Skip to main content

Halophilic microorganisms from man-made and natural hypersaline environments: Physiology, ecology, and biotechnological potential

  • Chapter
Adaption of Microbial Life to Environmental Extremes

Abstract

What are hypersaline environments? Geologists or geochemists define saline lakes sensu lato as bodies of water with salinity more than 3 g/l (0.3%), while those sensu stricto (hypersaline) are bodies of water that exceed the modest 35 g/l (3.5%) salt of oceans (Williams 1998). Many microbiologists use the term hypersaline to denote the well-known salt lakes, such as the Dead Sea and the Great Salt Lake or crystallizer ponds of solar salterns, environments almost saturated with salt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson H (1954) The reddening of salted hides and fish. Appl Microbiol 2:64–69

    PubMed  CAS  Google Scholar 

  • Anton J, Meseguer I, Rodriguez-Valera F (1988) Production of an extracellular polysaccharide by Haloferax mediterranei.Appl Environ Microbiol 54:2381–2386

    PubMed  CAS  Google Scholar 

  • Borgne SL, Paniagua D, Vazquez-Duhalt R (2008) Biodegradation of organic pollutants by halophilic bacteria and archaea. J Mol Microbiol Biotechnol 15:74–92

    Article  PubMed  Google Scholar 

  • Broşteanu C (1901) Our salt mine. Historic, juridical and economical study towards saline exploitations and salt monopoly on Romans and Romanian (in Romanian). In: Lazareanu GA (ed) Bucharest

    Google Scholar 

  • Bulgăreanu VAC (1993) The protection and management of saline lakes of therapeutic value in Romania. Int J Salt Lake Res 2:165–171

    Article  Google Scholar 

  • Burns DG, Janssen PH, Itoh T, Kamekura M, Echigo A, Dyall-Smith ML (2010) Halonotius pteroides gen. nov., sp. nov., an extremely halophilic archaeon recovered from a saltern crystallizer in southern Australia. Int J Syst Evol Microbiol 60:1196–1199

    Article  PubMed  CAS  Google Scholar 

  • Chervinskaya AV, Zilber NA (1995) Halotherapy for treatment of respiratory diseases. J Aerosol Med 8:221–232

    Article  PubMed  CAS  Google Scholar 

  • Cojoc R, Merciu S, Oancea P, Pincu E, Dumitru L, Enache M (2009) Highly thermostable exopolysaccharide produced by the moderately halophilic bacterium isolated from a man-made young salt lake in Romania. Pol J Microbiol 58:289–294

    PubMed  CAS  Google Scholar 

  • Drăgănescu L (1990) Dates from historic salt exploitation at Slanic-Prahova (in Romanian). Rev Muzeelor 27:68–71

    Google Scholar 

  • Drăgănescu L, Drăgănescu S (2001) The history of the evolution of salt working methods in Romania, from antiquity to the present. In: 17th Intl Mining Congress and Exhibition of Turkey-IMCET, pp 627–633

    Google Scholar 

  • Duggen S, Hoernle K, van den Bogaard P, Rüpke L, Morgan JP (2003) Deep roots of the Messinian salinity crisis. Nature 422:602–606

    Article  PubMed  CAS  Google Scholar 

  • Dumitru L, Teodosiu G, Enache E (2002) The tolerance of extremely halophilic archaea to heavy metals. Proc Inst Biol 4:261–267

    Google Scholar 

  • Dumitru L, Teodosiu-Popescu G, Enache M, Cojoc R, Kleps I, Ignat T (2007) S-layer of Haloferax sp. GR 2 (JCM 13922): isolation, characterization and binding to silicon nanostructurated substrates. In: Kleps I, Ion AC, Dascalu D (eds) Progress in nanoscience and nanotechnologies, Seria vol 11, Micro and nanoengineering. Ed. Acad Române, Bucharest, pp 146–152

    Google Scholar 

  • Eichler J (2003) Facing extremes: archaeal surface-layer (glyco) proteins. Microbiology 149:3347–3351

