Skip to main content

Expanding the Repertoire of Selectable Markers for Aspergillus Transformation

  • Chapter
  • First Online:
Genetic Transformation Systems in Fungi, Volume 2

Abstract

Selectable markers constitute essential genetic tools in fungal transformation. Markers find increased application with the availability of complete genome sequences of many Aspergilli. Fungal selection markers may confer resistance to antibiotics or antimetabolites, provide nutritional growth advantages or allow direct visual selection of transformed cells. While many of them are already described for Aspergillus, additional markers continue to be sought and developed. The choice of a marker depends on several considerations like the compactness of the marker gene, tightness of selection, background growth, species specificity, and the cost of selection media. Reuse of markers is a concern as transformations in Aspergillus are integrative. Either bidirectional markers or genome manipulation strategies are resorted to reuse/rescue the marker. The range of selection markers available for Aspergillus transformation and different strategies to exploit them are described here. Three markers developed for A. niger transformation, bar, agaA, and sC are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahuja M, Punekar NS (2008) Phosphinothricin resistance in Aspergillus niger and its utility as a selectable transformation marker. Fungal Genet Biol 45:1103–1110

    Article  CAS  PubMed  Google Scholar 

  • Alani E, Cao L, Kleckner N (1987) A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116:541–545

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Avalos J, Geever RF, Case ME (1989) Bialaphos resistance as a dominant selectable marker in Neurospora crassa. Curr Genet 16:369–372

    Article  CAS  PubMed  Google Scholar 

  • Al-Bader N, Vanier G, Liu L, Gravelat FN, Urb M, Hoareau CM, Campoli P, Chabot J, Filler SG, Sheppard DC (2010) Role of trehalose biosynthesis in Aspergillus fumigatus development, stress response, and virulence. Infect Immun 78:3007–3018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arnaud MB, Cerqueira GC, Inglis DO, Skrzypek MS, Binkley J, Chibucos MC, Crabtree J, Howarth C, Orvis J, Shah P, Wymore F, Binkley G, Miyasato SR, Simison M, Sherlock G, Wortman JR (2012) The Aspergillus Genome Database (AspGD): recent developments in comprehensive multispecies curation, comparative genomics and community resources. Nucleic Acids Res 40:653–659

    Article  Google Scholar 

  • Barbesgaard P, Heldt-Hansen HP, Diderichsen B (1992) On the safety of Aspergillus oryzae: a review. Appl Microbiol Biotechnol 36:569–572

    Article  CAS  PubMed  Google Scholar 

  • Bartnik E, Guzewska J, Klimczuk J, Piotrowska M, Weglenski P (1977) Regulation of arginine catabolism in Aspergillus nidulans. In: Smith JE, Pateman JA (eds) Genetics and physiology of Aspergillus. Academic, London, pp 243–254

    Google Scholar 

  • Bizukojc M, Ledakowicz S (2009) Physiological, morphological and kinetic aspects of lovastatin biosynthesis by Aspergillus terreus. Biotechnol J 4:647–664

    Article  CAS  PubMed  Google Scholar 

  • Buxton FP, Gwynne DI, Davies RW (1989) Cloning of a new bidirectionally selectable marker for Aspergillus strains. Gene 84:329–334

    Article  CAS  PubMed  Google Scholar 

  • Carberry S, Molloy E, Hammel S, O'Keeffe G, Jones GW, Kavanagh K, Doyle S (2012) Gliotoxin effects on fungal growth: mechanisms and exploitation. Fungal Genet Biol 49:302–312

    Article  CAS  PubMed  Google Scholar 

  • d’Enfert C (1996) Selection of multiple disruption events in Aspergillus fumigatus using the orotidine-5′-decarboxylase gene, pyrG, as a unique transformation marker. Curr Genet 30:76–82

    Article  PubMed  Google Scholar 

  • Dave K, Ahuja M, Jayashri TN, Sirola RB, Punekar NS (2012) A novel selectable marker based on Aspergillus niger arginase expression. Enzyme Microb Technol 51:53–58

    Article  CAS  PubMed  Google Scholar 

  • Dave K, Punekar NS (2011) Utility of Aspergillus niger citrate synthase promoter for heterologous expression. J Biotechnol 155:173–177

