Skip to main content

Abstract

An introduction to the wet-chemical processing of indium tin oxide (ITO), aluminium-doped zinc oxide (AZO) and antimony-doped tin oxide (ATO) thin films is given, their performance is compared to materials derived from physical and chemical vapour deposition. Strategies to reduce inherent limitations of sol–gel coatings due to residual porosity are emphasized. Printability as a specific advantage of solution-based techniques is highlighted. It also is shown how compositional flexibility and the facile introduction of dopants are used to explore the potential of novel p-type conductive delafossites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chopra K, Major S, Padya D (1982) Transparent conductors – A status review. Thin Solid Films 102:1

    Article  Google Scholar 

  2. Gosh PK, Das S, Kundoo S, Chattopadhyay K (2005) Effect of fluorine doping on semiconductor to metal-like transition and optical properties of cadmium oxide thin films deposited by sol–gel process. J Sol-Gel Sci Technol 34:173

    Article  Google Scholar 

  3. Granqvist C (2007) Transparent conductors as solar energy materials. A panoramic review. Sol Energ Mater Sol Cells 91:1529

    Article  Google Scholar 

  4. Henery V. Chemical vapor deposition of tin oxide on float glass in the tin bath. US Patent 4853257

    Google Scholar 

  5. Szanyi J (2002) The origin of haze in CVD tin oxide thin films. Appl Surf Sci 185:161

    Article  Google Scholar 

  6. Szyszka B (2001) Transparente und leitfähige Oxidschichten. Vakuum in Forschung und Praxis 1:38

    Article  Google Scholar 

  7. Sawada Y, Kobayashi C, Seki S, Funakubo H (2002) Highly-conducting indium–tin-oxide transparent films fabricated by spray CVD using ethanol solution of indium (III) chloride and tin (II) chloride. Thin Solid Films 409:46

    Article  Google Scholar 

  8. Suzuki A, Matsushita T, Aoki T, Mori A, Okuda M (2002) Highly conducting transparent indium tin oxide films prepared by pulsed laser deposition. Thin Solid Films 411:23

    Article  Google Scholar 

  9. Biswas P, De A, Ortner K, Korder S (2004) Study of sol–gel-derived high tin content indium tin oxide (ITO) films on silica-coated soda lime silica glass. Mater Lett 58:1540

    Article  Google Scholar 

  10. Hammad T (2006) ITO Thin films on silicon buffer by sol–gel method. Mat Sci Forum 514–516:1155

    Article  Google Scholar 

  11. Minami T, Oohashi K, Takata S, Mouri T, Ogawa N (1990) Preparations of ZnO:Al transparent conducting films by D.C. magnetron sputtering. Thin Solid Films 193/194:721

    Article  Google Scholar 

  12. Agura H, Suzuki A, Matsushita T, Akoi T, Okuda M (2003) Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition. Thin Solid Films 445:263

    Article  Google Scholar 

  13. Schuler T, Aegerter M (1999) Optical, electrical and structural properties of sol–gel ZnO:Al coatings. Thin Solid Films 351:125

    Article  Google Scholar 

  14. Lin K, Tsai P (2007) Growth mechanism and characterization of ZnO: Al multi-layered thin films by sol–gel technique. Thin Solid Films 515:8610

    Google Scholar 

  15. Sobajima Y, Kato S, Matsuura T, Toyama T, Okamoto H (2007) Study of the light-trapping effects of textured ZnO:Al/glass structure TCO for improving photocurrent of a-Si:H solar cells. J Mater Sci Mater Electron 18:S159

    Article  Google Scholar 

  16. Szyszka B, Löbmann P, Georg A, May C, Elsaesser C (2010) Development of new transparent conductors and device applications utilizing a multidisciplinary approach. Thin Solid Films 518:3109

    Article  Google Scholar 

  17. Jäger S, Szyszka B, Szczyrbowski J, Bräuer G (1998) Comparison of transparent conductive oxide thin films prepared by A.C. and D.C. reactive magnetron sputtering. Surf Coat Technol 98:1304

    Article  Google Scholar 

  18. Lee S, Hong B, Choi WS (2009) Structural, electrical and optical properties of antimony-dopded tinoxide films prepared at room temperature by radio frequency. J Vac Sci Technol A 27:996–1000