    Article  PubMed  CAS  Google Scholar 

  • Enache M, Faghi AM (1999) Detection of extracellular halophilic amylase activity from the extreme halophilic genus Haloferax. Proc Inst Biol 2:143–146

    Google Scholar 

  • Enache M, Dumitru L, Faghi AM (1999a) Occurrence of halocins in mixed archaebacteria culture. Proc Inst Biol 2:151–154

    Google Scholar 

  • Enache M, Teodosiu G, Dumitru L, Faghi AM, Zarnea G (1999b) Diversity of halobacteria in accordance with their membrane lipids composition. Proc Inst Biol 2:147–149

    Google Scholar 

  • Enache M, Teodosiu G, Faghi AM, Dumitru L (2000a) Identification of halophilic Archaebacteria isolated from some Romanian salts lakes on the basis of lipids composition. Rev Roum Biol Biol Veg 45:93–99

    Google Scholar 

  • Enache M, Faghi AM, Teodosiu G, Dumitru L, Zarnea G (2000b) Effect of temperature and NaCl concentration of growth media on neutral lipid in Haloferax volcanii and Haloferax sp. GR1 strain. Proc Inst Biol 3:251–256

    Google Scholar 

  • Enache E, Faghi AM, Teodosiu G, Dumitru L, Zarnea G (2000c) The halophilic microorganisms response to heavy metals. Rev Roum Biol Biol Veg 45:111–116

    Google Scholar 

  • Enache M, Faghi AM, Dumitru L, Zarnea G (2001) Halophilic α-amylase from the extremely halophilic archaea Haloferax sp. strain GR1. Proc Rom Acad Series B 2:107–109

    Google Scholar 

  • Enache M, Teodosiu G, Dumitru L, Zarnea G (2004a) The effect of NaCl concentrations on the growth and lipase activity at Haloferax sp. GR1. Proc Inst Biol 6:233–236

    Google Scholar 

  • Enache M, Faghi AM, Dumitru L, Teodosiu G, Zarnea G (2004b) Halocin HF 1 a bacteriocin produced by Haloferax sp. GR 1. Proc Rom Acad Series B 1:27–32

    Google Scholar 

  • Enache M, Itoh T, Kamekura M, Teodosiu G, Dumitru L (2007a) Haloferax prahovense sp. nov., an extremely halophilic archaeon isolated from a Romanian salt lake. Int J Syst Evol Microbiol 57:393–397

    Article  PubMed  CAS  Google Scholar 

  • Enache M, Itoh T, Fukushima, Usami R, Dumitru L, Kamekura M (2007b) Phylogenetic relationship within the family Halobacteriaceae inferred from rpoB′ gene and protein sequences. Int J Syst Evol Microbiol 57:2289–2295

    Article  PubMed  CAS  Google Scholar 

  • Enache M, Itoh T, Kamekura M, Popescu G, Dumitru L (2008a) Halophilic archaea of Haloferax genus isolated from anthropocentric Telega (Palada) salt lake. Proc Rom Acad Series B 10:11–16

    Google Scholar 

  • Enache M, Itoh T, Kamekura M, Popescu G, Dumitru L (2008b) Halophilic archaea isolated from man-made young (200 years) salt lakes in Slănic, Prahova, Romania. Cent Eur J Biol 3:388–395

    Article  CAS  Google Scholar 

  • Enache M, Popescu G, Dumitru L, Kamekura M (2009) The effect of Na+/Mg2+ ratio on the amylase activity of haloarchaea isolated from Techirghiol lake, Romania, a low salt environment. Proc Rom Acad Series B 11:3–7

    CAS  Google Scholar 

  • Faghi AM, Teodosiu G, Dumitru L (1999) The dynamic of the halophilic microorganisms growth at different values of pH and temperature. I. Moderately halophilic bacteria. Proc Inst Biol 2:155–161

