Skip to main content
Log in

Fabrication and synthesis of SnOX thin films: a review

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Due to its exceptional electrical, optical, chemical and magnetic properties, tin oxide (SnO and SnO2), which is a functional material, has gained enormous attention for use in a variety of applications. Films of SnOX have a direct band gap between the ranges of 2.2 and 3.6 eV, with these films finding usefulness in various functions such as solar cells, transparent conducting oxides for gas sensors, lithium-ion batteries and microelectronics, and use in the optoelectronics industries. In order to satisfy the needs of a broad range of these applications, thin films with an extensive properties span defined by film composition, thickness, structural properties and morphology are required. This article explains the theory and research status of the various manufacturing processes of tin oxide. The purpose is to analyze the effects of the thin films through distinct forms of deposition. The general finding summarized in this research on SnOX showed that various researchers studied specific characteristics of tin oxide properties restricted by experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Epifani M, Francioso L, Siciliano P, Helwig A, Mueller G, Díaz R, Arbiol J, Morante JR (2007) SnO2 thin films from metalorganic precursors: Synthesis, characterization, microelectronic processing and gas-sensing properties. Sensors Actuators B Chem 124(1):217–226. https://doi.org/10.1016/j.snb.2006.12.029

    Article  Google Scholar 

  2. Göpel W, Schierbaum KD (1995) SnO2 sensors: current status and future prospects. Sensors Actuators B Chem 26(1-3):1–12. https://doi.org/10.1016/0925-4005(94)01546-t

    Article  Google Scholar 

  3. Aswathy BR, Vinay K, Arjun M, Manoj PK. (2019) Deposition of tin oxide thin film by sol-gel dip coating technique and its characterization. Proceedings of the international conference on advanced materials: ICAM 2019 [Internet]. AIP Publishing; 2019; Available from: https://doi.org/10.1063/1.5130344

  4. McAleer JF, Moseley PT, Norris JOW, Williams DE, Taylor P, Tofield BC (1997) Tin oxide based gas sensors. Mater Chem Phys 17(6):577–583. https://doi.org/10.1016/0254-0584(87)90017-4

    Article  Google Scholar 

  5. Zhitomirsky VN, David T, Boxman RL, Goldsmith S, Verdyan A, Soifer YM, Rapoport L (2005) Properties of SnO2 coatings fabricated on polymer substrates using filtered vacuum arc deposition. Thin Solid Films 492(1-2):187–194. https://doi.org/10.1016/j.tsf.2005.06.061

    Article  Google Scholar 

  6. Albin D, Risbud S (1997) Spray pyrolysis processing of optoelectronic materials. Adv Ceram Mater(USA) 2(3A). https://doi.org/10.1111/j.1551-2916.1987.tb00089.x

  7. Manifacier J, Fillard J, Bind J (1991) Deposition of In2O3 SnO2 layers on glass substrates using a spraying method. Thin Solid Films 77(1-3):67–80. https://doi.org/10.1016/0040-6090(81)90361-8

    Article  Google Scholar 

  8. Chopra K, Major S, Pandya D (1993) Transparent conductors—a status review. Thin Solid Films 102(1):1–46. https://doi.org/10.1016/0040-6090(83)90256-0

    Article  Google Scholar 

  9. Bel Hadj Tahar R, Ban T, Ohya Y, Takahashi Y (1998) Tin doped indium oxide thin films: Electrical properties. J Appl Phys 83(5):2631–2645. https://doi.org/10.1063/1.367025

    Article  Google Scholar 

  10. Studenikin S, Golego N, Cocivera M (1998) Optical and electrical properties of undoped ZnO films grown by spray pyrolysis of zinc nitrate solution. J Appl Phys 83(4):2104–2111. https://doi.org/10.1063/1.366944

    Article  Google Scholar 

  11. Coutts TJ, Wu X, Mulligan WP, Webb JM (1996) High-performance, transparent conducting oxides based on cadmium stannate. J Electron Mater 25(6):935–943. https://doi.org/10.1007/bf02666727

    Article  Google Scholar 

  12. Omura K, Veluchamy P, Tsuji M, Nishio T, Murozono M (1999) A pyrosol technique to deposit highly transparent, low-resistance SnO2: F Thin films from dimethyltin dichloride. J Electrochem Soc 146(6):2113. https://doi.org/10.1002/chin.199939215

    Article  Google Scholar 

  13. Kar A, Kundu S, Patra A (2011) Surface defect-related luminescence properties of SnO2 nanorods and nanoparticles. J Phys Chem C 115(1):118–124. https://doi.org/10.1021/jp110313b

    Article  Google Scholar 

  14. Vijayarangamuthu K, Rath S (2014) Nanoparticle size, oxidation state, and sensing response of tin oxide nanopowders using Raman spectroscopy. J Alloys Compd 610:706–712. https://doi.org/10.1016/j.jallcom.2014.04.187

    Article  Google Scholar 

  15. Calestani D, Zha M, Zappettini A, Lazzarini L, Salviati G, Zanotti L, Sberveglieri G (2005) Structural and optical study of SnO2 nanobelts and nanowires. Mater Sci Eng C 25(5-8):625–630. https://doi.org/10.1016/j.msec.2005.07.014

    Article  Google Scholar 

  16. Nemade KR, Waghuley SA (2014) Comparative study of carbon dioxide sensing by Sn-doped TiO2 nanoparticles synthesized by microwave-assisted and solid-state diffusion route. Appl Nanosci 5(4):419–424. https://doi.org/10.1007/s13204-014-0333-2

    Article  Google Scholar 

  17. Kinumoto T, Nagano K, Yamamoto Y, Tsumura T, Toyoda M (2014) Anticorrosion properties of tin oxide coatings for carbonaceous bipolar plates of proton exchange membrane fuel cells. J Power Sources 249:503–508. https://doi.org/10.1016/j.jpowsour.2013.10.065

    Article  Google Scholar 

  18. Tosun BS, Feist RK, Gunawan A, Mkhoyan KA, Campbell SA, Aydil ES (2012) Sputter deposition of semicrystalline tin dioxide films. Thin Solid Films 520(7):2554–2561. https://doi.org/10.1016/j.tsf.2011.10.169

    Article  Google Scholar 

  19. Behrendt A, Friedenberger C, Gahlmann T, Trost S, Becker T, Zilberberg K, Polywka A, Görrn P, Riedl T (2015) Highly robust transparent and conductive gas diffusion barriers based on tin oxide. Adv Mater 27(39):5961–5967. https://doi.org/10.1002/adma.201502973

    Article  Google Scholar 

  20. Beneking C, Rech B, Wieder S, Kluth O, Wagner H, Frammelsberger W, Geyer R, Lechner P, Rübel H, Schade H (1999) Recent developments of silicon thin film solar cells on glass substrates. Thin Solid Films 351(1-2):241–246. https://doi.org/10.1016/s0040-6090(98)01793-3