    Article  Google Scholar 

  19. Dua L, De A, Chakraborty S, Biswas P (2008) Study of spin coated high antimony content Sn–Sb oxide films on silica glass. Mater Charact 59:578

    Article  Google Scholar 

  20. Benrabah B, Bouaza A, Hamzaoui S, Dehbi A (2009) Sol–gel preparation and characterization of antimony doped tin oxide (ATO) powders and thin films. Eur Phys J Appl Phys 48:30301

    Article  Google Scholar 

  21. Ma H, Zhang D, Win S, Li S, Chen Y (1996) Electrical and optical properties of F-doped textured SnO2 films deposited by APCVD. Sol Energ Mater Sol Cells 40:371

    Article  Google Scholar 

  22. Talaty N, Beck K, Citeau H, Kirschbaum K, Giolando D (2009) Characterization of Tin(IV) oxide thin films prepared by atmospheric pressure chemical vapor deposition of cis-[SnCl4{OC(H)OC2H5}2]. Z Anorg Allg Chem 635:53

    Article  Google Scholar 

  23. Lin C, Chiang M, Chen Y (2009) Temperature dependence of fluorine-doped tin oxide films produced by ultrasonic spray pyrolysis. Thin Solid Films 518:1241

    Article  Google Scholar 

  24. Liu J, Rädlein E, Frischat G (1999) Preparation, nanostructure and properties of indium tin oxide (ITO) films on glass substrates. Part 2. Optimisation of properties. Phys Chem Glasses 40:282

    Google Scholar 

  25. Savarimuthu E, Lalithambika K, Raj A, Nehru LC, Ramamurthy S, Thayumanavan A, Sanjeeviraja C, Jayachandran M (2007) Synthesis and materials properties of transparent conducting In2O3 films prepared by sol–gel-spin coating technique. J Phys Chem Solids 68:1380

    Article  Google Scholar 

  26. Beaurain A, Luxembourg D, Dufour C, Koncar V, Capoen B, Bouazaoui M (2008) Effects of annealing temperature and heat-treatment duration on electrical properties of sol–gel derived indium-tin-oxide thin films. Thin Solid Films 516:4102

    Article  Google Scholar 

  27. Su C, Sheu T, Chang Y, Wan M, Feng M, Hung W (2005) Preparation of ITO thin films by Sol–gel process and their characterizations. Synt Met 153:9

    Article  Google Scholar 

  28. Li Z, Ren D (2006) Preparation of ITO transparent conductive film by sol–gel method. Trans Nonferrous Met Soc China 16:1358

    Article  Google Scholar 

  29. Al-Dahoudi N, Aegerter M (2006) Comparative study of transparent conductive In2O3:Sn(ITO) coatings made using a sol and a nanoparticle suspension. Thin Solid Films 502:193

    Article  Google Scholar 

  30. Biswas P, Dea A, Dua L, Chkoda L (2006) Work function of sol–gel indium tin oxide (ITO) films on glass. Appl Surf Sci 253:1953

    Article  Google Scholar 

  31. Aksu Y, Driess M (2009) A low-temperature molecular approach to highly conductive tin-rich indium tin oxide thin films with durable electro-optical performance. Angew Chem 121:7918

    Article  Google Scholar 

  32. Alam M, Cameron D (2001) Characterization of transparent conductive ITO thin films deposited on titanium dioxide film by a sol–gel process. Surf Coat Technol 142–144:776

    Article  Google Scholar 

  33. Alam M, Cameron D (2002) Investigation of annealing effects on sol–gel deposited indium tin oxide thin films in different atmospheres. Thin Solid Films 420–421:76

    Article  Google Scholar 

  34. Löbmann P, Röhlen P (2003) Industrial processing of TiO2 thin films from soluble precursor powders. J Glass Sci Technol 76:1

    Google Scholar 

  35. Cho Y, Kim H, Hong J, Yi G, Yang S, Yang S (2009) Dispersion stabilization of conductive transparent oxide nanoparticles. Coll and Surf A 336:88

    Article  Google Scholar 

  36. Goebbert C, Nonninger R, Aegerter M, Schmidt H (1999) Wet chemical deposition of ATO and ITO coatings using crystalline nanoparticles redispersable in solutions. Thin Solid Films 351:79