    Article  CAS  PubMed  Google Scholar 

  • de Boer P, Bronkhof J, DukiÑœ K, Kerkman R, Touw H, van den Berg M, Offringa R (2013) Efficient gene targeting in Penicillium chrysogenum using novel Agrobacterium-mediated transformation approaches. Fungal Genet Biol 61:9–14

    Article  PubMed  Google Scholar 

  • De Lucas JR, Dominguez AI, Higuero Y, Martinez O, Romero B, Mendoza A, Garcia-Bustos JF, Laborda F (2001) Development of a homologous transformation system for the opportunistic human pathogen Aspergillus fumigatus based on the sC gene encoding ATP sulfurylase. Arch Microbiol 176:106–113

    Article  PubMed  Google Scholar 

  • Gibbons JG, Rokas A (2013) The function and evolution of the Aspergillus genome. Trends Microbiol 21: 14–22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fairhead C, Llorente B, Denis F, Soler M, Dujon B (1996) New vectors for combinatorial deletions in yeast chromosomes and for gap-repair cloning using ‘split-marker’ recombination. Yeast 12:1439–1457

    Article  CAS  PubMed  Google Scholar 

  • Fleissner A, Dersch P (2010) Expression and export: recombinant protein production systems for Aspergillus. Appl Microbiol Biotechnol 87:1255–1270

    Article  CAS  PubMed  Google Scholar 

  • Fonzi WA, Irwin MY (1993) Isogenic strain construction and gene mapping in Candida albicans. Genetics 134:717–728

    PubMed Central  CAS  PubMed  Google Scholar 

  • Forment JV, Ramon D, MacCabe AP (2006) Consecutive gene deletions in Aspergillus nidulans: application of the Cre/loxP system. Curr Genet 50:217–224

    Article  CAS  PubMed  Google Scholar 

  • Fuller KK, Ringelberg CS, Loros JJ, Dunlap JC (2013) The fungal pathogen Aspergillus fumigatus regulates growth, metabolism, and stress resistance in response to light. mBio 4:e00142-13

    Article  PubMed Central  PubMed  Google Scholar 

  • Gardiner DM, Howlett BJ (2004) Negative selection using thymidine kinase increases the efficiency of recovery of transformants with targeted genes in the filamentous fungus Leptosphaeria maculans. Curr Genet 45: 249–255

    Article  CAS  PubMed  Google Scholar 

  • Hartmann T, Dumig M, Jaber BM, Szewczyk E, Olbermann P, Morschhauser J, Krappmann S (2010) Validation of a self-excising marker in the human pathogen Aspergillus fumigatus by employing the beta-rec/six site-specific recombination system. Appl Environ Microbiol 76:6313–6317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoff B, Kamerewerd J, Sigl C, Zadra I, Kück U (2010) Homologous recombination in the antibiotic producer Penicillium chrysogenum: strain ΔPcku70 shows up-regulation of genes from the HOG pathway. Appl Microbiol Biotechnol 85(4):1081–1094

    Article  CAS  PubMed  Google Scholar 

  • Honda Y, Kobayashi K, Kirimura K (2011) Increases in gene-targeting frequencies due to disruption of kueA as a ku80 homolog in citric acid-producing Aspergillus niger. Biosci Biotechnol Biochem 75:1594–1596

    Article  CAS  PubMed  Google Scholar 

  • Hua SB, Qiu M, Chan E, Zhu L, Luo Y (1997) Minimum length of sequence homology required for in vivo cloning by homologous recombination in yeast. Plasmid 38:91–96

    Article  CAS  PubMed  Google Scholar 

  • Hunter GD, Bailey CR, Arst HN (1992) Expression of a bacterial aspartase gene in Aspergillus nidulans: an efficient system for selecting multicopy transformants. Curr Genet 22:377–383

    Article  CAS  PubMed  Google Scholar 

  • Iimura Y, Gomi K, Uzu H, Hara S (1987) Transformation of Aspergillus oryzae through plasmid-mediated complementation of the methionine-auxotrophic mutation. Agric Biol Chem 51:323–328

    Article  CAS  Google Scholar 

  • Jiang D, Zhu W, Wang Y, Sun C, Zhang KQ, Yang J (2013) Molecular tools for functional genomics in filamentous fungi: recent advances and new strategies. Biotechnol Adv 31:1562–1574