    Article  Google Scholar 

  21. Rosental A, Tarre A, Gerst A, Uustare T, Sammelselg V (2001) Atomic-layer chemical vapor deposition of SnO2 for gas-sensing applications. Sensors Actuators B Chem 77(1-2):297–300. https://doi.org/10.1016/s0925-4005(01)00746-8

    Article  Google Scholar 

  22. Jin C, Yamazaki T, Ito K, Kikuta T, Nakatani N (2006) H2S sensing property of porous SnO2 sputtered films coated with various doping films. Vacuum 80(7):723–725. https://doi.org/10.1016/j.vacuum.2005.11.002

    Article  Google Scholar 

  23. Yang H, Zhang X, Tang A (2006) Mechanosynthesis and gas-sensing properties of In2O3/SnO2 nanocomposites. Nanotechnology 17(12):2860. https://doi.org/10.1088/0957-4484/17/12/006

    Article  Google Scholar 

  24. Hagemeyer A, Hogan Z, Schlichter M, Smaka B, Streukens G, Turner H, Volpe Jr A, Weinberg H, Yaccato K (2007) High surface area tin oxide. Appl Catal A Gen 317(2):139–148. https://doi.org/10.1016/j.apcata.2006.09.040

    Article  Google Scholar 

  25. Hosono H, Ohta H, Orita M, Ueda K, Hirano M (2002) Frontier of transparent conductive oxide thin films. Vacuum 66(3-4):419–425. https://doi.org/10.1016/s0042-207x(02)00165-3

    Article  Google Scholar 

  26. Wang GF, Tao XM, Huang HM (2005) Light-emitting devices for wearable flexible displays. Color Technol 121(3):132–138. https://doi.org/10.1111/j.1478-4408.2005.tb00263.x

    Article  Google Scholar 

  27. Vergöhl M, Malkomes N, Matthee T, Bräuer G, Richter U, Nickol FW, Bruch J (2001) In situ monitoring of optical coatings on architectural glass and comparison of the accuracy of the layer thickness attainable with ellipsometry and photometry. Thin Solid Films 392(2):258–264. https://doi.org/10.1016/s0040-6090(01)01040-9

    Article  Google Scholar 

  28. Chen JS, Lou XW (2013) SnO2-based nanomaterials: synthesis and application in lithium-ion batteries. Small 9(11):1877–1893. https://doi.org/10.1002/smll.201202601

    Article  Google Scholar 

  29. Nazarov DV, Maximov MY, Novikov PA, Popovich AA, Silin AO, Smirnov VM et al (2017) Atomic layer deposition of tin oxide using tetraethyltin to produce high-capacity Li-ion batteries. J Vac Sci Technol A 35(1):01B137. https://doi.org/10.1116/1.4972554

    Article  Google Scholar 

  30. Roy P, S.K. (2015) Srivastava, Nanostructured anode materials for lithium ion batteries. J Mater Chem A 3(6):2454–2484. https://doi.org/10.1039/c4ta04980b

    Article  Google Scholar 

  31. Reddy M, Subba Rao G, B. (2013) Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113(7):5364–5457. https://doi.org/10.1021/cr3001884

    Article  Google Scholar 

  32. Shrotriya V, Li G, Yao Y, Chu CW, Yang Y (2006) Transition metal oxides as the buffer layer for polymer photovoltaic cells. Appl Phys Lett 88(7):073508. https://doi.org/10.1063/1.2174093

    Article  Google Scholar 

  33. Betz U, Olsson MK, Marthy J, Escolá MF, Atamny F (2006) Thin films engineering of indium tin oxide: large area flat panel displays application. Surf Coat Technol 200(20-21):5751–5759. https://doi.org/10.1016/j.surfcoat.2005.08.144

    Article  Google Scholar 

  34. Adnane M, Cachet H, Folcher G, Hamzaoui S (2005) Beneficial effects of hydrogen peroxide on growth, structural and electrical properties of sprayed fluorine-doped SnO2 films. Thin Solid Films 492(1-2):240–247. https://doi.org/10.1016/j.tsf.2005.06.085

    Article  Google Scholar 

  35. Viirola H, Niinistö L (1994) Controlled growth of antimony-doped tin dioxide thin films by atomic layer epitaxy. Thin Solid Films 251(2):127–135. https://doi.org/10.1016/0040-6090(94)90677-7

    Article  Google Scholar 

  36. Aguir K, Bernardini S, Lawson B, Fiorido T (2020) Trends in metal oxide thin films: Synthesis and applications of tin oxide. Tin Oxide Mater:219–246. https://doi.org/10.1016/b978-0-12-815924-8.00008

  37. Benhaoua A, Rahal A, Benhaoua B, Jlassi M (2014) Effect of fluorine doping on the structural, optical and electrical properties of SnO2 thin films prepared by spray ultrasonic. Superlattice Microst 70:61–69. https://doi.org/10.1016/j.spmi.2014.02.005

    Article  Google Scholar 

  38. Mishra S, Ghanshyam C, Ram N, Singh S, Bajpai RP, Bedi RK (2002) Alcohol sensing of tin oxide thin film prepared by sol-gel process. Bull Mater Sci 25(3):231–234. https://doi.org/10.1007/bf02711159

    Article  Google Scholar 

  39. Batzill M, Diebold U (2005) The surface and materials science of tin oxide. Prog Surf Sci 79(2-4):47–154. https://doi.org/10.1016/j.progsurf.2005.09.002

    Article  Google Scholar 

  40. Das S, Jayaraman V (2014) SnO2: A comprehensive review on structures and gas sensors. Prog Mater Sci 66:112–255. https://doi.org/10.1016/j.pmatsci.2014.06.003

    Article  Google Scholar 

  41. Krivetskiy VV, Rumyantseva MN, Gaskov AM (2013) Chemical modification of nanocrystalline tin dioxide for selective gas sensors. Russ Chem Rev 82(10):917. https://doi.org/10.1070/rc2013v082n10abeh004366

    Article  Google Scholar 

  42. Arafat MM, Dinan B, Akbar SA, Haseeb ASMA (2012) Gas sensors based on one dimensional nanostructured metal-oxides: a review. Sensors 12(6):7207–7258. https://doi.org/10.3390/s120607207

    Article  Google Scholar 

  43. Choi G, Satyanarayana L, Park J (2006) Effect of process parameters on surface morphology and characterization of PE-ALD SnO2 thin films for gas sensing. Appl Surf Sci 252(22):7878–7883. https://doi.org/10.1016/j.apsusc.2005.09.069

    Article  Google Scholar 

  44. Dutaive M, Lalauze R, Pijolat C (1995) Sintering, catalytic effects and defect chemistry in polycrystalline tin oxide. Sensors Actuators B 26:26–27. https://doi.org/10.1016/0925-4005(94)01552-s