    Article  Google Scholar 

  37. Aegerter M, Al-Dahoudi N (2003) Wet-chemical processing of transparent and antiglare conducting ITO coating on plastic substrates. J Sol-Gel Sci Technol 27:81

    Article  Google Scholar 

  38. Ederth J, Johnson P, Niklasson G, Hoel A, Hultaker A, Heszler P, Granqvist C, van Doorn A, Jongerius M, Burgard D (2003) Electrical and optical properties of thin films consisting of tin-doped indium oxide nanoparticles. Phys Rev B 68:155410

    Article  Google Scholar 

  39. Ederth J, Heszler P, Hultaker A, Niklasson G, Granqvist C (2003) Indium tin oxide films made from nanoparticles: models for the optical and electrical properties. Thin Solid Films 445:199

    Article  Google Scholar 

  40. Natsume Y, Sakata H (2002) Electrical and optical properties of zinc oxide films post-annealed in H2 after fabrication by sol–gel process. Mat Chem Phys 78:170

    Article  Google Scholar 

  41. Lee J, Ko K, Park B (2003) Electrical and optical properties of ZnO transparent conducting films by the sol–gel method. J Cryst Growth 247:119

    Article  Google Scholar 

  42. Hammad T (2006) Electrical and optical properties of multilayer sol–gel ZnO coatings. Int J Modern Phys B 20:3357

    Article  Google Scholar 

  43. Kyaw A, Sun X, Jiang C (2009) Efficient charge collection with sol–gel derived colloidal ZnO thin films in photovoltaic devices. J Sol-Gel Sci Technol 52:348

    Article  Google Scholar 

  44. Kaur R, Singh A, Mehra R (2006) Sol–gel derived highly transparent and conducting yttrium doped ZnO films. J Non-Cryst Solids 352:2335

    Article  Google Scholar 

  45. Schuler T, Krajewski T, Grobelsek I, Aegerter M (2006) Influence of structure zone model parameters on the electrical properties of ZnO:Al sol–gel coatings. Thin Solid Films 502:67

    Article  Google Scholar 

  46. Kuo SY, Chen WC, Lai FI, Cheng CP, Kuo HC, Wang SC, Hsieh WF (2006) Effects of doping concentration and annealing temperature on properties of highly-oriented Al-doped ZnO films. J Crystal Growth 287:78

    Article  Google Scholar 

  47. Lin J, Wu J (2008) The effect of annealing processes on electronic properties of sol–gel derived Al-doped ZnO films. Appl Phys Lett 92:134103

    Article  Google Scholar 

  48. Yi SH, Choi SK, Jang JM, Kim JA (2007) Properties of aluminium doped zinc oxide thin film by sol–gel process. Proc SPIE 6831:68311A-1-8

    Google Scholar 

  49. Copuroglu M, O’Brien S, Crean GM (2009) Sol–gel synthesis, comparative characterization, and reliability analyses of undoped and Al-doped zinc oxide thin films. Thin Solid Films 517:6323–6326

    Article  Google Scholar 

  50. Boudiar T, Sandu C, Canut B, Blanchin M, Teodorescu V, Roger J (2003) Interest of rapid thermal annealing (RTA) for the elaboration of SnO2:Sb transparent conducting oxide by the sol–gel technique. J Sol-Gel Sci Technol 26:1067

    Article  Google Scholar 

  51. Geraldo V, Scalvi L, Morais D, Santilli C, Pulcinelli H (2003) Sb doping effects and oxygen adsorption in SnO2 thin films deposited via sol–gel. Mat Res 6:451

    Article  Google Scholar 

  52. Puetz J, Chalvet F, Aegerter M (2003) Wet chemical deposition of transparent conducting coatings in glass tubes. Thin Solid Films 442:53

    Article  Google Scholar 

  53. Guzman G, Dahmani B, Puetz J, Aegerter M (2006) Transparent conducting sol–gel ATO coatings for display applications by an improved dip coating technique. Thin Solid Films 502:281

    Article  Google Scholar 

  54. Schuler T, Krajewski T, Grobelsek I, Aegerter M (2004) A microstructural zone model for the morphology of sol–gel coatings. J Sol-Gel Sci Technol 31:235

