Skip to main content

Innate Immunity in Plants: The Role of Antimicrobial Peptides

  • Chapter
  • First Online:
Antimicrobial Peptides and Innate Immunity

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Antimicrobial peptides (AMPs) are part of innate immunity, establishing a first line of defense against pathogens. All plant organs express AMPs constitutively or in response to microbial challenges. Plant AMPs are structurally and functionally diverse. Five classes of AMPs are considered in this review, the thionins, defensins, lipid transfer proteins (LTPs), snakins, and a group of related knottins, cyclotides and hevein-like AMPs. Besides targeting fungal, bacterial, and oomycete pathogens, certain AMPs can be directed against other organisms, like herbivorous insects. The biological activity of plant AMPs primarily depends on interactions with membrane lipids, but other modes of action exist as in the case of defensins with α-amylase activity or a defensin-like peptide that interacts with a receptor kinase. Limited information exists on the regulated expression of plant AMPs, their processing, and posttranslational modification. Conclusive data on the role of certain AMPs in plant defense have only recently become available. This review can therefore only be considered as a snapshot of the progress in this field of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerts A, Francois IEJA, Meertt EMK, Li Q-T, Cammue BPA, Thevissen K (2007) The antifungal activity of RsAFP2, a plant defensin from Raphanus sativus involves the induction of reactive oxygen species in Candida albicans. J Mol Microbiol Biotechnol 13:243–247

    Article  PubMed  CAS  Google Scholar 

  • Allan A, Snyder AK, Preuss M, Nielsen EE, Shah DM, Smith TJ (2008) Plant defensins and virally encoded fungal toxin KP4 inhibit plant root growth. Planta 227:331–339

    Article  CAS  Google Scholar 

  • Almasia NI, Bazzini AA, Hopp HE, Vazquez-Rovere C (2008) Overexpression of snakin-1 gene enhances resistance to Rhizoctonia solani and Erwinia carotovora in transgenic potato plants. Mol Plant Pathol 9:329–338

    Article  PubMed  CAS  Google Scholar 

  • Balaji V, Sessa G, Smart CD (2010) Silencing of host basal defense response-related gene expression increases susceptibility of Nicotiana benthamiana to Clavibacter michiganensis subsp. michiganensis. Phytopathology 101:349–357

    Article  CAS  Google Scholar 

  • Balls AK, Hale WS, Harris TH (1942) A crystalline protein obtained from a lipoprotein of wheat flour. Cereal Chem 19:279–288

    CAS  Google Scholar 

  • Barbeta BL, Marshall AT, Gillon AD, Craik DJ, Anderson MA (2008) Plant cyclotides disrupt epithelial cells in the midgut of lepidopteran larvae. Proc Natl Acad Sci USA 105:1221–1225

    Article  PubMed  Google Scholar 

  • Bergey DR, Howe GA, Ryan CA (1996) Polypeptide signaling for plant defensive genes exhibits analogies to defense signaling in animals. Proc Natl Acad Sci USA 93:12053–12058

    Article  PubMed  CAS  Google Scholar 

  • Berrocal-Lobo M, Segura A, Moreno M, Lopez G, Garcia-Olmedo F, Molina A (2002) Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiol 128:951–961

    Article  PubMed  CAS  Google Scholar 

  • Biragyn A, Ruffini PA, Leifer CA, Klyushnenkova E, Shakhov A, Chertov O, Shirakawa AK, Farber JM, Segal DM, Oppenheim JJ, Kwak LW (2002) Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 298:1025–1029

    Article  PubMed  CAS  Google Scholar 

  • Bloch C Jr, Richardson M (1991) A new family of small (5 kD) protein inhibitors of insect alpha-amylases from seeds of sorghum (Sorghum bicolor Moench) have sequence homologies with wheat gamma-purothionins. FEBS Lett 279:101–104

    Article  PubMed  CAS  Google Scholar 

  • Bloj B, Zilversmit DB (1977) Rat liver proteins capable of transferring phosphatidylethanolamine. Purification and transfer activity for other phospholipids and cholesterol. J Biol Chem 252:1613–1619

    PubMed  CAS  Google Scholar 

  • Bohlmann H, Apel K (1991) Thionins. Annu Rev Plant Physiol Plant Mol Biol 42:227–240

    Article  CAS  Google Scholar 

  • Bohlmann H, Clausen S, Behnke S, Giese H, Hiller C, Reimann-Philipp U, Schrader G, Barkholt V, Apel K (1988) Leaf-specific thionins of barley-a novel class of cell wall proteins toxic to plant-pathogenic fungi and possibly involved in the defence mechanism of plants. EMBO J 7:1559–1565

    PubMed  CAS  Google Scholar 

  • Bohlmann H, Vignutelli A, Hilpert B, Miersch O, Wasternack C, Apel K (1998) Wounding and chemicals induce expression of the Arabidopsis thaliana gene Thi2.1, encoding a fungal defense thionin, via the octadecanoid pathway. FEBS Lett 437:281–286

    Article  PubMed  CAS  Google Scholar 

  • Broekaert WF, Marien W, Terras FR, De Bolle MF, Proost P, Van Damme J, Dillen L, Claeys M, Rees SB, Vanderleyden J et al (1992) Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin-binding proteins. Biochemistry 31:4308–4314

    Article  PubMed  CAS  Google Scholar 

  • Brown RL, Kazan K, McGrath KC, Maclean DJ, Manners JM (2003) A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiol 132:1020–1032