    Article  Google Scholar 

  45. Ray SC, Karanjai MK, DasGupta D (1998) Tin dioxide based transparent semiconducting films deposited by the dip-coating technique. Surf Coat Technol 102(1-2):73–80. https://doi.org/10.1016/s0257-8972(97)00561-6

    Article  Google Scholar 

  46. Rahal A, Benhaoua A, Jlassi M, Benhaoua B (2015) Structural, optical and electrical properties studies of ultrasonically deposited tin oxide (SnO2) thin films with different substrate temperatures. Superlattice Microst 86:403–411. https://doi.org/10.1016/j.spmi.2015.08.003

    Article  Google Scholar 

  47. Ichimura M, Shibayama K, Masui K (2004) Fabrication of SnO2 thin films by a photochemical deposition method. Thin Solid Films 466(1-2):34–36. https://doi.org/10.1016/j.tsf.2004.01.117

    Article  Google Scholar 

  48. Abdul-Hamead AA (2018) Properties of SnO2 thin films deposited by chemical spray pyrolysis using different precursor solutions. https://doi.org/10.1063/1.5039204

  49. Park JJ, Kim KK, Roy M, Song JK, Park SM (2015) Characterization of SnO2thin films grown by pulsed laser deposition under transverse magnetic field. Rapid Commun Photosci 4(3):50–53. https://doi.org/10.5857/rcp.2015.4.3.50

    Article  Google Scholar 

  50. Shamala K, Murthy L, Rao KN (2004) Studies on tin oxide films prepared by electron beam evaporation and spray pyrolysis methods. Bull Mater Sci 27(3):295–301. https://doi.org/10.1007/bf02708520

    Article  Google Scholar 

  51. Monteiro OC, Mendonca MHM, Pereira MIS, Nogueira JMF (2006) Preparation of lead and tin oxide thin films by spin coating and their application on the electrodegradation of organic pollutants. J Solid-State Electrochem 10(1):41–47. https://doi.org/10.1007/s10008-005-0652-z

    Article  Google Scholar 

  52. Van Mol AMB, Chae Y, McDaniel AH, Allendorf MD (2006) Chemical vapor deposition of tin oxide: fundamentals and applications. Thin Solid Films 502(1-2):72–78. https://doi.org/10.1016/j.tsf.2005.07.247

    Article  Google Scholar 

  53. Ponraj JS, Attolini G, Bosi M (2013) Review on atomic layer deposition and applications of oxide thin films. Critic Rev Solid State Mater Sci 38(3):203–233. https://doi.org/10.1080/10408436.2012.736886

    Article  Google Scholar 

  54. Akl AA (2004) Microstructure and electrical properties of iron oxide thin films deposited by spray pyrolysis. Appl Surf Sci 221(1-4):319–329. https://doi.org/10.1016/s0169-4332(03)00951-6

    Article  Google Scholar 

  55. Murthy L, Rao KK (1999) Thickness dependent electrical properties of CdO thin films prepared by spray pyrolysis method. Bull Mater Sci 22(6):953–957. https://doi.org/10.1007/bf02745685

    Article  Google Scholar 

  56. Blunden SJ, Cusack PA, Hill R (1995) The industrial uses of tin chemicals. Vol. 337. Royal Society of Chemistry, London. https://doi.org/10.1002/ange.19860981142

    Book  Google Scholar 

  57. Pengyi L, Junfang C, Wangdian S (2004) Sheet resistance and gas-sensing properties of tin oxide thin films by Plasma enhanced chemical vapor deposition. Plasma Sci Technol 6(2):2259. https://doi.org/10.1088/1009-0630/6/2/015

    Article  Google Scholar 

  58. Brinzari V, Korotcenkov G, Golovanov V, Schwank J, Lantto V, Saukko S (2002) Morphological rank of nano-scale tin dioxide films deposited by spray pyrolysis from SnCl4·5H2O water solution. Thin Solid Films 408(1-2):51–58. https://doi.org/10.1016/s0040-6090(02)00086-x

    Article  Google Scholar 

  59. Saadie J (2014) Influence of thickness on electrical and optical properties of tellurium thin films deposited by chemical spray pyrolysis. Int J Appl Math Electron Comput 3, 96(2):–101. https://doi.org/10.18100/ijamec.27133

  60. Akl AA (2004) Optical properties of crystalline and non-crystalline iron oxide thin films deposited by spray pyrolysis. Appl Surf Sci 233(1-4):307–319. https://doi.org/10.1016/j.apsusc.2004.03.263

    Article  Google Scholar 

  61. Yadav AA (2015) SnO2 thin film electrodes deposited by spray pyrolysis for electrochemical supercapacitor applications. J Mater Sci Mater Electron 27(2):1866–1872. https://doi.org/10.1007/s10854-015-3965-4

    Article  Google Scholar 

  62. Patil GE, Kajale DD, Gaikwad VB, Jain GH (2012) Spray pyrolysis deposition of nanostructured tin oxide thin films. ISRN Nanotechnol 2012:2012–2015. https://doi.org/10.5402/2012/275872

    Article  Google Scholar 

  63. Sears W, Gee MA (1998) Mechanics of film formation during the spray pyrolysis of tin oxide. Thin Solid Films 165(1):265–277. https://doi.org/10.1016/0040-6090(88)90698-0

    Article  Google Scholar 

  64. Thiagarajan S, Sanmugam A, Vikraman D (2017) Facile methodology of sol-gel synthesis for metal oxide nanostructures. Recent Applications in Sol-Gel Synthesis, p. 1-17. https://doi.org/10.5772/intechopen.68708

  65. Levy D, Zayat M (Eds.). (2015). The Sol-Gel Handbook. https://doi.org/10.1002/9783527670819

  66. López TM, Avnir D, Aegerter MA (2013) Emerging fields in sol-gel science and technology: Springer Science & Business Media. doi https://doi.org/10.1007/978-1-4615-0449-8

  67. Lee SC, Lee JH, Oh TS, Kim YH (2003) Fabrication of tin oxide film by sol–gel method for photovoltaic solar cell system. Sol Energy Mater Sol Cells 75(3-4):481–487. https://doi.org/10.1016/s0927-0248(02)00201-5

    Article  Google Scholar 

  68. Korotcenkov G, Brinzari V, Ivanov M, Cerneavschi A, Rodriguez J, Cirera A, Morante J (2005) Structural stability of indium oxide films deposited by spray pyrolysis during thermal annealing. Thin Solid Films 479(1-2):38–51. https://doi.org/10.1016/j.tsf.2004.11.107

    Article  Google Scholar 

  69. Dislich H, Hussmann E (1991) Amorphous and crystalline dip coatings obtained from organometallic solutions: procedures, chemical processes and products. Thin Solid Films 77(1-3):129–140. https://doi.org/10.1016/0040-6090(81)90369-2

    Article  Google Scholar 

  70. Chatelon JP, Terrier C, Bernstein E, Berjoan R, Roger JA (1994) Morphology of SnO2 thin films obtaibed by the sol-gel technique. Thin Solid Films 247(2):162–168. https://doi.org/10.1016/0040-6090(94)90794-3