    Google Scholar 

  • Fendrihan S, Bérces A, Lammer H, Musso M, Rontó G, Polacsek TK, Holzinger A, Kolb C, Stan-Lotter H (2009a) Investigating the effects of simulated Martian ultraviolet radiation on Halococcus dombrowskii and other extremely halophilic archaebacteria. Astrobiol 9:104–112

    Article  CAS  Google Scholar 

  • Fendrihan S, Musso M, Stan-Lotter H (2009b) Raman spectroscopy as a potential method for the detection of extremely halophilic archaea embedded in halite in terrestrial and possibly extraterrestrial samples. J Raman Spectr 40:1996–2003

    Article  CAS  Google Scholar 

  • Gâştescu P (1965) On the origin of salt lakes from Romanian Plain (in Romanian). Natura-Seria Geografie-Geologie 2:42–45

    Google Scholar 

  • Gâştescu P (1971) The lake from Romania (in Romanian). Ed Acad Rep Soc România, Bucharest

    Google Scholar 

  • Gibbons NE (1974) Family V. Halobacteriaceae fam. nov. In: Buchanan RE, Gibbons NE (eds) Bergey’s manual of determinative bacteriology, 8th edn. Williams & Wilkins, Baltimore, pp 269–273

    Google Scholar 

  • Grant WD, Gemmell RT, McGenity TJ (1998) Halobacteria: the evidence for longevity. Extremophiles 2:279–287

    Article  PubMed  CAS  Google Scholar 

  • Grant WD, Kamekura M, McGenity TJ, Ventosa A (2001) The order Halobacteriales. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 294–334

    Google Scholar 

  • Gruber C, Legat A, Pfaffenhuemer M, Radax C, Weidler G, Busse HJ, Stan-Lotter H (2004) Halobacterium noricense sp. nov., an archaeal isolate from a bore core of an alpine Permian salt deposit, classification of Halobacterium sp. NRC-1 as a strain of H. salinarum and emended description of H. salinarum. Extremophiles, 8:431–439

    Article  PubMed  CAS  Google Scholar 

  • Har N, Barbu O, Codrea V, Petrescu I (2006) New data on the mineralogy of the salt deposit from Slănic Prahova (Romania). Studia UBB, Geologia 51:29–33

    Google Scholar 

  • Hedman J, Hagg T, Sandell J, Haahtela T (2006) The effect of salt chamber treatment on bronchial hyperresponsiveness in asthmatics. Allergy 61:605–610

    Article  PubMed  CAS  Google Scholar 

  • Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750

    PubMed  CAS  Google Scholar 

  • Itoh T, Yamaguchi T, Zhou P, Takashina T (2005) Natronolimnobius baerhuensis gen. nov., sp. nov., and Natronolimnobius innermongolicus sp. nov., novel haloalkaliphilic archaea isolated from soda lakes in Inner Mongolia, China. Extremophiles 9:111–116

    Article  PubMed  CAS  Google Scholar 

  • Javor B (1989a) Chapter 1. Geology and chemistry. In: Hypersaline environments. Microbiology and biogeochemistry. Springer-Verlag, Berlin, Heidelberg, New York, pp 5–25

    Chapter  Google Scholar 

  • Javor B (1989b) Chapter 15. Gavish Sabkha and other hypersaline marine sabkhas, pools and lagoons. In: Hypersaline environments. Microbiology and biogeochemistry. Springer-Verlag, Berlin, Heidelberg, New York, pp 222–235

    Chapter  Google Scholar 

  • Juez G (1988) Taxonomy of extremely halophilic archaebacteria. In: Rodriguez-Valera F (ed) Halophilic Bacteria, vol II. CRC Press, Boca Raton, FL, pp 3–24

    Google Scholar 

  • Kamekura M, Seno Y (1993) Partial sequence of the gene for a serine protease from a halophilic archaeum Haloferax mediterranei R4, and nucleotide sequences of 16S rRNA encoding genes from several halophilic archaea. Experientia 49:503–513