    Article  PubMed  CAS  Google Scholar 

  • Bruix M, Jimenez MA, Santoro J, Gonzalez C, Colilla FJ, Mendez E, Rico M (1993) Solution structure of gamma 1-H and gamma 1-P thionins from barley and wheat endosperm determined by 1H-NMR: a structural motif common to toxic arthropod proteins. Biochemistry 32:715–724

    Article  PubMed  CAS  Google Scholar 

  • Buhot N, Douliez JP, Jacquemard A, Marion D, Tran V, Maume BF, Milat ML, Ponchet M, Mikes V, Kader JC, Blein JP (2001) A lipid transfer protein binds to a receptor involved in the control of plant defence responses. FEBS Lett 509:27–30

    Article  PubMed  CAS  Google Scholar 

  • Bureau TE, Ronald PC, Wessler SR (1996) A computer-based systematic survey reveals the predominance of small inverted-repeat elements in wild-type rice genes. Proc Natl Acad Sci USA 93:8524–8529

    Article  PubMed  CAS  Google Scholar 

  • Caaveiro JM, Molina A, Gonzalez-Manas JM, Rodriguez-Palenzuela P, Garcia-Olmedo F, Goni FM (1997) Differential effects of five types of antipathogenic plant peptides on model membranes. FEBS Lett 410:338–342

    Article  PubMed  CAS  Google Scholar 

  • Cammue BP, De Bolle MF, Terras FR, Proost P, Van Damme J, Rees SB, Vanderleyden J, Broekaert WF (1992) Isolation and characterization of a novel class of plant antimicrobial peptides form Mirabilis jalapa L. seeds. J Biol Chem 267:2228–2233

    PubMed  CAS  Google Scholar 

  • Cammue BP, Thevissen K, Hendriks M, Eggermont K, Goderis IJ, Proost P, Van Damme J, Osborn RW, Guerbette F, Kader JC et al (1995) A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins. Plant Physiol 109:445–455

    Article  PubMed  CAS  Google Scholar 

  • Chagolla-Lopez A, Blanco-Labra A, Patthy A, Sanchez R, Pongor S (1994) A novel alpha-amylase inhibitor from amaranth (Amaranthus hypocondriacus) seeds. J Biol Chem 269:23675–23680

    PubMed  CAS  Google Scholar 

  • Charvolin D, Douliez JP, Marion D, Cohen-Addad C, Pebay-Peyroula E (1999) The crystal structure of a wheat nonspecific lipid transfer protein (ns-LTP1) complexed with two molecules of phospholipid at 2.1 A resolution. Eur J Biochem 264:562–568

    Article  PubMed  CAS  Google Scholar 

  • Chaturvedi R, Krothapalli K, Makandar R, Nandi A, Sparks AA, Roth MR, Welti R, Shah J (2008) Plastid omega3-fatty acid desaturase-dependent accumulation of a systemic acquired resistance inducing activity in petiole exudates of Arabidopsis thaliana is independent of jasmonic acid. Plant J 54:106–117

    Article  PubMed  CAS  Google Scholar 

  • Chen B, Colgrave ML, Wang C, Craik DJ (2006) Cycloviolacin H4, a hydrophobic cyclotide from Viola hederaceae. J Nat Prod 69:23–28

    Article  PubMed  CAS  Google Scholar 

  • Cornet B, Bonmatin JM, Hetru C, Hoffmann JA, Ptak M, Vovelle F (1995) Refined three-dimensional solution structure of insect defensin A. Structure 3:435–448

    Article  PubMed  CAS  Google Scholar 

  • Coulson EJ, Harris TH, Axelrod B (1942) Effect on small laboratory animals of the injection of the crystalline hydrochloride of a sulfur protein from wheat flour. Cereal Chem 19:301–307

    CAS  Google Scholar 

  • Craik DJ, Cemazar M, Wang CK, Daly NL (2006) The cyclotide family of circular miniproteins: nature’s combinatorial peptide template. Biopolymers 84:250–266

    Article  PubMed  CAS  Google Scholar 

  • De Bolle MF, Eggermont K, Duncan RE, Osborn RW, Terras FR, Broekaert WF (1995) Cloning and characterization of two cDNA clones encoding seed-specific antimicrobial peptides from Mirabilis jalapa L. Plant Mol Biol 28:713–721

    Article  PubMed  Google Scholar 

  • De Bolle MF, Osborn RW, Goderis IJ, Noe L, Acland D, Hart CA, Torrekens S, Van Leuven F, Broekaert WF (1996) Antimicrobial peptides from Mirabilis jalapa and Amaranthus caudatus: expression, processing, localization and biological activity in transgenic tobacco. Plant Mol Biol 31:993–1008

    Article  PubMed  Google Scholar 

  • De Coninck BM, Sels J, Venmans E, Thys W, Goderis IJ, Carron D, Delaure SL, Cammue BP, De Bolle MF, Mathys J (2010) Arabidopsis thaliana plant defensin AtPDF1.1 is involved in the plant response to biotic stress. New Phytol 187:1075–1088

    Article  PubMed  CAS  Google Scholar 

  • Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E, Ryals J (1994) A central role of salicylic acid in plant disease resistance. Science 266:1247–1250