    Article  Google Scholar 

  71. Kumar A, Nanda D (2019) Methods and fabrication techniques of superhydrophobic surfaces, in Superhydrophobic Polymer Coatings. Elsevier. p. 43-75. doi https://doi.org/10.1016/b978-0-12-816671-0.00004-7

  72. Neacşu IA, Nicoară AI, Vasile OR, Vasile BŞ (2016) Inorganic micro- and nanostructured implants for tissue engineering. Nanobiomater Hard Tissue Eng 4:271–295. https://doi.org/10.1016/b978-0-323-42862-0.00009-2

    Article  Google Scholar 

  73. Karanjai MK, Dasgupta D (1997) Preparation and study of sulphide thin films deposited by the dip technique. Thin Solid Films 155(2):309–315. https://doi.org/10.1016/0040-6090(87)90075-7

    Article  Google Scholar 

  74. Zhao J, Huo LH, Gao S, Zhao H, Zhao JG (2006) Alcohols and acetone sensing properties of SnO2 thin films deposited by dip-coating. Sensors Actuators B Chem 115(1):460–464. https://doi.org/10.1016/j.snb.2005.10.024

    Article  Google Scholar 

  75. Dominguez M, Luna-Lopez JA, Flores FJ (2017) Semiconductor materials by ultrasonic spray pyrolysis and their application in electronic devices. Pyrolysis, p. 251. doi https://doi.org/10.5772/67548

  76. Alarcon-Flores G, Aguilar-Frutis MIGUEL, García-Hipolito MANUEL, Guzman-Mendoza J, Canseco MA, Falcony C (2008) Optical and structural characteristics of Y 2 O 3 thin films synthesized from yttrium acetylacetonate. J Mater Sci 43(10):3582–3588. https://doi.org/10.1007/s10853-008-2566-5

    Article  Google Scholar 

  77. Sánchez-García MA, Maldonado A, Castañeda L, Silva-González R, de la Luz Olvera M (2012) Characteristics of SnO2: F thin films deposited by ultrasonic spray pyrolysis: effect of water content in solution and substrate temperature. Mater Sci Appl 3(10):690–696. https://doi.org/10.4236/msa.2012.310101

    Article  Google Scholar 

  78. Jadsadapattarakul D, Euvananont C, Thanachayanont C, Nukeaw J, Sooknoi T (2008) Tin oxide thin films deposited by ultrasonic spray pyrolysis. Ceram Int 34(4):1051–1054. https://doi.org/10.1016/j.ceramint.2007.09.096

    Article  Google Scholar 

  79. Park H-H, Park H-H, Hill RH (2004) Stacking effect on the ferroelectric properties of PZT/PLZT multilayer thin films formed by photochemical metal-organic deposition. Appl Surf Sci 237(1-4):427–432. https://doi.org/10.1016/j.apsusc.2004.06.103

    Article  Google Scholar 

  80. Gao M, Hill RH (1998) High efficiency photoresist-free lithography of UO 3 patterns from amorphous films of uranyl complexes. J Mater Res 13(5):1379–1389. https://doi.org/10.1557/jmr.1998.0196

    Article  Google Scholar 

  81. Park H-H, Kim WS, Yang J-K, Park H-H, Hill RH (2004) Characterization of PLZT thin film prepared by photochemical deposition using photosensitive metal-organic precursors. Microelectron Eng 71(2):215–220. https://doi.org/10.1016/j.mee.2003.11.004

    Article  Google Scholar 

  82. Park H-H, Park H-H, Hill RH (2006) Direct-patterning of SnO2 thin film by photochemical metal-organic deposition. Sensors Actuators A Phys 132(2):429–433. https://doi.org/10.1016/j.sna.2006.02.030

    Article  Google Scholar 

  83. Ichimura M, Goto F, Arai E (1999) Photochemical deposition of CdS from aqueous solutions. J Electrochem Soc 146(3):1028. https://doi.org/10.1149/1.1391716

    Article  Google Scholar 

  84. Ichimura M, Takeuchi K, Nakamura A, Arai E (2001) Photochemical deposition of Se and CdSe films from aqueous solutions. Thin Solid Films 384(2):157–159. https://doi.org/10.1016/s0040-6090(00)01826-5

    Article  Google Scholar 

  85. Sasaki H, Shibayama K, Ichimura M, Masui K (2002) Preparation of (Bi, Sb) 2S3 semiconductor films by photochemical deposition method. J Cryst Growth 237:2125–2129. https://doi.org/10.1016/s0022-0248(01)02280-1

    Article  Google Scholar 

  86. Bravo-Vasquez JP, Hill RH (2000) Photolithographic deposition of conducting gold films from thin amorphous films of AuPR3X (X = NO3, RCO2) on silicon surfaces. Polyhedron. 19(3):343–349. https://doi.org/10.1016/s0277-5387(99)00364-2

    Article  Google Scholar 

  87. Avey AA, Hill RH (1996) Solid state photochemistry of Cu2 (OH2)2 (O2C (CH2) 4CH3)4 in thin films: The photochemical formation of high-quality films of copper and copper (I) oxide. Demonstration of a novel lithographic technique for the patterning of copper. J Am Chem Soc 118(1):237–238. https://doi.org/10.1021/ja952937j

    Article  Google Scholar 

  88. Park HH, Yoon S, Park HH, Hill RH (2004) Electrical properties of PZT thin films by photochemical deposition. Thin Solid Films 447:669–673. https://doi.org/10.1016/j.tsf.2003.09.005

    Article  Google Scholar 

  89. Law W, Hill RH (2000) Photolithographic deposition of insulating Al2O3 films from thin amorphous films of aluminum complexes on silicon surfaces. Thin Solid Films 375(1-2):42–45. https://doi.org/10.1016/s0040-6090(00)01177-9

    Article  Google Scholar 

  90. Ando M, Suto S, Suzuki T, Tsuchida T, Nakayama C, Miura N, Yamazoe N (1994) H2S-sensitive thin film fabricated from hydrothermally synthesized SnO2 sol. J Mater Chem 4(4):631. https://doi.org/10.1039/jm9940400631

    Article  Google Scholar 

  91. Baik NS, Sakai G, Miura N, Yamazoe N (2000) Hydrothermally treated sol solution of tin oxide for thin-film gas sensor. Sensors Actuators B Chem 63(1-2):74–79. https://doi.org/10.1016/s0925-4005(99)00513-4

    Article  Google Scholar 

  92. Ren X, Pang L, Zhang Y, Ren X, Fan H, Liu SF (2015) One-step hydrothermal synthesis of monolayer MoS2 quantum dots for highly efficient electrocatalytic hydrogen evolution. J Mater Chem A 3(20):10693–10697. https://doi.org/10.1039/c5ta02198g