    Article  PubMed  CAS  Google Scholar 

  • Kamekura M, Dyall-Smith ML, Upasani V, Ventosa A, Kates M (1997) Diversity of alkaliphilic halobacteria: proposal for transfer of Natronobacterium vacuolatum, Natronobacterium magadii and Natronobacterium pharaonis to Halorubrum, Natrialba and Natronomonas gen. nov., respectively, as Halorubrum vacuolatum comb. nov., Natrialba magadii comb. nov., and Natronomonas pharaonis comb. nov., respectively. Int J Syst Bacteriol 47:853–857

    Article  PubMed  CAS  Google Scholar 

  • Kates M (1995) Adventures with membrane lipids. Biochem Soc Transac 23:697–709

    CAS  Google Scholar 

  • Kleps I, Ignat T, Miu M, Simion M, Teodosiu-Popescu G, Enache M, Dumitru L (2009) Protein-mesoporous silicon matrix obtained by S-layer technology. Phys Status Solidi C 6:1605–1609

    Article  CAS  Google Scholar 

  • Kocur M, Hodgkiss W (1973) Taxonomic status of the genus Halococcus Schoop. Int J Syst Bacteriol 23:151–156

    Article  Google Scholar 

  • Kunte HJ, Trueper HG, Stan-Lotter H (2002) Halophilic microorganism. In: Horneck G, Baumstark-Khan C (eds) Astrobiology. The quest for the conditions of life. Springer Verlag, Berlin, Heidelberg, pp 185–200

    Chapter  Google Scholar 

  • Kushner DJ (1985) The Halobacteriaceae. In: Woese CR, Wolfe RS (eds) The Bacteria, vol VIII. Academic Press, New York, pp 171–214

    Google Scholar 

  • Lequerica JL, O’Connor JE, Such L, Alberola A, Meseguer I, Dolz M, Torreblanca M, Moya A, Colom F, Soria B (2006) A halocin acting on Na+/H+ exchanger of Haloarchaea as a new type of inhibitor in NHE of mammals. J Physiol Biochem 62:253–262

    Article  PubMed  CAS  Google Scholar 

  • Lochhead AG (1934) Bacteriological studies on the red discoloration of salted hides. Can J Res 10:275–286

    Article  CAS  Google Scholar 

  • Magrum LJ, Luehrsen KR, Woese CR (1978) Are extreme halophiles actually “bacteria”? J Mol Evol 11:1–8

    Article  PubMed  CAS  Google Scholar 

  • Mellado E, Ventosa A (2003) Biotechnological potential of moderately and extremely halophilic microorganisms. In: Barredo JL (ed) Microorganisms for health care, food and enzyme production. Research Signpost, Kerala, pp 233–256

    Google Scholar 

  • Merciu S, Vacaroiu C, Filimon R, Popescu G, Preda S, Anastasescu C, Zaharescu M, Enache M (2009) Nanotubes biologically active in media with high salt concentration. Biotechnol Biotechnol Eq 23:827–831

    Google Scholar 

  • Minegishi H, Echigo A, Nagaoka S, Kamekura M, Usami R (2010) Halarchaeum acidiphilum gen. nov., sp. nov., a moderately acidophilic haloarchaeon isolated from commercial solar salt. Int J Syst Evol Microbiol (in press). DOI: 10.1099/ijs.0.013722-0

    Google Scholar 

  • Multhauf RP (1978) Neptune’s gift. A history of common salt. The Johns Hopkins University Press, Baltimore and London

    Google Scholar 

  • Nica SA, Meilă AM, Macovei L (2007) Speleotherapy (in Romanian). Rom J Rheumatol 4:269–273

    Google Scholar 

  • Nieto JJ (1991) The response of halophilic bacteria to heavy metals. In: Rodriguez-Valera F (ed) General and applied aspects of halophilic microorganisms. Plenum Press, New York and London, pp 173–179

    Chapter  Google Scholar 

  • O’Connor EM, Shand RF (2002) Halocins and sulfolobicins: the emerging story of archaeal protein and peptide antibiotics. J Ind Micrbiol Biotechnol 28:23–31