    Article  PubMed  CAS  Google Scholar 

  • Douliez JP, Jegou S, Pato C, Molle D, Tran V, Marion D (2001) Binding of two mono-acylated lipid monomers by the barley lipid transfer protein, LTP1, as viewed by fluorescence, isothermal titration calorimetry and molecular modelling. Eur J Biochem 268:384–388

    Article  PubMed  CAS  Google Scholar 

  • Douliez JP, Michon T, Marion D (2000) Steady-state tyrosine fluorescence to study the lipid-binding properties of a wheat non-specific lipid-transfer protein (nsLTP1). Biochim Biophys Acta 1467:65–72

    Article  CAS  Google Scholar 

  • Dutton JL, Renda RF, Waine C, Clark RJ, Daly NL, Jennings CV, Anderson MA, Craik DJ (2004) Conserved structural and sequence elements implicated in the processing of gene-encoded circular proteins. J Biol Chem 279:46858–46867

    Article  PubMed  CAS  Google Scholar 

  • Epple P, Apel K, Bohlmann H (1995) An Arabidopsis thaliana thionin gene is inducible via a signal transduction pathway different from that for pathogenesis-related proteins. Plant Physiol 109:813–820

    Article  PubMed  CAS  Google Scholar 

  • Epple P, Apel K, Bohlmann H (1997) Overexpression of an endogenous thionin enhances resistance of Arabidopsis against Fusarium oxysporum. Plant Cell 9:509–520

    PubMed  CAS  Google Scholar 

  • Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–276

    Article  PubMed  CAS  Google Scholar 

  • Felizmenio-Quimio ME, Daly NL, Craik DJ (2001) Circular proteins in plants: solution structure of a novel macrocyclic trypsin inhibitor from Momordica cochinchinensis. J Biol Chem 276:22875–22882

    Article  PubMed  CAS  Google Scholar 

  • Fernandez de Caleya R, Gonzalez-Pascual B, Garcia-Olmedo F, Carbonero P (1972) Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro. Appl Microbiol 23:998–1000

    PubMed  CAS  Google Scholar 

  • Fleming AJ, Mandel T, Hofmann S, Sterk P, de Vries SC, Kuhlemeier C (1992) Expression pattern of a tobacco lipid transfer protein gene within the shoot apex. Plant J 2:855–862

    PubMed  CAS  Google Scholar 

  • Franco OL, Murad AM, Leite JR, Mendes PA, Prates MV, Bloch C Jr (2006) Identification of a cowpea gamma-thionin with bactericidal activity. FEBS J 273:3489–3497

    Article  PubMed  CAS  Google Scholar 

  • Funderburg N, Lederman MM, Feng Z, Drage MG, Jadlowsky J, Harding CV, Weinberg A, Sieg SF (2007) Human β-defensin-3 activates professional antigen-presenting cells via Toll-like receptors 1 and 2. Proc Natl Acad Sci USA 104:18631–18635

    Article  PubMed  CAS  Google Scholar 

  • Gao GH, Liu W, Dai JX, Wang JF, Hu Z, Zhang Y, Wang DC (2001a) Molecular scaffold of a new pokeweed antifungal peptide deduced by 1H nuclear magnetic resonance. Int J Biol Macromol 29:251–258

    Article  PubMed  CAS  Google Scholar 

  • Gao GH, Liu W, Dai JX, Wang JF, Hu Z, Zhang Y, Wang DC (2001b) Solution structure of PAFP-S: a new knottin-type antifungal peptide from the seeds of Phytolacca americana. Biochemistry 40:10973–10978

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Olmedo F, Molina A, Segura A, Moreno M (1995) The defensive role of nonspecific lipid-transfer proteins in plants. Trends Microbiol 3:72–74

    Article  PubMed  CAS  Google Scholar 

  • Ge X, Chen J, Sun C, Cao K (2003) Preliminary study on the structural basis of the antifungal activity of a rice lipid transfer protein. Protein Eng 16:387–390

    Article  PubMed  CAS  Google Scholar 

  • Gillon AD, Saska I, Jennings CV, Guarino RF, Craik DJ, Anderson MA (2008) Biosynthesis of circular proteins in plants. Plant J 53:505–515

    Article  PubMed  CAS  Google Scholar 

  • Gincel E, Simorre JP, Caille A, Marion D, Ptak M, Vovelle F (1994) Three-dimensional structure in solution of a wheat lipid-transfer protein from multidimensional 1H-NMR data. A new folding for lipid carriers. Eur J Biochem 226:413–422

    Article  PubMed  CAS  Google Scholar 

  • Gomar J, Petit MC, Sodano P, Sy D, Marion D, Kader JC, Vovelle F, Ptak M (1996) Solution structure and lipid binding of a nonspecific lipid transfer protein extracted from maize seeds. Protein Sci 5:565–577

    Article  PubMed  CAS  Google Scholar 

  • Goransson U, Herrmann A, Burman R, Haugaard-Jonsson LM, Rosengren KJ (2009) The conserved glu in the cyclotide cycloviolacin O2 has a key structural role. Chembiochem 10:2354–2360

    Article  PubMed  CAS  Google Scholar 

  • Graham MA, Silverstein KAT, VandenBosch KA (2008) Defensin-like genes: genomic perspectives on a diverse superfamily in plants. Crop Sci 48:S3–S11