    Article  Google Scholar 

  93. Chen Q, Qian Y, Chen Z, Zhou G, Zhang Y (1995) Fabrication of ultrafine SnO2 thin films by the hydrothermal method. Thin Solid Films 264(1):25–27. https://doi.org/10.1016/0040-6090(95)06586-5

    Article  Google Scholar 

  94. Baik, Seok N, Sakai G, Miura N, Yamazoe N (2000) Preparation of stabilized nanosized tin oxide particles by hydrothermal treatment. J Am Ceram Soc 83(12):2983–2987. https://doi.org/10.1111/j.1151-2916.2000.tb01670.x

    Article  Google Scholar 

  95. Jackson T, Palmer S (1994) Oxide superconductor and magnetic metal thin film deposition by pulsed laser ablation: a review. J Phys D Appl Phys 27(8):1581. https://doi.org/10.1088/0022-3727/27/8/001

    Article  Google Scholar 

  96. Torrisi L, Margarone D (2006) Investigations on pulsed laser ablation of Sn at 1064 nm wavelength. Plasma Sources Sci Technol 15(4):635. https://doi.org/10.1088/0963-0252/15/4/007

    Article  Google Scholar 

  97. Handbook of Physical Vapor Deposition (PVD) Processing. (2010) https://doi.org/10.1016/c2009-0-18800-1

  98. Koinkar V, Ogale S (1991) Pulsed excimer laser processing of optical thin films. Thin Solid Films 206(1-2):259–263. https://doi.org/10.1016/0040-6090(91)90432-w

    Article  Google Scholar 

  99. Dawar AL, Kumar A, Sharma S, Tripathi KN, Mathur PC (1993) Effect of laser irradiation on structural, electrical and optical properties of SnO2 films. J Mater Sci 28(3):639–644. https://doi.org/10.1007/bf01151238

    Article  Google Scholar 

  100. Galindo H, Vincent AB, Sánchez-R JC, Laude LD (1993) Excimer laser processing for surface improvement of tin oxide thin films. J Appl Phys 74(1):645–648. https://doi.org/10.1063/1.355226

    Article  Google Scholar 

  101. Kunz R, Rothschild M, Ehrlich D (1998) Selective—area laser photodeposition of transparent conductive SnO2 films. MRS Online Proceedings Library Archive. 129. doi https://doi.org/10.1557/proc-129-447

  102. Treece RE, Horwitz JS, Claassen JH, Chrisey DB (1994) Pulsed laser deposition of high-quality NbN thin films. Appl Phys Lett 65(22):2860–2862. https://doi.org/10.1063/1.112516

    Article  Google Scholar 

  103. Kim H, Gilmore AC, Pique A, Horwitz JS, Mattoussi H, Murata H, ..., Chrisey DB (1999) Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices. J Appl Phys 86(11):6451-6461. doi https://doi.org/10.1063/1.371708

  104. Kim H, Horwitz JS, Kushto GP, Kafafi ZH, Chrisey DB (2001) Indium tin oxide thin films grown on flexible plastic substrates by pulsed-laser deposition for organic light-emitting diodes. Appl Phys Lett 79(3):284–286. https://doi.org/10.1063/1.1383568

    Article  Google Scholar 

  105. Phillips HM, Li Y, Bi Z, Zhang B (1996) Reactive pulsed laser deposition and laser induced crystallization of SnO2 transparent conducting thin films. Appl Phys A 63(4):347–351. https://doi.org/10.1007/s003390050397

    Article  Google Scholar 

  106. Dolbec R, El Khakani MA, Serventi AM, Trudeau M, Saint-Jacques RG (2002) Microstructure and physical properties of nanostructured tin oxide thin films grown by means of pulsed laser deposition. Thin Solid Films 419(1-2):230–236. https://doi.org/10.1016/s0040-6090(02)00769-1

    Article  Google Scholar 

  107. Xu NS, Huq SE (2005) Novel cold cathode materials and applications. Mater Sci Eng R Rep 48(2-5):47–189. https://doi.org/10.1016/j.mser.2004.12.001

    Article  Google Scholar 

  108. Electron Beam Physical Vapor Deposition (EBPVD). (2019) Encyclopedia of Nanotechnology, 1057–1057. doi https://doi.org/10.1007/978-94-017-9780-1_100290

  109. George J, Menon C (2000) Electrical and optical properties of electron beam evaporated ITO thin films. Surf Coat Technol 132(1):45–48. https://doi.org/10.1016/s0257-8972(00)00726-x

    Article  Google Scholar 

  110. Kachouane A, Addou M, Bougrine A, Messoussi R, Regragui M, Bérnede JC (2001) Preparation and characterisation of tin-doped indium oxide films. Mater Chem Phys 70(3):285–289. https://doi.org/10.1016/s0254-0584(00)00492-2

    Article  Google Scholar 

  111. Park YC, Kim YS, Seo HK, Ansari SG, Shin HS (2002) ITO thin films deposited at different oxygen flow rates on Si (100) using the PEMOCVD method. Surf Coat Technol 161(1):62–69. https://doi.org/10.1016/s0257-8972(02)00476-0

    Article  Google Scholar 

  112. Wang CP, Do KB, Beasley MR, Geballe TH, Hammond RH (1997) Deposition of in-plane textured MgO on amorphous Si3N4 substrates by ion-beam-assisted deposition and comparisons with ion-beam-assisted deposited yttria-stabilized-zirconia. Appl Phys Lett 71(20):2955–2957. https://doi.org/10.1063/1.120227

    Article  Google Scholar 

  113. Ektessabi A, Sato S, Kitamura H, Masaki Y (1993) Simulation of ion beam assisted deposition—a comparison with experimental results. Vacuum 44(3-4):213–217. https://doi.org/10.1016/0042-207x(93)90156-5

    Article  Google Scholar 

  114. Ektessabi AM, Kimura H (1995) Characterization of the surface of bio-ceramic thin films. Thin Solid Films 270(1-2):335–340. https://doi.org/10.1016/0040-6090(95)06714-0

    Article  Google Scholar 

  115. Fursey G (1996) Early field emission studies of semiconductors. Appl Surf Sci 94-95:44–59. https://doi.org/10.1016/0169-4332(95)00518-8

    Article  Google Scholar 

  116. Hossain MF, Naka S, Okada H (2018) Annealing effect of E-beam evaporated TiO2 films and their performance in perovskite solar cells. J Photochem Photobiol A Chem 360:109–116. https://doi.org/10.1016/j.jphotochem.2018.04.025

    Article  Google Scholar 

  117. Pan XQ, Fu L, Dominguez JE (2001) Structure–property relationship of nanocrystalline tin dioxide thin films grown on (1̄012) sapphire. J Appl Phys 89(11):6056–6061. https://doi.org/10.1063/1.1368866

