Skip to main content
Log in

Structural, Optical and Electrical Properties of ITO Thin Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

A Correction to this article was published on 28 February 2018

This article has been updated

Abstract

Transparent and conductive thin films of indium tin oxide were fabricated on glass substrates by the thermal evaporation technique. Tin doped indium ingots with low tin content were evaporated in vacuum (1.33 × 10−7 kpa) followed by an oxidation for 15 min in the atmosphere in the temperature range of 600–700°C. The structure and phase purity, surface morphology, optical and electrical properties of thin films were studied by x-ray diffractometry and Raman spectroscopy, scanning electron microcopy and atomic force microscopy, UV–visible spectrometry and Hall measurements in the van der Pauw configuration. The x-ray diffraction study showed the formation of the cubical phase of polycrystalline thin films. The morphological analysis showed the formation of ginger like structures and the energy dispersive x-ray spectrum confirmed the presence of indium (In), tin (Sn) and oxygen (O) elements. Hall measurements confirmed n-type conductivity of films with low electrical resistivity (ρ) ∼ 10−3 Ω cm and high carrier concentration (n) ∼ 1020 cm−3. For prevalent scattering mechanisms in the films, experimental data was analyzed by calculating a mean free path (L) using a highly degenerate electron gas model. Furthermore, to investigate the performance of the deposited films as a transparent conductive material, the optical figure of merit was obtained for all the samples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 28 February 2018

    In the original article there is an error in Equation 10. Following is the corrected equation.

References

  1. H.R. Fallah, M. Ghasemi, and A. Hassanzadeh, Physica E 39, 69 (2007).

    Article  Google Scholar 

  2. M.J. Alam and D.C. Cameron, Thin Solid Films 377, 455 (2000).

    Article  Google Scholar 

  3. B.G. Lewis and D.C. Paine, Mater. Res. Bull. 25, 22 (2000).

    Article  Google Scholar 

  4. H. Ohta, M. Orita, M. Hirano, H. Tani, H. Kawazoe, and H. Hosono, Appl. Phys. Lett. 76, 2740 (2000).

    Article  Google Scholar 

  5. B.J. Chen, X.Q. Lin, L.F. Cheng, C.S. Lee, W.A. Gambling, and S.T. Lee, J. Phys. D Appl. Phys. 34, 30 (2001).

    Article  Google Scholar 

  6. G. Neri, A. Bonavita, G. Micali, G. Rizzo, E. Callone, and G. Carturan, Sens. Actuators B, 132, 224 (2008).

  7. A.D.M. Rosman, A.H.A. Razak, M.F. Azmi, S.A.M. Al Junid, A.K. Halim, and M.F.M. Idros, in IEEE International Conference, pp. 546–550 (2016).

  8. L.L. Jiang, X. Zeng, M. Li, M.Q. Wang, T.Y. Su, X.C. Tian, and J. Tang, RSC Adv. 7, 9316 (2017).

    Article  Google Scholar 

  9. J. Lee, D. Lim, K. Yang, and W. Choi, J. Cryst. Growth 326, 50 (2011).

    Article  Google Scholar 

  10. I. Madhi, W. Meddeb, B. Bouzid, M. Saadoun, and B. Bessais, Appl. Surf. Sci. 355, 242 (2015).

    Article  Google Scholar 

  11. Q. Ouyang, W. Wang, Q. Fu, and D. Dong, Thin Solid Films 623, 31 (2017).

    Article  Google Scholar 

  12. K. Daoudi, B. Canut, M.G. Blanchin, C.S. Sandu, V.S. Teodorescu, and J.A. Roger, Mater. Sci. Eng. C 21, 313 (2002).

    Article  Google Scholar 

  13. S. Licht, A.J. Bard, and M. Stratmann, Encyclopedia of Electrochemistry, Vol. 6: Semiconductor electrodes and Photoelectrochemistry. (Wiley-VCH, Gmbh, 2002), p. 25.

  14. J.S. Cho, K.H. Yoon, and S.K. Koh, Thin Solid Films 368, 111 (2000).

    Article  Google Scholar 

  15. M.N. Rezaie, N. Manavizadeh, E.M.N. Abadi, E. Nadimi, and F.A. Boroumand, Appl. Surf. Sci. 392, 549 (2017).

    Article  Google Scholar 

  16. S. Parthiban, E. Elangovan, K. Ramamurthi, D. Kanjilal, K. Asokan, R. Martins, and E. Fortunato, J. Phys. D Appl. Phys. 44, 085404 (2011).