    Article  CAS  Google Scholar 

  • Gruber CW, Cemazar M, Clark RJ, Horibe T, Renda RF, Anderson MA, Craik DJ (2007) A novel plant protein-disulfide isomerase involved in the oxidative folding of cystine knot defense proteins. J Biol Chem 282:20435–20446

    Article  PubMed  CAS  Google Scholar 

  • Gruber CW, Elliott AG, Ireland DC, Delprete PG, Dessein S, Goransson U, Trabi M, Wang CK, Kinghorn AB, Robbrecht E, Craik DJ (2008) Distribution and evolution of circular miniproteins in flowering plants. Plant Cell 20:2471–2483

    Article  PubMed  CAS  Google Scholar 

  • Hamel F, Boivin R, Tremblay C, Bellemare G (1997) Structural and evolutionary relationships among chitinases of flowering plants. J Mol Evol 44:614–624

    Article  PubMed  CAS  Google Scholar 

  • Heinemann B, Andersen KV, Nielsen PR, Bech LM, Poulsen FM (1996) Structure in solution of a four-helix lipid binding protein. Protein Sci 5:13–23

    Article  PubMed  CAS  Google Scholar 

  • Hoh F, Pons JL, Gautier MF, de Lamotte F, Dumas C (2005) Structure of a liganded type 2 non-specific lipid-transfer protein from wheat and the molecular basis of lipid binding. Acta Crystallogr D Biol Crystallogr 61:397–406

    Article  PubMed  CAS  Google Scholar 

  • Huffaker A, Pearce G, Ryan CA (2006) An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc Natl Acad Sci USA 103:10098–10103

    Article  PubMed  CAS  Google Scholar 

  • Huffaker A, Ryan CA (2007) Endogenous peptide defense signals in Arabidopsis differentially amplify signaling for the innate immune response. Proc Natl Acad Sci USA 104:10732–10736

    Article  PubMed  CAS  Google Scholar 

  • Ireland DC, Colgrave ML, Nguyencong P, Daly NL, Craik DJ (2006) Discovery and characterization of a linear cyclotide from Viola odorata: implications for the processing of circular proteins. J Mol Biol 357:1522–1535

    Article  PubMed  CAS  Google Scholar 

  • Ireland DC, Wang CK, Wilson JA, Gustafson KR, Craik DJ (2008) Cyclotides as natural anti-HIV agents. Biopolymers 90:51–60

    Article  PubMed  CAS  Google Scholar 

  • Iseli B, Boller T, Neuhaus JM (1993) The N-terminal cysteine-rich domain of tobacco class I chitinase is essential for chitin binding but not for catalytic or antifungal activity. Plant Physiol 103:221–226

    Article  PubMed  CAS  Google Scholar 

  • Janeway CA (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54:1–13

    Article  PubMed  CAS  Google Scholar 

  • Jennings C, West J, Waine C, Craik D, Anderson M (2001) Biosynthesis and insecticidal properties of plant cyclotides: the cyclic knotted proteins from Oldenlandia affinis. Proc Natl Acad Sci USA 98:10614–10619

    Article  PubMed  CAS  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  PubMed  CAS  Google Scholar 

  • Jung HW, Tschaplinski TJ, Wang L, Glazebrook J, Greenberg JT (2009a) Priming in systemic plant immunity. Science 324:89–91

    Article  PubMed  CAS  Google Scholar 

  • Jung S, Dingley AJ, Augustin R, Anton-Erxleben F, Stanisak M, Gelhaus C, Gutsmann T, Hammer MU, Podschun R, Bonvin AM, Leippe M, Bosch TC, Grotzinger J (2009b) Hydramacin-1, structure and antibacterial activity of a protein from the basal metazoan Hydra. J Biol Chem 284:1896–1905

    Article  PubMed  CAS  Google Scholar 

  • Kader JC (1996) Lipid-transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 47:627–654

    Article  PubMed  CAS  Google Scholar 

  • Kader JC, Julienne M, Vergnolle C (1984) Purification and characterization of a spinach-leaf protein capable of transferring phospholipids from liposomes to mitochondria or chloroplasts. Eur J Biochem 139:411–416

    Article  PubMed  CAS  Google Scholar 

  • Keller H, Blein JP, Bonnet P, Ricci P (1996) Physiological and molecular characteristics of elicitin-induced systemic acquired resistance in tobacco. Plant Physiol 110:365–376

    PubMed  CAS  Google Scholar 

  • Koo JC, Chun HJ, Park HC, Kim MC, Koo YD, Koo SC, Ok HM, Park SJ, Lee SH, Yun DJ, Lim CO, Bahk JD, Lee SY, Cho MJ (2002) Over-expression of a seed specific hevein-like antimicrobial peptide from Pharbitis nil enhances resistance to a fungal pathogen in transgenic tobacco plants. Plant Mol Biol 50:441–452

    Article  PubMed  CAS  Google Scholar 

  • Koo JC, Lee SY, Chun HJ, Cheong YH, Choi JS, Kawabata S, Miyagi M, Tsunasawa S, Ha KS, Bae DW, Han CD, Lee BL, Cho MJ (1998) Two hevein homologs isolated from the seed of Pharbitis nil L. exhibit potent antifungal activity. Biochim Biophys Acta 1382:80–90

    Article  PubMed  CAS  Google Scholar 

  • Kovalskaya N, Hammond RW (2009) Expression and functional characterization of the plant antimicrobial snakin-1 and defensin recombinant proteins. Protein Expr Purif 63:12–17