    Article  Google Scholar 

  118. Nam SC, Kim YH, Cho WI, Cho BW, Chun HS, Yun KS (1998) Charge-discharge performance of electron-beam-deposited tin oxide thin-film electrodes. Electrochem Solid-State Lett 2(1):9. https://doi.org/10.1149/1.1390717

    Article  Google Scholar 

  119. Vuong DD, Sakai G, Shimanoe K, Yamazoe N (2004) Preparation of grain size-controlled tin oxide sols by hydrothermal treatment for thin film sensor application. Sensors Actuators B Chem 103(1-2):386–391. https://doi.org/10.1016/j.snb.2004.04.122

    Article  Google Scholar 

  120. Adedokun O, Odebunmi BM, Sanusi YK (2018) Effect of fluorine doping on the structural, optical and electrical properties of spin coated tin oxide thin films for solar cells application. (2019). Sci Focus J. https://doi.org/10.36293/sfj.2019.0002

  121. Yilbas BS, Al-Sharafi A, Ali H (2019) Surfaces for self-cleaning. Self-Cleaning Surf Water Droplet Mobil 45–98. doi https://doi.org/10.1016/b978-0-12-814776-4.00003-3

  122. Boudrioua A, Chakaroun M, Fischer A (2017) Introduction. Org Lasers, Elsiver. https://doi.org/10.1016/b978-1-78548-158-1.50009-2

  123. Senez V, Thomy V, Dufour R (2014) Nanotechnologies for synthetic super non-wetting surfaces. Nanotechnol Synth Super Non-Wetting Surf:1–12. https://doi.org/10.1002/9781119015093.ch1

  124. Cavicchi RE, Walton RM, Aquino-Class M, Allen JD, Panchapakesan B (2001) Spin-on nanoparticle tin oxide for microhotplate gas sensors. Sensors Actuators B Chem 77(1-2):145–154. https://doi.org/10.1016/s0925-4005(01)00686-4

    Article  Google Scholar 

  125. Gu F, Wang SF, Lü MK, Cheng XF, Liu SW, Zhou GJ, Xu D, Yuan DR (2004) Luminescence of SnO2 thin films prepared by spin-coating method. J Cryst Growth 262(1-4):182–185. https://doi.org/10.1016/j.jcrysgro.2003.10.028

    Article  Google Scholar 

  126. Kääriäinen T, Cameron D, Kääriäinen M-L, Sherman A (2013) Atomic layer deposition: principles, characteristics, and nanotechnology applications. doi https://doi.org/10.1002/9781118747407

  127. Babu Krishna Moorthy S (Ed.) (2015) Thin Film Structures in Energy Applications. doi https://doi.org/10.1007/978-3-319-14774-1

  128. Morosanu CE (1990) Thin film structure. Thin Films by Chemical Vapour Deposition 177–200. doi https://doi.org/10.1016/b978-0-444-98801-0.50013-6

  129. Seshan K, Schepis D (2018) Handbook of thin film deposition, 103. William Andrew. doi https://doi.org/10.1016/b978-0-12-812311-9.00030-x

  130. Manawi Y, Ihsanullah, Samara A, Al-Ansari T, Atieh M (2018) A Review of carbon nanomaterials’ synthesis via the chemical vapor deposition (CVD) method. Materials 11(5):822. https://doi.org/10.3390/ma11050822

    Article  Google Scholar 

  131. Pierson HO (1999) Fundamentals of chemical vapor deposition. Handbook of Chemical Vapor Deposition (CVD), 36–67. doi https://doi.org/10.1016/b978-081551432-9.50005-x

  132. Ho P (1998) Chemical Vapor Deposition for microelectronics: principles, technology and applications. Arthur Sherman (Noyes Publications, 1987). MRS Bull 13(11):78–78. https://doi.org/10.1557/s0883769400064046

    Article  Google Scholar 

  133. George SM, Park BK, Kim CG, Chung T-M (2014) Heteroleptic group 2 metal precursors for metal oxide thin films. Eur J Inorg Chem 2014(11):2002–2010. https://doi.org/10.1002/ejic.201301296

    Article  Google Scholar 

  134. Giunta CJ, Strickler DA, Gordon RG (1993) Kinetic modeling of the chemical vapor deposition of tin oxide from dimethyltin dichloride and oxygen. J Phys Chem 97(10):2275–2283. https://doi.org/10.1021/j100112a032

    Article  Google Scholar 

  135. Yadava Y, Denicoló G, Arias A, Roman L, Hümmelgen I (1997) Preparation and characterization of transparent conducting tin oxide thin film electrodes by chemical vapour deposition from reactive thermal evaporation of SnCl2. Mater Chem Phys 48(3):263–267. https://doi.org/10.1016/s0254-0584(96)01899-8

    Article  Google Scholar 

  136. Buchanan JL, McKown C (1997) Off-line sheet glass coating system. J Non-Cryst Solids 218:179–184. https://doi.org/10.1016/s0022-3093(97)00292-5

    Article  Google Scholar 

  137. Gordon R (1997) Chemical vapor deposition of coatings on glass. J Non-Cryst Solids 218:81–91. https://doi.org/10.1016/s0022-3093(97)00198-1

    Article  Google Scholar 

  138. McCurdy RJ (1999) Successful implementation methods of atmospheric CVD on a glass manufacturing line. Thin Solid Films 351(1-2):66–72. https://doi.org/10.1016/s0040-6090(99)00199-6

    Article  Google Scholar 

  139. Choy K (2003) Chemical vapour deposition of coatings. Prog Mater Sci 48(2):57–170. https://doi.org/10.1016/s0079-6425(01)00009-3

    Article  Google Scholar 

  140. Yusta FJ, Hitchman ML, Shamlian SH (1997) CVD preparation and characterization of tin dioxide films for electrochemical applications. J Mater Chem 7(8):1421–1427. https://doi.org/10.1039/a608525c

    Article  Google Scholar 

  141. Melsheimer J, Ziegler D (1993) Thin tin oxide films of low conductivity prepared by chemical vapour deposition. Thin Solid Films 109(1):71–83. https://doi.org/10.1016/0040-6090(83)90032-9

    Article  Google Scholar 

  142. Houssa M (Ed.) (2004) High k Gate Dielectrics. https://doi.org/10.1201/9781420034141

  143. Heil SBS, van Hemmen JL, Hodson CJ, Singh N, Klootwijk JH, Roozeboom F, … Kessels WMM (2007) Deposition of TiN and HfO[sub 2] in a commercial 200 mm remote plasma atomic layer deposition reactor. J Vacuum Sci Technol A: Vacuum Surf Films 25(5):1357. https://doi.org/10.1116/1.2753846

  144. Ritala M, Leskelä M (2002) Atomic layer deposition. Handbook of Thin Films, 103–159. doi https://doi.org/10.1016/b978-012512908-4/50005-9