    Article  Google Scholar 

  17. M. Thirumoorthi and J.T.J. Prakash, Superlattices Microstruct. 85, 237 (2015).

    Article  Google Scholar 

  18. M. Thirumoorthi and J.T.J. Prakash, J. Asian Ceram. Soc. 04, 24 (2016).

    Google Scholar 

  19. K. Mageshwari and R. Sathyamoorthy, Mater. Sci. Semicond. Process. 16, 337 (2013).

    Article  Google Scholar 

  20. H. Siddiqui, M.S. Qureshi, and F.Z. Haque, Optik Int. J. Light Electron Opt. 125, 4663 (2014).

    Article  Google Scholar 

  21. C.Y. Wang, Y. Dai, J. Pezoldt, B. Lu, Th Kups, V. Cimalla, and O. Ambacher, Cryst. Growth Des. 8, 1257 (2008).

    Article  Google Scholar 

  22. O.M. Berengue, A.D. Rodrigues, C.J. Dalmaschio, A.J.C. Lanfredi, E.R. Leiteand, and A.J. Chiquito, J. Phys. D Appl. Phys. 43, 045401 (2010).

    Article  Google Scholar 

  23. M.K.M. Ali, K. Ibrahim, O.S. Hamad, M.H. Eisa, M.G. Faraj, and F. Azhari, Rom. J. Phys. 56, 730 (2011).

    Google Scholar 

  24. S.B. Rana, P. Sing, A.K. Sharma, A.W. Carbonari, and R. Dogra, J. Optoelectron. Adv. Mater. 12, 257 (2010).

    Google Scholar 

  25. J.M. Gómez, C. Canaria, R.O. Burgos, C.A. Ortiz, G.I. Supelano, and C.P. Vargas, in Journal of Physics: Conference Series—IOP Publishing, p. 012091 (2016).

  26. T. Konry and R.S. Marks, Thin Solid Films 492, 313 (2005).

    Article  Google Scholar 

  27. E.S. Raj and K.L. Choy, Mater. Chem. Phys. 82, 489 (2003).

    Article  Google Scholar 

  28. H.Y. Lai, T.H. Chen, and C.H. Chen, Mater. Lett. 65, 3336 (2011).

  29. T.H. Fang, W.J. Chang, C.M. Lin, and W.C. Lien, Appl. Surf. Sci. 254, 3436 (2008).

    Article  Google Scholar 

  30. A. Behera and S. Aich, Surf. Interface Anal. 47, 805 (2015).

    Article  Google Scholar 

  31. C.S. Chang, K.H. Hou, M.D. Ger, C.K. Chung, and J.F. Lin, Surf. Coat. Technol. 288, 135 (2016).

    Article  Google Scholar 

  32. M. Gulen, G. Yildirim, S. Bal, A. Varilci, I. Belenli, and M. Oz, J. Mater. Sci. Mater. Electron. 24, 467 (2013).

    Article  Google Scholar 

  33. J.H. Lee, Y.H. Kim, S.J. Ahn, T.H. Ha, and H.S. Kim, Mater. Sci. Eng. B 199, 37 (2015).

    Article  Google Scholar 

  34. R.N. Chauhan, R.S. Anand, and J. Kumar, Thin Solid Films 556, 253 (2014).

    Article  Google Scholar 

  35. U. Betz, M. Kharrazi Olsson, J. Marthy, M.F. Escola, and F. Atamny, Surf. Coat. Technol. 200, 5751 (2006).

    Article  Google Scholar 

  36. G. Lavareda, C.N. de Carvelho, E. Fortunato, A.R. Ramos, E. Elves, O. Conde, and A. Amaral, Non Cryst. Solids 352, 2311 (2006).

    Article  Google Scholar 

  37. B. Thangaraju, Thin Solid Films 402, 71 (2002).

    Article  Google Scholar 

  38. J.G. Lu, Z.Z. Ye, Y.J. Zeng, L.P. Zhu, L. Wang, J. Yuan, B.H. Zhao, and Q.L. Liang, J. Appl. Phys. 100, 073714 (2006).

    Article  Google Scholar 

  39. T. Koida and M. Kondo, J. Appl. Phys. 99, 123703 (2006).

    Article  Google Scholar 

  40. T. Koida and M. Kondo, J. Appl. Phys. 101, 063713 (2007).

    Article  Google Scholar 

  41. A.K. Kulkarni and S.A. Knickerbocker, Thin Solid Films 220, 321 (1992).

    Article  Google Scholar 

  42. J.Y. Zheng, S.H. Bao, Y. Juo, and P. Jin, ACS Appl. Mater. Interfaces 6, 1351 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Shah.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s11664-018-6173-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sofi, A.H., Shah, M.A. & Asokan, K. Structural, Optical and Electrical Properties of ITO Thin Films. J. Electron. Mater. 47, 1344–1352 (2018). https://doi.org/10.1007/s11664-017-5915-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5915-9

Keywords

Navigation