    Article  PubMed  CAS  Google Scholar 

  • Lee HI, Broekaert WF, Raikhel NV (1991) Co- and post-translational processing of the hevein preproprotein of latex of the rubber tree (Hevea brasiliensis). J Biol Chem 266:15944–15948

    PubMed  CAS  Google Scholar 

  • Lee JY, Min K, Cha H, Shin DH, Hwang KY, Suh SW (1998) Rice non-specific lipid transfer protein: the 1.6 A crystal structure in the unliganded state reveals a small hydrophobic cavity. J Mol Biol 276:437–448

    Article  PubMed  CAS  Google Scholar 

  • Lerche MH, Poulsen FM (1998) Solution structure of barley lipid transfer protein complexed with palmitate. Two different binding modes of palmitate in the homologous maize and barley nonspecific lipid transfer proteins. Protein Sci 7:2490–2498

    Article  PubMed  CAS  Google Scholar 

  • Lin KF, Lee TR, Tsai PH, Hsu MP, Chen CS, Lyu PC (2007) Structure-based protein engineering for alpha-amylase inhibitory activity of plant defensin. Proteins 68:530–540

    Article  PubMed  CAS  Google Scholar 

  • Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK (2002) A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419:399–403

    Article  PubMed  CAS  Google Scholar 

  • Manners JM, Penninckx IAMA, Vermaere K, Kazan K, Brown RL, Morgan A, MacLean DJ, Curtis MD, Cammue BPA, Broekaert WF (1998) The promoter of the plant defensin gene PDF1.2 from Arabidopsis is systemically activated by fungal pathogens and response to methyl jasmonate but not to salicylic acid. Plant Mol Biol 38:1071–1080

    Article  PubMed  CAS  Google Scholar 

  • Mauch F, Staehelin LA (1989) Functional implications of the subcellular localization of ethylene-induced chitinase and beta-1,3-glucanase in bean leaves. Plant Cell 1:447–457

    PubMed  CAS  Google Scholar 

  • Mendez E, Moreno A, Colilla F, Pelaez R, Limas GG, Mendez R, Soriano F, Salinas M, de Haro C (1990) Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, gamma-thionin, from barley endosperm. Eur J Biochem 194:533–539

    Article  PubMed  CAS  Google Scholar 

  • Metraux JP, Signer H, Ryals J, Ward E, Wyss-Benz M, Gaudin J, Raschdorf K, Schmid E, Blum W, Inverardi B (1990) Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250:1004–1006

    Article  PubMed  CAS  Google Scholar 

  • Mitter N, Kazan K, Way HM, Broekaert WF, Manners JM (1998) Systemic induction of an Arabidopsis plant defensin gene promoter by tobacco mosaic virus and jasmonic acid in transgenic tobacco. Plant Sci 136:169–180

    Article  CAS  Google Scholar 

  • Mitton FM, Pinedo ML, de la Canal L (2009) Phloem sap of tomato plants contains a DIR1 putative ortholog. J Plant Physiol 166:543–547

    Article  PubMed  CAS  Google Scholar 

  • Molina A, Garcia-Olmedo F (1993) Developmental and pathogen-induced expression of three barley genes encoding lipid transfer proteins. Plant J 4:983–991

    Article  PubMed  CAS  Google Scholar 

  • Molina A, Garcia-Olmedo F (1997) Enhanced tolerance to bacterial pathogens caused by the transgenic expression of barley lipid transfer protein LTP2. Plant J 12:669–675

    Article  PubMed  CAS  Google Scholar 

  • Molina A, Segura A, Garcia-Olmedo F (1993) Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens. FEBS Lett 316:119–122

    Article  PubMed  CAS  Google Scholar 

  • Nandi A, Kachroo P, Fukushige H, Hildebrand DF, Klessig DF, Shah J (2003) Ethylene and jasmonic acid signaling affect the NPR1-independent expression of defense genes without impacting resistance to Pseudomonas syringae and Peronospora parasitica in the Arabidopsis ssi1 mutant. Mol Plant-Microbe Interact 16:588–599

    Article  PubMed  CAS  Google Scholar 

  • Nandi A, Welti R, Shah J (2004) The Arabidopsis thaliana dihydroxyacetone phosphate reductase gene SUPPRESSSOR OF FATTY ACID DESATURASE DEFICIENCY1 is required for glycerolipid metabolism and for the activation of systemic acquired resistance. Plant Cell 16:465–477

    Article  PubMed  CAS  Google Scholar 

  • Nasrallah JB (2002) Recognition and rejection of self in plant reproduction. Science 296:305–308

    Article  PubMed  CAS  Google Scholar 

  • Ndamukong I, Abdallat AA, Thurow C, Fode B, Zander M, Weigel R, Gatz C (2007) SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription. Plant J 50:128–139

    Article  PubMed  CAS  Google Scholar 

  • Nielsen KK, Nielsen JE, Madrid SM, Mikkelsen JD (1997) Characterization of a new antifungal chitin-binding peptide from sugar beet leaves. Plant Physiol 113:83–91

    Article  PubMed  CAS  Google Scholar 

  • Niki T, Mitsuhara I, Seo S, Ohtsubo N, Ohashi Y (1998) Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves. Plant Cell Physiol 39:500–507

    Article  CAS  Google Scholar 

  • Nimmo CC, O’Sullivan MT, Bernardin JE (1968) The relation of a “globulin” component of wheat flower to purothionin. Cereal Chem 45:28–36