  145. Gerritsen E, Emonet N, Caillat C, Jourdan N, Piazza M, Fraboulet D, Boeck B, Berthelot A, Smith S, Mazoyer P (2005) Evolution of materials technology for stacked-capacitors in 65 nm embedded-DRAM. Solid State Electron 49(11):1767–1775. https://doi.org/10.1016/j.sse.2005.10.024

    Article  Google Scholar 

  146. Jakschik S, Schroeder U, Hecht T, Dollinger G, Bergmaier A, Bartha J (2004) Physical properties of ALD-Al2O3 in a DRAM-capacitor equivalent structure comparing interfaces and oxygen precursors. Mater Sci Eng B 107(3):251–254. https://doi.org/10.1016/j.mseb.2003.09.044

    Article  Google Scholar 

  147. Suk Yang W, Kwan Kim Y, Yang S-Y, Hwak Choi J, Soo Park H, In Lee S, Yoo J-B (2000) Effect of SiO2 intermediate layer on Al2O3/SiO2/n + -poly Si interface deposited using atomic layer deposition (ALD) for deep submicron device applications. Surf Coat Technol 131(1-3):79–83. https://doi.org/10.1016/s0257-8972(00)00763-5

    Article  Google Scholar 

  148. Suntola T (1999) Atomic layer epitaxy. Mater Sci Rep 4(5):261–312. https://doi.org/10.1016/s0920-2307(89)80006-4

    Article  Google Scholar 

  149. Kim H (2003) Atomic layer deposition of metal and nitride thin films: Current research efforts and applications for semiconductor device processing. J Vacuum Sci Technol B: Microelectron Nanometer Struct 21(6):2231. https://doi.org/10.1116/1.1622676

    Article  Google Scholar 

  150. Leskelä M, Ritala M (2003) Atomic layer deposition chemistry: recent developments and future challenges. Angew Chem Int Ed 42(45):5548–5554. https://doi.org/10.1002/anie.200301652

    Article  Google Scholar 

  151. Ghosh AP, Gerenser LJ, Jarman CM, Fornalik JE (2005) Thin-film encapsulation of organic light-emitting devices. Appl Phys Lett 86(22):223503. https://doi.org/10.1063/1.1929867

    Article  Google Scholar 

  152. Groner MD, George SM, McLean RS, Carcia PF (2006) Gas diffusion barriers on polymers using Al2O3 atomic layer deposition. Appl Phys Lett 88(5):051907. https://doi.org/10.1063/1.2168489

    Article  Google Scholar 

  153. Agostinelli G, Delabie A, Vitanov P, Alexieva Z, Dekkers HFW, De Wolf S, Beaucarne G (2006) Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge. Sol Energy Mater Sol Cells 90(18-19):3438–3443. https://doi.org/10.1016/j.solmat.2006.04.014

    Article  Google Scholar 

  154. Reijnen L, Meester B, Goossens A, Schoonman J (2003) Atomic Layer Deposition of CuxS for Solar Energy Conversion. Chem Vap Depos 9(1):15–20. https://doi.org/10.1002/cvde.200290001

    Article  Google Scholar 

  155. Van TT, Chang JP (2005) Controlled erbium incorporation and photoluminescence of Er-doped Y2O3. Appl Phys Lett 87(1):011907. https://doi.org/10.1063/1.1984082

    Article  Google Scholar 

  156. King JS, Neff CW, Summers CJ, Park W, Blomquist S, Forsythe E, Morton D (2003) High-filling-fraction inverted ZnS opals fabricated by atomic layer deposition. Appl Phys Lett 83(13):2566–2568.10.1063/1 1609240

    Article  Google Scholar 

  157. Mayer TM, Elam JW, George SM, Kotula PG, Goeke RS (2003) Atomic-layer deposition of wear-resistant coatings for microelectromechanical devices. Appl Phys Lett 82(17):2883–2885. https://doi.org/10.1063/1.1570926

    Article  Google Scholar 

  158. Scharf T, Prasad S, Dugger M, Kotula P, Goeke R, Grubbs R (2006) Growth, structure, and tribological behavior of atomic layer-deposited tungsten disulphide solid lubricant coatings with applications to MEMS. Acta Mater 54(18):4731–4743. https://doi.org/10.1016/j.actamat.2006.06.009

    Article  Google Scholar 

  159. Johnson RW, Hultqvist A, Bent SF (2014) A brief review of atomic layer deposition: from fundamentals to applications. Mater Today 17(5):236–246. https://doi.org/10.1016/j.mattod.2014.04.026

    Article  Google Scholar 

  160. George SM (2010) Atomic layer deposition: an overview. Chem Rev 110(1):111–131. https://doi.org/10.1021/cr900056b

    Article  Google Scholar 

  161. Knez M, Nielsch K, Niinistö L (2007) Synthesis and surface engineering of complex nanostructures by atomic layer deposition. Adv Mater 19(21):3425–3438. https://doi.org/10.1002/adma.200700079

    Article  Google Scholar 

  162. Sundqvist J, Lu J, Ottosson M, Hårsta A (2006) Growth of SnO2 thin films by atomic layer deposition and chemical vapour deposition: A comparative study. Thin Solid Films 514(1-2):63–68. https://doi.org/10.1016/j.tsf.2006.02.031

    Article  Google Scholar 

  163. Choi W-S (2009) The fabrication of tin oxide films by atomic layer deposition using tetrakis(ethylmethylamino) tin precursor. Trans Electr Electron Mater 10(6):200–202. https://doi.org/10.4313/teem.2009.10.6.200

    Article  Google Scholar 

  164. Tiznado H, Zaera F (2006) Surface chemistry in the atomic layer deposition of tin films from TiCl4and ammonia. J Phys Chem B 110(27):13491–13498. https://doi.org/10.1021/jp062019f

    Article  Google Scholar 

  165. Aaltonen T, Ritala M, Sajavaara T, Keinonen J, Leskelä M (2003) Atomic layer deposition of platinum thin films. Chem Mater 15(9):1924–1928. https://doi.org/10.1021/cm021333t

    Article  Google Scholar 

  166. Pan D, Guan D, Jen T-C, Yuan C (2016) Atomic layer deposition process modeling and experimental investigation for sustainable manufacturing of nano thin films. J Manuf Sci Eng 138(10). https://doi.org/10.1115/1.4034475

  167. Bachmann J (Ed.) (2017) Atomic layer deposition in energy conversion applications. doi https://doi.org/10.1002/9783527694822

  168. Shaeri MR, Jen T-C, Yuan CY (2015) Reactor scale simulation of an atomic layer deposition process. Chem Eng Res Des 94:584–593. https://doi.org/10.1016/j.cherd.2014.09.019

    Article  Google Scholar 

  169. Marquardt AE, Breitung EM, Drayman-Weisser T, Gates G, Phaneuf RJ (2015) Protecting silver cultural heritage objects with atomic layer deposited corrosion barriers. Herit Sci 3(1):37. https://doi.org/10.1186/s40494-015-0066-x