    Article  CAS  PubMed  Google Scholar 

  • Jin FJ, Maruyama J, Juvvadi PR, Arioka M, Kitamoto K (2004) Development of a novel quadruple auxotrophic host transformation system by argB gene disruption using adeA gene and exploiting adenine auxotrophy in Aspergillus oryzae. FEMS Microbiol Lett 239:79–85

    Article  CAS  PubMed  Google Scholar 

  • Jin K, Zhang Y, Luo Z, Xiao Y, Fan Y, Wu D, Pei Y (2008) An improved method for Beauveria bassiana transformation using phosphinothricin acetlytransferase and green fluorescent protein fusion gene as a selectable and visible marker. Biotechnol Lett 30:1379–1383

    Article  CAS  PubMed  Google Scholar 

  • Kanemori Y, Gomi K, Kitamoto K, Kumagai C, Tamura G (1999) Insertion analysis of putative functional elements in the promoter region of the Aspergillus oryzae Taka-amylase A gene (amyB) using a heterologous Aspergillus nidulans amdS-lacZ fusion gene system. Biosci Biotechnol Biochem 63:180–183

    Article  CAS  PubMed  Google Scholar 

  • Karaffa L, Sandor E, Fekete E, Szentirmai A (2001) The biochemistry of citric acid accumulation by Aspergillus niger. Acta Microbiol Immunol Hung 48:429–440

    Article  CAS  PubMed  Google Scholar 

  • Khang CH, Park SY, Lee YH, Kang S (2005) A dual selection based, targeted gene replacement tool for Magnaporthe grisea and Fusarium oxysporum. Fungal Genet Biol 42:483–492

    Article  CAS  PubMed  Google Scholar 

  • Kis-Papo T, Oren A, Wasser SP, Nevo E (2003) Survival of filamentous fungi in hypersaline Dead Sea water. Microb Ecol 45:183–190

    Article  CAS  PubMed  Google Scholar 

  • Klein RD, Geary TG, Gibson AS, Favreau MA, Winterrowd CA, Upton SJ, Keithly JS, Zhu G, Malmberg RL, Martinez MP, Yarlett N (1999) Reconstitution of a bacterial/plant polyamine biosynthesis pathway in Saccharomyces cerevisiae. Microbiology 145:301–307

    Article  CAS  PubMed  Google Scholar 

  • Krappmann S, Bayram O, Braus GH (2005) Deletion and allelic exchange of the Aspergillus fumigatus veA locus via a novel recyclable marker module. Eukaryot Cell 4:1298–1307

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krappmann S, Braus GH (2003) Deletion of Aspergillus nidulans aroC using a novel blaster module that combines ET cloning and marker rescue. Mol Genet Genomics 268:675–683

    CAS  PubMed  Google Scholar 

  • Krappmann S, Sasse C, Braus GH (2006) Gene targeting in Aspergillus fumigatus by homologous recombination is facilitated in a nonhomologous end- joining-deficient genetic background. Eukaryot Cell 5:212–215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuck U, Hoff B (2010) New tools for the genetic manipulation of filamentous fungi. Appl Microbiol Biotechnol 86:51–62

    Article  PubMed  Google Scholar 

  • Lenouvel F, van de Vondervoort P, Visser J (2002) Disruption of the Aspergillus niger argB gene: a tool for transformation. Curr Genet 41:425–432

    Article  CAS  PubMed  Google Scholar 

  • Lubertozzi D, Keasling JD (2009) Developing Aspergillus as a host for heterologous expression. Biotechnol Adv 27:53–75

    Article  CAS  PubMed  Google Scholar 

  • Magliano P, Flipphi M, Sanglard D, Poirier Y (2011) Characterization of the Aspergillus nidulans biotin biosynthetic gene cluster and use of the bioDA gene as a new transformation marker. Fungal Genet Biol 48:208–215

    Article  CAS  PubMed  Google Scholar 

  • Mander GJ, Wang H, Bodie E, Wagner J, Vienken K, Vinuesa C, Foster C, Leeder AC, Allen G, Hamill V, Janssen GG, Dunn-Coleman N, Karos M, Lemaire HG, Subkowski T, Bollschweiler C, Turner G, Nusslein B, Fischer R (2006) Use of laccase as a novel, versatile reporter system in filamentous fungi. Appl Environ Microbiol 72:5020–5026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meyer V, Arentshorst M, El-Ghezal A, Drews AC, Kooistra R, van den Hondel CA, Ram AF (2007) Highly efficient gene targeting in the Aspergillus niger kusA mutant. J Biotechnol 128:770–775