    CAS  Google Scholar 

  • Osborn RW, De Samblanx GW, Thevissen K, Goderis I, Torrekens S, Van Leuven F, Attenborough S, Rees SB, Broekaert WF (1995) Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. FEBS Lett 368:257–262

    Article  PubMed  CAS  Google Scholar 

  • Osman H, Mikes V, Milat ML, Ponchet M, Marion D, Prange T, Maume BF, Vauthrin S, Blein JP (2001) Fatty acids bind to the fungal elicitor cryptogein and compete with sterols. FEBS Lett 489:55–58

    Article  PubMed  CAS  Google Scholar 

  • Padovan L, Scocchi M, Tossi A (2010) Structural aspects of plant antimicrobial peptides. Curr Protein Pept Sci 11:210–219

    Article  PubMed  CAS  Google Scholar 

  • Park SY, Jauh GY, Mollet JC, Eckard KJ, Nothnagel EA, Walling LL, Lord EM (2000) A lipid transfer-like protein is necessary for lily pollen tube adhesion to an in vitro stylar matrix. Plant Cell 12:151–164

    PubMed  CAS  Google Scholar 

  • Pato C, Tran V, Marion D, Douliez JP (2002) Effects of acylation on the structure, lipid binding, and transfer activity of wheat lipid transfer protein. J Protein Chem 21:195–201

    Article  PubMed  CAS  Google Scholar 

  • Pearce G, Yamaguchi Y, Munske G, Ryan CA (2008) Structure-activity studies of AtPep1, a plant peptide signal involved in the innate immune response. Peptides 29:2083–2089

    Article  PubMed  CAS  Google Scholar 

  • Pelegrini PB, Lay FT, Murad AM, Anderson MA, Franco OL (2008) Novel insights on the mechanism of action of alpha-amylase inhibitors from the plant defensin family. Proteins 73:719–729

    Article  PubMed  CAS  Google Scholar 

  • Pii Y, Astegno A, Peroni E, Zaccardelli M, Pandolfini T, Crimi M (2009) The Medicago truncatula N5 gene encoding a root-specific lipid transfer protein is required for the symbiotic interaction with Sinorhizobium meliloti. Mol Plant Microbe Interact 22:1577–1587

    Article  PubMed  CAS  Google Scholar 

  • Pii Y, Pandolfini T, Crimi M (2010) Signaling LTPs: a new plant LTPs sub-family? Plant Signal Behav 5:594–597

    CAS  Google Scholar 

  • Ponchet M, Panabieres F, Milat ML, Mikes V, Montillet JL, Suty L, Triantaphylides C, Tirilly Y, Blein JP (1999) Are elicitins cryptograms in plant-oomycete communications? Cell Mol Life Sci 56:1020–1047

    Article  PubMed  CAS  Google Scholar 

  • Pyee J, Yu H, Kolattukudy PE (1994) Identification of a lipid transfer protein as the major protein in the surface wax of broccoli (Brassica oleracea) leaves. Arch Biochem Biophys 311:460–468

    Article  PubMed  CAS  Google Scholar 

  • Rayapuram C, Wu J, Haas C, Baldwin IT (2008) PR-13/Thionin but not PR-1 mediates bacterial resistance in Nicotiana attenuata in nature, and neither influences herbivore resistance. Mol Plant Microbe Interact 21:988–1000

    Article  PubMed  CAS  Google Scholar 

  • Romero A, Alamillo JM, Garcia-Olmedo F (1997) Processing of thionin precursors in barley leaves by a vacuolar proteinase. Eur J Biochem 243:202–208

    Article  PubMed  CAS  Google Scholar 

  • Roy-Barman S, Sautter C, Chattoo BB (2006) Expression of the lipid transfer protein Ace-AMP1 in transgenic wheat enhances antifungal activity and defense responses. Transgenic Res 15:435–446

    Article  PubMed  CAS  Google Scholar 

  • Saether O, Craik DJ, Campbell ID, Sletten K, Juul J, Norman DG (1995) Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide kalata B1. Biochemistry 34:4147–4158

    Article  PubMed  CAS  Google Scholar 

  • Samuel D, Liu YJ, Cheng CS, Lyu PC (2002) Solution structure of plant nonspecific lipid transfer protein-2 from rice (Oryza sativa). J Biol Chem 277:35267–35273

    Article  PubMed  CAS  Google Scholar 

  • Saska I, Gillon AD, Hatsugai N, Dietzgen RG, Hara-Nishimura I, Anderson MA, Craik DJ (2007) An asparaginyl endopeptidase mediates in vivo protein backbone cyclization. J Biol Chem 282:29721–29728

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Okamoto S, Nishio T (2004) Diversification and alteration of recognition specificity of the pollen ligand SP11/SCR in self-incompatibility of Brassica and Raphanus. Plant Cell 16:3230–3241

    Article  PubMed  CAS  Google Scholar 

  • Schröder J-M (1999) Epithelial antimicrobial peptides: innate local host response elements. Cell Mol Life Sci 56:32–46

    Article  PubMed  Google Scholar 

  • Schwessinger B, Zipfel C (2008) News from the frontline: recent insights into PAMP-triggered immunity in plants. Curr Opin Plant Biol 11:389–395

