rhizosphere interactions. Plant Soil 129:75–83

    Article  CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  PubMed  Google Scholar 

  • Sekar S, Kandavel D (2010) Interaction of plant growth promoting rhizobacteria (pgpr)and endophytes with medicinal plants – new avenues for phytochemicals. J Phytol 2:91–100

    Google Scholar 

  • Selvaraj T, Rajeshkumar S, Nisha MC, Wondimu L, Tesso M (2008) Effect of Glomus mosseae and plant growth promoting rhizomicroorganisms (PGPR’s) on growth, nutrients and content of secondary metabolites in Begonia malabarica Lam. Mj Int J Sci Tech 2:516–525

    CAS  Google Scholar 

  • Shanmugam V, Kanoujia N, Singh M, Singh S, Prasad R (2011) Biocontrol of vascular wilt and corm rot of gladiolus caused by Fusarium oxysporum f. sp. gladioli using plant growth promoting rhizobacterial mixture. Crop Prot 30:807–813

    Article  Google Scholar 

  • Shaw FJ, Lin PF, Chen CS, Chen CH (1995) Purification and characterization of an extracellular α-amylase from thermos species. Bot Bull Acad Sin 36:195–200

    CAS  Google Scholar 

  • Shehata HS, Hamed ER, Eleiwa ME (2012) Potential for improving healthy and productivity of Soybean by plant growth promoting rhizobacteria. Aust J Basic Appl Sci 6:98–107

    Google Scholar 

  • Shirkot CK, Vohra I (2007) Characterization of novel carbendazim tolerant Bacillus subtilis with multiple plant growth promoting activities. In: Proceedings of XVI International plant protection congress, vol. 1. BCPC, SECC, Glasgow, Scotland, UK, pp 272–277

    Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007a) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S, Versees W, Gocke D, Pohl M, Steyaert J, Vanderleyden J (2007b) Characterization of phenylpyruvate decarboxylase, involved in auxin production of Azospirillum brasilense. J Bacteriol 189:7626–7633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Subba Rao NS (1999) Soil microbiology (fourth edition of soil microorganisms and plant growth). Science Publishers, Inc., New York, NY

    Google Scholar 

  • Sudhakar PG, Chattopadhyay N, Gangwar SK, Ghosh JK (2000) Effect of foliar application of Azotobacter, Azospirillum and Beijerinckia on leaf yield and quality of mulberry (Morus alba). J Agric Sci 134:227–234

    Article  Google Scholar 

  • Suresh A, Pallavi P, Srinivas P, Praveen Kumar V, Jeevan Chandra S, Ram Reedy S (2010) Plant growth promoting activities of fluorescent Pseudomonads associated with some crop plants. Afr J Microbiol Res 4:1491–1494

    CAS  Google Scholar 

  • Tamilarasi S, Nanthakumar K, Karthikeyan K, Lakshmanaperumalsamy P (2008) Diversity of root associated microorganisms of selected medicinal plants and influence of rhizomicroorganisms on the antimicrobial property of Coriandrum sativum. J Environ Biol 29:127–134

    CAS  PubMed  Google Scholar 

  • Tank N, Saraf M (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Int 5:51–58

    CAS  Google Scholar 

  • Thosar NJ, Ingle VG, Jadhar JC (2005) Effect of FYM and Biofertilizers on dry root and seed yield of Ashwagandha (Withania somnifera). Crop Prod 1:27–28

    Google Scholar 

  • Tilak KVBR, Ranganayahi N, Pal KN, De R, Saxena AK, Nautiyal CS, Mital S, Tripathi AK, Joshi BN (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89:136–150

    CAS  Google Scholar 

  • Turrini A, Sbrana C, Strani P, Pezzarossa B, Risaliti R, Giovannetti M (2010) Arbuscular mycorrhizal fungi of a Mediterranean island (Pianosa), within a UNESCO Biosphere Reserve. Biol Fertil Soils 46:511–520

    Article  Google Scholar 

  • Ulhoa CJ, Peberdy JF (1991) Purification and characterization of an extracellular chitobiase from Trichoderma harzianum. Curr Microbiol 23:285–289

    Article  CAS  Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vincent JM (1947) Distortion of fungal hyphae in the presence of certain inhibitors. Nature 159:850

    Article  CAS  PubMed  Google Scholar 

  • Wahyudi AT, Astuti RP, Widyawati A, Meryandini A, Nawangsih A (2011) Characterization of Bacillus sp. strains isolated from rhizosphere of soybean plants for their use as potential plant growth for promoting rhizobacteria. J Microbiol Antimicrob 3:34–40

    Google Scholar 

  • Walia A, Mehta P, Chauhan A, Shirkot CK (2013) Effect of Bacillus subtilis strain CKT1 as inoculum on growth of tomato seedlings under net house conditions. Proc Natl Acad Sci Ind B 84:145–155

    Google Scholar 

  • Walia A, Mehta P, Chauhan A, Shirkot CK (2014) Antagonistic Activity of plant growth promoting rhizobacteria isolated from tomato rhizosphere against soil borne fungal plant pathogens. Int J Agric Environ Biotechnol 6:571–580

    Article  Google Scholar 

  • Wang ET, Martinez-Romero E (2000) Sesbania herbacea-Rhizobium huautlense nodulation in flooded soils and comparative characterization of S. Herbacea-Nodulating Rhizobia in different environments. Microb Ecol 41:25–32

    Article  Google Scholar 

  • Western Himalaya Ecoregional BSAP (2002) Full citation. In: Singh SP (ed) 2002. Himalaya ecoregional biodiversity: strategy and action plan. Prepared under the NBSAP-India

    Google Scholar 

  • Young JPW (1992) Phylogenetic classification of nitrogen-fixing organisms. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 43–86

    Google Scholar 

  • Zhang N, Wu K, He X, Li S, Zhang ZH, Shen B, Yang X, Zhang R, Huang Q, Shen Q (2011) A new bioorganic fertilizer can effectively control banana wilt by strong colonization with Bacillus subtilis N11. Plant Soil 344:87–97

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We are grateful to the Indian Council of Agricultural Research, New Delhi, for funding the investigations under the aegis of the All India Network Project on Soil Biodiversity-Biofertilizers, IISS, Bhopal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. N. Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chauhan, A., Shirkot, C.K., Kaushal, R., Rao, D.L.N. (2015). Plant Growth-Promoting Rhizobacteria of Medicinal Plants in NW Himalayas: Current Status and Future Prospects. In: Egamberdieva, D., Shrivastava, S., Varma, A. (eds) Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants. Soil Biology, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-319-13401-7_19

Download citation

Publish with us

Policies and ethics