    Article  CAS  PubMed  Google Scholar 

  • Meyer V (2008) Genetic engineering of filamentous fungi—progress, obstacles and future trends. Biotechnol Adv 26:177–185

    Article  CAS  PubMed  Google Scholar 

  • Meyer V, Wu B, Ram AF (2011) Aspergillus as a multi-purpose cell factory: current status and perspectives. Biotechnol Lett 33:469–476

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Michielse CB, Arentshorst M, Ram AF, van den Hondel CA (2005) Agrobacterium-mediated transformation leads to improved gene replacement efficiency in Aspergillus awamori. Fungal Genet Biol 42:9–19

    Article  CAS  PubMed  Google Scholar 

  • Miller MJ, Roze LV, Trail F, Linz JE (2005) Role of cis-acting sites NorL, a TATA box, and AflR1 in nor-1 transcriptional activation in Aspergillus parasiticus. Appl Environ Microbiol 71:1539–1545

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mizutani O, Masaki K, Gomi K, Iefuji H (2012) Modified Cre-loxP recombination in Aspergillus oryzae by direct introduction of Cre recombinase for marker gene rescue. Appl Environ Microbiol 78:4126–4133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morgan DH (1970) Selection and characterisation of mutants lacking arginase in Neurospora crassa. Mol Gen Genet 108:291–302

    Article  CAS  PubMed  Google Scholar 

  • Nayak T, Szewczyk E, Oakley CE, Osmani A, Ukil L, Murray SL, Hynes MJ, Osmani SA, Oakley BR (2006) A versatile and efficient gene-targeting system for Aspergillus nidulans. Genetics 172:1557–1566

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nielsen ML, de Jongh WA, Meijer SL, Nielsen J, Mortensen UH (2007) Transient marker system for iterative gene targeting of a prototrophic fungus. Appl Environ Microbiol 73:7240–7245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nielsen JB, Nielsen ML, Mortensen UH (2008) Transient disruption of non-homologous end-joining facilitates targeted genome manipulations in the filamentous fungus Aspergillus nidulans. Fungal Genet Biol 45:165–170

    Article  CAS  PubMed  Google Scholar 

  • Ninomiya Y, Suzuki K, Ishii C, Inoue H (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci U S A 101:12248–12253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nitsche BM, Burggraaf-van Welzen A-M, Lamers G, Meyer V, Ram AF (2013) Autophagy promotes survival in aging submerged cultures of the filamentous fungus Aspergillus niger. Appl Microbiol Biotechnol 97:8205–8218

    Article  CAS  PubMed  Google Scholar 

  • Okabe M, Lies D, Kanamasa S, Park EY (2009) Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl Microbiol Biotechnol 84:597–606

    Article  CAS  PubMed  Google Scholar 

  • Prabha VL, Punekar NS (2004) Genetic transformation in Aspergilli: tools of trade. Indian J Biochem Biophys 41:205–215

    CAS  PubMed  Google Scholar 

  • Ramos JA, Barends S, Verhaert RM, de Graaff LH (2011) The Aspergillus niger multicopper oxidase family: analysis and overexpression of laccase-like encoding genes. Microb Cell Fact 10:78–89

    Article  PubMed  Google Scholar 

  • Ruiz-Diez B (2002) Strategies for the transformation of filamentous fungi. J Appl Microbiol 92:189–195

    Article  CAS  PubMed  Google Scholar 

  • Shima Y, Ito Y, Kaneko S, Hatabayashi H, Watanabe Y, Adachi Y, Yabe K (2009) Identification of three mutant loci conferring carboxin-resistance and development of a novel transformation system in Aspergillus oryzae. Fungal Genet Biol 46:67–76

    Article  CAS  PubMed  Google Scholar 

  • Sigl C, Handler M, Sprenger G, Kurnsteiner H, Zadra I (2010) A novel homologous dominant selection marker for genetic transformation of Penicillium chrysogenum: overexpression of squalene epoxidase-encoding ergA. J Biotechnol 151:307–311

    Article  Google Scholar 

  • Smith RP, Smith ML (2007) Two yeast plasmids that confer nourseothricin-dihydrogen sulfate and hygromycin B resistance in Neurospora crassa and Cryphonectria parasitica. Fungal Genet Newsl 54:12–13