    Article  Google Scholar 

  170. Farmer DB, Gordon RG (2005) ALD of high-κ dielectrics on suspended functionalized SWNTs. Electrochem Solid-State Lett 8(4):G89. https://doi.org/10.1149/1.1862474

    Article  Google Scholar 

  171. Nwanna EC, Coetzee RAM, Jen T-C (2019) Investigating the purge flow rate in a reactor scale simulation of an atomic layer deposition process. Volume 2B: Advanced Manufacturing. doi https://doi.org/10.1115/imece2019-10692

  172. Lim BS, Rahtu A, Gordon RG (2003) Atomic layer deposition of transition metals. Nat Mater 2(11):749–754. https://doi.org/10.1038/nmat1000

    Article  Google Scholar 

  173. Aaltonen T, Ritala M, Sammelselg V, Leskelä M (2004) Atomic layer deposition of iridium thin films. J Electrochem Soc 151(8):G489. https://doi.org/10.1149/1.1761011

    Article  Google Scholar 

  174. Wang X, Tabakman SM, Dai H (2008) Atomic layer deposition of metal oxides on pristine and functionalized graphene. J Am Chem Soc 130(26):8152–8153. https://doi.org/10.1021/ja8023059

    Article  Google Scholar 

  175. Frank MM, Wilk GD, Starodub D, Gustafsson T, Garfunkel E, Chabal YJ, Muller DA (2005) HfO2 and Al2O3 gate dielectrics on GaAs grown by atomic layer deposition. Appl Phys Lett 86(15):152904. https://doi.org/10.1063/1.1899745

    Article  Google Scholar 

  176. Ritala M, Kaupo K, Antti R, Räisänen PI, Markku L, Timo S, Juhani K (2000) Atomic layer deposition of oxide thin films with metal alkoxides as oxygen sources. Science 288(5464):319–321. https://doi.org/10.1126/science.288.5464.319

    Article  Google Scholar 

  177. Kim JY, George SM (2010) Tin monosulfide thin films grown by atomic layer deposition using tin 2,4-pentanedionate and hydrogen sulfide. J Phys Chem C 114(41):17597–17603. https://doi.org/10.1021/jp9120244

    Article  Google Scholar 

  178. Yousfi E, Weinberger B, Donsanti F, Cowache P, Lincot D (2001) Atomic layer deposition of zinc oxide and indium sulfide layers for Cu(In,Ga)Se2 thin-film solar cells. Thin Solid Films 387(1-2):29–32. https://doi.org/10.1016/s0040-6090(00)01838-1

    Article  Google Scholar 

  179. Zaera F (2008) The surface chemistry of thin film atomic layer deposition (ALD) processes for electronic device manufacturing. J Mater Chem 18(30):3521. https://doi.org/10.1039/b803832e

    Article  Google Scholar 

  180. Pellin MJ, Stair PC, Xiong G, Elam JW, Birrell J, Curtiss L, Wang H-H (2005) Mesoporous catalytic membranes: synthetic control of pore size and wall composition. Catal Lett 102(3-4):127–130. https://doi.org/10.1007/s10562-005-5843-9

    Article  Google Scholar 

  181. Elam JW, Routkevitch D, Mardilovich PP, George SM (2003) Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition. Chem Mater 15(18):3507–3517. https://doi.org/10.1021/cm0303080

    Article  Google Scholar 

  182. Wei Z, Hai Z, Akbari MK, Qi D, Xing K, Zhao Q, Verpoort F, Hu J, Hyde L, Zhuiykov S (2018) Atomic layer deposition-developed two-dimensional α-MoO3 windows excellent hydrogen peroxide electrochemical sensing capabilities. Sensors Actuators B Chem 262:334–344. https://doi.org/10.1016/j.snb.2018.01.243

    Article  Google Scholar 

  183. Bakke JR, Pickrahn KL, Brennan TP, Bent SF (2011) Nanoengineering and interfacial engineering of photovoltaics by atomic layer deposition. Nanoscale 3(9):3482. https://doi.org/10.1039/c1nr10349k

    Article  Google Scholar 

  184. Van Delft JA, Garcia-Alonso D, Kessels WMM (2012) Atomic layer deposition for photovoltaics: applications and prospects for solar cell manufacturing. Semicond Sci Technol 27(7):074002. https://doi.org/10.1088/0268-1242/27/7/074002

    Article  Google Scholar 

  185. Hatanpää T, Ritala M, Leskelä M (2013) Precursors as enablers of ALD technology: contributions from University of Helsinki. Coord Chem Rev 257(23-24):3297–3322. https://doi.org/10.1016/j.ccr.2013.07.002

    Article  Google Scholar 

  186. Miikkulainen V, Leskelä M, Ritala M, Puurunen RL (2013) Crystallinity of inorganic films grown by atomic layer deposition: overview and general trends. J Appl Phys 113(2):021301. https://doi.org/10.1063/1.4757907

    Article  Google Scholar 

  187. Warner EJ, Johnson F, Campbell SA, Gladfelter WL (2015) Atomic layer deposition of tin oxide and zinc tin oxide using tetraethyltin and ozone. J Vac Sci Technol A 33(2):021517. https://doi.org/10.1116/1.4907562

    Article  Google Scholar 

  188. Heo J, Hock AS, Gordon RG (2010) Low temperature atomic layer deposition of tin oxide. Chem Mater 22(17):4964–4973. https://doi.org/10.1021/cm1011108

    Article  Google Scholar 

  189. Mullings MN, Hägglund C, Bent SF (2013) Tin oxide atomic layer deposition from tetrakis(dimethylamino)tin and water. J Vac Sci Technol A 31(6):061503. https://doi.org/10.1116/1.4812717

    Article  Google Scholar 

  190. Li AD, Liu WC (2010) Optical properties of ferroelectric nanocrystal/polymer composites. In Physical Properties and Applications of Polymer Nanocomposites (pp. 108-158). Woodhead Publishing. doi https://doi.org/10.1533/9780857090249.1.108

  191. Sōmiya S, Roy R (2000) Hydrothermal synthesis of fine oxide powders. Bull Mater Sci 23(6):453–460. https://doi.org/10.1007/bf02903883

    Article  Google Scholar 

  192. Du X, George SM (2008) Thickness dependence of sensor response for CO gas sensing by tin oxide films grown using atomic layer deposition. Sensors Actuators B Chem 135(1):152–160. https://doi.org/10.1016/j.snb.2008.08.015

    Article  Google Scholar 

Download references

Acknowledgements

The authors hereby devote acknowledgement to the University Research Commission (URC), the Global Excellence Stature (GES) as well as the National Research Foundation (NRF) South Africa for being supportive financially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tien-Chien Jen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nwanna, E.C., Imoisili, P.E. & Jen, TC. Fabrication and synthesis of SnOX thin films: a review. Int J Adv Manuf Technol 111, 2809–2831 (2020). https://doi.org/10.1007/s00170-020-06223-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-06223-8

Keywords

Navigation