    Google Scholar 

  • Oncescu T, Oancea P, Enache M, Popescu G, Dumitru L, Kamekura M (2007) Halophilic bacteria are able to decontaminate dichlorvos, a pesticide, from saline environments. Cent Eur J Biol 2: 563–573

    Article  CAS  Google Scholar 

  • Oren A (2002) Preface. In: Halophilic microorganisms and their environments. Kluwer Academic Publishers, Dordrecht, pp xv–xviii

    Book  Google Scholar 

  • Oren A (2004) Prokaryote diversity and taxonomy: current status and future challenges. Philos Trans R Soc Lond B 359:623–638

    Article  CAS  Google Scholar 

  • Park JS, Vreeland RH, Cho BC, Lowenstein TK, Timofeeff MN, Rosenzweig WD (2009) Haloarchaeal diversity in 23, 121 and 419 MYA salts. Geobiology 7:1–9

    Article  Google Scholar 

  • Popescu G, Dumitru L (2009) Biosorption of some heavy metals from media with high salt concentrations by halophilic Archaea. Biotechnol Biotechnol Eq 23:791–795

    Google Scholar 

  • Rees CH, Grant DW, Jones EB, Heaphy S (2004) Diversity of Kenyan soda lake alkaliphiles assessed by molecular methods. Extremophiles 8:63–71

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Valera F (1992) Biotechnological potential of halobacteria. Biochem Soc Symp 58:135–147

    PubMed  CAS  Google Scholar 

  • Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A (1979) Isolation of extreme halophiles from seawater. Appl Environ Microbiol 38:164–165

    PubMed  CAS  Google Scholar 

  • Rodriguez-Valera F, Juez G, Kushner DJ (1982) Halocins: salt-dependent bacteriocins produced by extremely halophilic rods. Can J Microbiol 28:151–154

    Article  CAS  Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    Article  PubMed  CAS  Google Scholar 

  • Schuster B, Sleytr UB (2000) S-layer-supported lipid membranes. Rev Mol Biotechnol 74:233–254

    Article  CAS  Google Scholar 

  • Schuster B, Györvary E, Pum D, Sleytr UB (2005) Nanotechnology with S-layer protein. In: Vo-Dinh T (ed) Methods in molecular biology. vol 300: Protein nanotechnology, protocols, instrumentation and applications. Humana Press Inc., Totowa, NJ, pp 101–123

    Google Scholar 

  • Sencu V (1968) Salt Mount from Slănic Prahova (in Romanian). Ocrot Nat 12:167–179

    Google Scholar 

  • Shimane Y, Hatada Y, Minegishi H, Mizuki T, Echigo A, Miyazaki M, Ohta Y, Usami R, Grant WD

    Google Scholar 

  • Horikoshi K (2010) Natronoarchaeum mannanilyticum gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea isolated from commercial salt made in Niigata, Japan. Int J Syst Evol Microbiol (in press). DOI: 10.1099/ijs.0.016600-0

    Google Scholar 

  • Simyonka YM (1989) Some particular features of infections and inflammatory processes, and immune status in patients with infection-dependent bronchial asthma during speleotherapy in salt-mine microclimate (in Russian). In: Bronchial asthma. Leningrad, pp 136–140

    Google Scholar 

  • Sleytr UB, Sara M (1997) Bacterial and archaeal S-layer proteins: structure-function relationships and their biotechnological applications. Trends Biotechnol 15:20–26

    Article  PubMed  CAS  Google Scholar 

  • Sleytr UB, Messner P, Pum D, Sara M (1999) Crystalline bacterial cell surface layers (S-layers): from supramolecular cell structure to biomimetics and nanotechnology. Angew Chem 38:1034–1054

    Article  CAS  Google Scholar 

  • Stan-Lotter H, Radax C, Gruber C, Legat A, Pfaffenhuemer M, Wieland H, Leuko S, Weidler G, Kömle N, Kargle G (2003) Astrobiology with haloarchaea from Permo-Triassic rock salt. Int J Astrobiol 1:271–284