    Google Scholar 

  • Storms R, Zheng Y, Li H, Sillaots S, Martinez-Perez A, Tsang A (2005) Plasmid vectors for protein production, gene expression and molecular manipulations in Aspergillus niger. Plasmid 53:191–204

    Article  CAS  PubMed  Google Scholar 

  • Su X, Schmitz G, Zhang M, Mackie RI, Cann IK (2012) Heterologous gene expression in filamentous fungi. Adv Appl Microbiol 81:1–61

    Article  CAS  PubMed  Google Scholar 

  • Kumar S (2013) Metabolism of guanidinium compounds in Aspergillus niger: role of ureohydrolases. Ph.D. thesis, Indian Institute of Technology Bombay, India

    Google Scholar 

  • Suzuki S, Tada S, Fukuoka M, Taketani H, Tsukakoshi Y, Matsushita M, Oda K, Kusumoto K, Kashiwagi Y, Sugiyama M (2009) A novel transformation system using a bleomycin resistance marker with chemosensitizers for Aspergillus oryzae. Biochem Biophys Res Commun 383:42–47

    Article  CAS  PubMed  Google Scholar 

  • Sweigard JA, Carroll AM, Farrall L, Valent B (1997) A series of vectors for fungal transformation. Fungal Genet Newsl 44:52–53

    Google Scholar 

  • Takahashi T, Hatamoto O, Koyama Y, Abe K (2004) Efficient gene disruption in the koji-mold Aspergillus sojae using a novel variation of the positive-negative method. Mol Genet Genomics 272:344–352

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Masuda T, Koyama Y (2006) Enhanced gene targeting frequency in ku70 and ku80 disruption mutants of Aspergillus sojae and Aspergillus oryzae. Mol Genet Genomics 275:460–470

    Article  CAS  PubMed  Google Scholar 

  • Tilburn J, Scazzocchio C, Taylor GG, Zabicky-Zissman JH, Lockington RA, Davies RW (1983) Transformation by integration in Aspergillus nidulans. Gene 26: 205–221

    Article  CAS  PubMed  Google Scholar 

  • Trogisch GD, Kocher H, Ullrich WR (1989) Effects of glufosinate on anion uptakein Lemna gibba G1. Z Naturforsch 44:33–38

    CAS  Google Scholar 

  • Ullrich WR, Ullricheberius CI, Kocher H (1990) Uptake of glufosinate andconcomitant membrane-potential changes in Lemna-Gibba G1. Pestic Biochem Physiol 37:1–11

    Article  CAS  Google Scholar 

  • Varadarajalu LP, Punekar NS (2005) Cloning and use of sC as homologous marker for Aspergillus niger transformation. J Microbiol Methods 61:219–224

    Article  CAS  PubMed  Google Scholar 

  • Weld RJ, Plummer KM, Carpenter MA, Ridgway HJ (2006) Approaches to functional genomics in filamentous fungi. Cell Res 16:31–44

    Article  CAS  PubMed  Google Scholar 

  • Yamada O, Lee BR, Gomi K (1997) Transformation system for Aspergillus oryzae with double auxotrophic mutations, niaD and sC. Biosci Biotechnol Biochem 61:1367–1369

    Article  CAS  Google Scholar 

  • Yanai K, Horiuchi H, Takagi M, Yano K (1991) Transformation of Rhizopus niveus using bacterial blasticidin S resistance gene as a dominant selectable marker. Curr Genet 19:221–226

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Department of Biotechnology, Government of India (DBT); Board of Research in Nuclear Science—Department of Atomic Energy (BRNS-DAE), Government of India and New Millennium Indian Technology Leadership Initiative of Council of Scientific and Industrial Research (NMITLI-CSIR), India for funding this research. We also thank Bayer Crop-Science for providing technical grade PPT (glufosinate ammonium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narayan S. Punekar Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dave, K., Prabha, V.L., Ahuja, M., Dave, K., Tejaswini, S., Punekar, N.S. (2015). Expanding the Repertoire of Selectable Markers for Aspergillus Transformation. In: van den Berg, M., Maruthachalam, K. (eds) Genetic Transformation Systems in Fungi, Volume 2. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-10503-1_11

Download citation

Publish with us

Policies and ethics