    Article  PubMed  CAS  Google Scholar 

  • Segura A, Moreno M, Garcia-Olmedo F (1993) Purification and antipathogenic activity of lipid transfer proteins (LTPs) from the leaves of Arabidopsis and spinach. FEBS Lett 332:243–246

    Article  PubMed  CAS  Google Scholar 

  • Segura A, Moreno M, Madueno F, Molina A, Garcia-Olmedo F (1999) Snakin-1, a peptide from potato that is active against plant pathogens. Mol Plant Microbe Interact 12:16–23

    Article  PubMed  CAS  Google Scholar 

  • Shah J (2009) Plants under attack: systemic signals in defence. Curr Opin Plant Biol 12:459–464

    Article  PubMed  CAS  Google Scholar 

  • Shin DH, Lee JY, Hwang KY, Kim KK, Suh SW (1995) High-resolution crystal structure of the non-specific lipid-transfer protein from maize seedlings. Structure 3:189–199

    Article  PubMed  CAS  Google Scholar 

  • Silverstein KAT, Graham MA, Paape TD, VandenBosch KA (2005) Genome organization of more than 300 defensin-like genes in Arabidopsis. Plant Physiol 138:600–610

    Article  PubMed  CAS  Google Scholar 

  • Sossountzov L, Ruiz-Avila L, Vignols F, Jolliot A, Arondel V, Tchang F, Grosbois M, Guerbette F, Miginiac E, Delseny M et al (1991) Spatial and temporal expression of a maize lipid transfer protein gene. Plant Cell 3:923–933

    PubMed  CAS  Google Scholar 

  • Stec B, Markman O, Rao U, Heffron G, Henderson S, Vernon LP, Brumfeld V, Teeter MM (2004) Proposal for molecular mechanism of thionins deduced from physico-chemical studies of plant toxins. J Pept Res 64:210–224

    Article  PubMed  CAS  Google Scholar 

  • Sterk P, Booij H, Schellekens GA, Van Kammen A, De Vries SC (1991) Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell 3:907–921

    PubMed  CAS  Google Scholar 

  • Stotz HU, Wang Y, Spence B (2009) A defensin from tomato with dual function in defence and development. Plant Mol Biol 71:131–143

    Article  PubMed  CAS  Google Scholar 

  • Sun JY, Gaudet DA, Lu ZX, Frick M, Puchalski B, Laroche A (2008) Characterization and antifungal properties of wheat nonspecific lipid transfer proteins. Mol Plant Microbe Interact 21:346–360

    Article  PubMed  CAS  Google Scholar 

  • Svangard E, Burman R, Gunasekera S, Lovborg H, Gullbo J, Goransson U (2007) Mechanism of action of cytotoxic cyclotides: cycloviolacin O2 disrupts lipid membranes. J Nat Prod 70:643–647

    Article  PubMed  CAS  Google Scholar 

  • Tam JP, Lu YA, Yang JL, Chiu KW (1999) An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides. Proc Natl Acad Sci USA 96:8913–8918

    Article  PubMed  CAS  Google Scholar 

  • Tassin S, Broekaert WF, Marion D, Acland DP, Ptak M, Vovelle F, Sodano P (1998) Solution structure of Ace-AMP1, a potent antimicrobial protein extracted from onion seeds. Structural analogies with plant nonspecific lipid transfer proteins. Biochemistry 37:3623–3637

    Article  PubMed  CAS  Google Scholar 

  • Terras FR, Goderis IJ, Van Leuven F, Vanderleyden J, Cammue BP, Broekaert WF (1992) In vitro antifungal activity of a radish (Raphanus sativus L.) seed protein homologous to nonspecific lipid transfer proteins. Plant Physiol 100:1055–1058

    Article  PubMed  CAS  Google Scholar 

  • Terras FRG, Eggermont K, Kovaleva V, Raikhel NV, Osborn RW, Kester A, Rees SB, Torrekens S, Van LF, Vanderleyden J, Cammue BPA, Broekaert WF (1995) Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell 7:573–588

    PubMed  CAS  Google Scholar 

  • Thevissen K, Cammue BPA, Lemaire K, Winderickx J, Dickson RC, Lester RL, Ferket KKA, Van Even F, Parret AHA, Broekaert WF (2000) A gene encoding a sphingolipid biosynthesis enzyme determines the sensitivity of Saccharomyces cerevisiae to an antifungal plant defensin from dahlia (Dahlia merckii). Proc Natl Acad Sci USA 97:9531–9536

    Article  PubMed  CAS  Google Scholar 

  • Thevissen K, Ghazi A, De Samblanx GW, Brownlee C, Osborn RW, Broekaert WF (1996) Fungal membrane responses induced by plant defensins and thionins. J Biol Chem 271:15018–15025

    Article  PubMed  CAS  Google Scholar 

  • Thevissen K, Osborn RW, Acland DP, Broekaert WF (1997) Specific, high affinity binding sites for an antifungal plant defensin on Neurospora crassa hyphae and microsomal membranes. J Biol Chem 272:32176–32181

    Article  PubMed  CAS  Google Scholar 

  • Thevissen K, Terras FR, Broekaert WF (1999) Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Appl Environ Microbiol 65:5451–5458

    PubMed  CAS  Google Scholar 

  • Thevissen K, Warnecke DC, Francois IE, Leipelt M, Heinz E, Ott C, Zahringer U, Thomma BP, Ferket KK, Cammue BP (2004) Defensins from insects and plants interact with fungal glucosylceramides. J Biol Chem 279:3900–3905