    Article  Google Scholar 

  • Teodosiu G, Dumitru L, Faghi AM (1999) The dynamic of the halophilic microorganisms growth at different values of pH and temperature. II. Extremely halophilic archaea. Proc Inst Biol 2: 163–168

    Google Scholar 

  • Thongthai C, McGenity TJ, Suntinanalert P, Grant WD (1992) Isolation and characterization of an extremely halophilic archaebacterium from traditionally fermented Thai fish sauce (nam-pla). Lett Appl Microbiol 14:111–114

    Article  Google Scholar 

  • Tindall BJ, Mills AA, Grant WD (1980) An alkalophilic red halophilic bacterium with low magnesium requirement from a Kenyan soda lake. J Gen Microbiol 116:257–260

    Google Scholar 

  • Tindall BJ, Ross HNM, Grant WD (1984) Natronobacterium gen. nov. and Natronococcus gen. nov., two new genera of haloalkaliphilic archaebacteria. Syst Appl Microbiol 5:41–57

    Article  Google Scholar 

  • Torreblanca M, Rodriguez-Valera F, Juez G, Ventosa A, Kamekura M, Kates M (1986) Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov. Syst Appl Microbiol 8:89–99

    Article  Google Scholar 

  • Torreblanca M, Meseguer I, Ventosa A (1994) Production of halocin is a practically universal feature of archaea halophilic rods. Lett Appl Microbiol 19:201–205

    Article  CAS  Google Scholar 

  • Trachtenberg S, Pinnick B, Kessel M (2000) The cell surface glycoprotein layer of the extreme halophile Halobacterium salinarum and its relation with Haloferax volcanii: cryo-electron tomography of freeze-substituted cells and projection studies of negatively stained envelopes. J Struct Biol 130:10–26

    Article  PubMed  CAS  Google Scholar 

  • Vellieux F, Madern D, Zaccai G, Ebel C (2007) Molecular adaptation to high salt. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC, pp 240–253

    Google Scholar 

  • Ventosa A (2004) Halophilic microorganisms. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544

    PubMed  CAS  Google Scholar 

  • Ventosa A, Sanchez-Porro C, Martin S, Mellado E (2005) Halophilic archaea and bacteria as a source of extracellular hydrolytic enzymes. In: Gunde-Cimerman N, Oren A, Plemenitas A (eds) Adaptation to life at high salt concentrations in archaea, bacteria, and eukarya. Springer, Dordrecht, pp 337–354

    Chapter  Google Scholar 

  • Ventosa A, Mellado E, Sanchez-Porro C, Marquez MC (2008) Halophilic and halotolerant microorganism from soils. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils. Springer-Verlag, Berlin, Heidelberg, pp 87–115

    Chapter  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed  CAS  Google Scholar 

  • Williams WD (1998) Guidelines of lake management, vol 6: Management of inland saline waters. In: International lake environment committee foundation and the United Nations environment programme, Kusatsu, Japan

    Google Scholar 

  • Xue Y, Fan H, Ventosa A, Grant WD, Jones BE, Cowan DA, Ma Y (2005) Halalkalicoccus tibetensis gen. nov., sp. nov., representing a novel genus of haloalkaliphilic archaea. Int J Syst Evol Microbiol 55:2501–2505

    Article  PubMed  CAS  Google Scholar 

  • Yamamura A, Ichimura T, Kamekura M, Mizuki T, Usami R, Makino T, Ohtsuka J, Miyazono K, Okai M, Nagata K, Tanokura M (2009) Molecular mechanism of distinct salt-dependent enzyme activity of two halophilic nucleoside diphosphate kinases. Biophys J 96:4692–4700

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Enache, M., Popescu, G., Itoh, T., Kamekura, M. (2012). Halophilic microorganisms from man-made and natural hypersaline environments: Physiology, ecology, and biotechnological potential. In: Stan-Lotter, H., Fendrihan, S. (eds) Adaption of Microbial Life to Environmental Extremes. Springer, Vienna. https://doi.org/10.1007/978-3-211-99691-1_8

Download citation

Publish with us

Policies and ethics