    Article  Google Scholar 

  55. Alam M, Cameron D (2001) Preparation and properties of transparent conductive aluminum-doped zinc oxide thin films by sol–gel process. J Vac Sci Tech A 19:1642

    Article  Google Scholar 

  56. Wang C, Meinhardt J, Löbmann P (2010) Growth mechanism of Nb-doped TiO2 sol–gel multilayer films characterized by SEM and focus/defocus TEM. J Sol-Gel Sci Technol 53:148

    Article  Google Scholar 

  57. Furubayashi Y, Hitosugi T, Yamamoto Y, Hirose Y, Kinoda G, Inaba K, Shimada T, Hasegawa T (2006) Novel transparent conducting oxide: Anatase. Thin Solid Films 496:157

    Article  Google Scholar 

  58. Hitosugi T, Ueda A, Furubayashi Y, Hirose Y, Konuma S, Shimada T, Hasegawa T (2007) Fabrication of TiO2-based transparent conducting oxide films on glass by pulsed laser deposition. Jpn J Appl Phys 46:86

    Article  Google Scholar 

  59. Yamada N, Hitosugi T, Hoang N, Furubayashi Y, Hirose Y, Shimada T, Hasegawa T (2007) Fabrication of low resistivity Nb-doped TiO2 transparent conductive polycrystalline films on glass by reactive sputtering. Jpn J Appl Phys 46:5275

    Article  Google Scholar 

  60. Prodi-Schwab A, Lüthge T, Jahn R, Herbig B, Löbmann P (2008) Modified procedure for the sol–gel processing of indium–tin oxide (ITO) films. J Sol-Gel Sci Technol 47:68

    Article  Google Scholar 

  61. Facchetti A, Marks T (2010) Transparent electronics – From synthesis to applications. Wiley, London

    Book  Google Scholar 

  62. Puetz J, Aegerter M (2008) Direct gravure printing of indium tin oxide nanoparticle patterns on polymer foils. Thin Solid Films 516:4495

    Article  Google Scholar 

  63. Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H (1997) P-type electrical conduction in transparent thin films of CuAlO2. Nature 389:939

    Article  Google Scholar 

  64. Ingram B, González G, Mason T, Shahriari D, Barnabè A, Ko D, Poeppelmeier K (2004) Transport and defect mechanisms in cuprous delafossites. 1. Comparison of hydrothermal and stndard solid-state synthesis in CuAlO2. Chem Mater 16:5616

    Article  Google Scholar 

  65. Ohta H, Hosono H (2004) Transparent oxide optoelectronics. Mater Today 7:42

    Article  Google Scholar 

  66. Tsuboi N, Takahashi Y, Kobayashi S, Shimizu H, Kato K, Kaneko F (2003) Delafossite CuAlO2 films prepared by reactive sputtering using Cu and Al targets. J Phys Chem Solids 64:1671

    Article  Google Scholar 

  67. Lu Y, He Y, Yang B, Polity A, Volbers N, Neumann C, Hasselkamp D, Meyer B (2006) RF reactive sputter deposition and characterization of transparent CuAlO2 thin films. Phys Stat Sol (C) 3:2895

    Article  Google Scholar 

  68. Götzendörfer S, Polenzky C, Ulrich S, Löbmann P (2009) Preparation of CuAlO2 and CuCrO2 thin films by sol–gel processing. Thin Solid Films 518:1153

    Article  Google Scholar 

  69. Götzendörfer S, Bywalez R, Löbmann P (2009) Preparation of p-typed conducting transparent CuCrO2 and CuAl0.5Cr0.5O2 thin films by sol–gel processing. J Sol-Gel Sci Technol 52:113

    Article  Google Scholar 

  70. Bywalez R, Götzendörfer S, Löbmann P (2010) Structural and physical effects of Mg-doping on p-type CuCrO2 and CuAl0.5Cr0.5O2 thin films. J Mater Chem 20:6562

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peer Löbmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Löbmann, P. (2013). Transparent Conducting Oxides. In: Schneller, T., Waser, R., Kosec, M., Payne, D. (eds) Chemical Solution Deposition of Functional Oxide Thin Films. Springer, Vienna. https://doi.org/10.1007/978-3-211-99311-8_26

Download citation

Publish with us

Policies and ethics