    Article  PubMed  CAS  Google Scholar 

  • Thoma S, Hecht U, Kippers A, Botella J, De Vries S, Somerville C (1994) Tissue-specific expression of a gene encoding a cell wall-localized lipid transfer protein from Arabidopsis. Plant Physiol 105:35–45

    Article  PubMed  CAS  Google Scholar 

  • Thomma B, Eggermont K, Penninckx I, Mauch-Mani B, Vogelsang R, Cammue B, Broekaert W (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA 95:15107–15111

    Article  PubMed  CAS  Google Scholar 

  • Thomma BPHJ, Broekaert WF (1998) Tissue-specific expression of plant defensin genes PDF2.1 and PDF2.2 in Arabidopsis thaliana. Plant Physiol Biochem 36:533–537

    Article  CAS  Google Scholar 

  • Trabi M, Craik DJ (2004) Tissue-specific expression of head-to-tail cyclized miniproteins in Violaceae and structure determination of the root cyclotide Viola hederacea root cyclotide1. Plant Cell 16:2204–2216

    Article  PubMed  CAS  Google Scholar 

  • Trujillo M, Shirasu K (2010) Ubiquitination in plant immunity. Curr Opin Plant Biol 13:402–408

    Article  PubMed  CAS  Google Scholar 

  • Tsuboi S, Osafune T, Tsugeki R, Nishimura M, Yamada M (1992) Nonspecific lipid transfer protein in castor bean cotyledon cells: subcellular localization and a possible role in lipid metabolism. J Biochem 111:500–508

    PubMed  CAS  Google Scholar 

  • Van de Velde W, Zehirov G, Szatmari A, Debreczeny M, Ishihara H, Kevei Z, Farkas A, Mikulass K, Nagy A, Tiricz H, Satiat-Jeunemaitre B, Alunni B, Bourge M, Kucho K, Abe M, Kereszt A, Maroti G, Uchiumi T, Kondorosi E, Mergaert P (2010) Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327:1122–1126

    Article  PubMed  CAS  Google Scholar 

  • van der Weerden NL, Hancock RE, Anderson MA (2010) Permeabilization of fungal hyphae by the plant defensin NaD1 occurs through a cell wall-dependent process. J Biol Chem 285:37513–37520

    Article  PubMed  CAS  Google Scholar 

  • van der Weerden NL, Lay FT, Anderson MA (2008) The plant defensin NaD1 enters the cytoplasm of Fusarium oxysporum hyphae. J Biol Chem 13:13

    Google Scholar 

  • Vila-Perello M, Sanchez-Vallet A, Garcia-Olmedo F, Molina A, Andreu D (2005) Structural dissection of a highly knotted peptide reveals minimal motif with antimicrobial activity. J Biol Chem 280:1661–1668

    Article  PubMed  CAS  Google Scholar 

  • Wang CK, Colgrave ML, Ireland DC, Kaas Q, Craik DJ (2009) Despite a conserved cystine knot motif, different cyclotides have different membrane binding modes. Biophys J 97:1471–1481

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Griffitts J, Starker C, Fedorova E, Limpens E, Ivanov S, Bisseling T, Long S (2010) A nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis. Science 327:1126–1129

    Article  PubMed  CAS  Google Scholar 

  • Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Ahl-Goy P, Metraux JP, Ryals JA (1991) Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3:1085–1094

    PubMed  CAS  Google Scholar 

  • Wijaya R, Neumann GM, Condron R, Hughes AB, Polya GM (2000) Defense proteins from seed of Cassia fistula include a lipid transfer protein homologue and a protease inhibitory plant defensin. Plant Sci 159:243–255

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Huffaker A, Bryan AC, Tax FE, Ryan CA (2010) PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis. Plant Cell 22:508–522

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, Anderson M, Schroeder JM, Wang JM, Howard OMZ, Oppenheim JJ (1999) beta-Defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286:525–528

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama S, Iida Y, Kawasaki Y, Minami Y, Watanabe K, Yagi F (2009) The chitin-binding capability of Cy-AMP1 from cycad is essential to antifungal activity. J Pept Sci 15:492–497

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama S, Kato K, Koba A, Minami Y, Watanabe K, Yagi F (2008) Purification, characterization, and sequencing of antimicrobial peptides, Cy-AMP1, Cy-AMP2, and Cy-AMP3, from the Cycad (Cycas revoluta) seeds. Peptides 29:2110–2117

    Article  PubMed  CAS  Google Scholar 

  • Zander M, La Camera S, Lamotte O, Metraux JP, Gatz C (2009) Arabidopsis thaliana class-II TGA transcription factors are essential activators of jasmonic acid/ethylene-induced defense responses. Plant J 61:200–210

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. U. Stotz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel AG

About this chapter

Cite this chapter

Stotz, H.U., Waller, F., Wang, K. (2013). Innate Immunity in Plants: The Role of Antimicrobial Peptides. In: Hiemstra, P., Zaat, S. (eds) Antimicrobial Peptides and Innate Immunity. Progress in Inflammation Research. Springer, Basel. https://doi.org/10.1007/978-3-0348-0541-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-0541-4_2

  • Published:

  • Publisher Name: Springer, Basel

  • Print ISBN: 978-3-0348-0540-7

  • Online ISBN: 978-3-0348-0541-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics