Skip to main content
Log in

A defensin from tomato with dual function in defense and development

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Defensins are antimicrobial peptides that are part of the innate immune system, contributing to the first line of defense against invading pathogens. Defensins and defensin-like peptides are functionally diverse, disrupting microbial membranes and acting as ligands for cellular recognition and signaling. Here we show that the tomato defensin DEF2 is expressed during early flower development. Defensin mRNA abundance, peptide expression and processing are differentially regulated in developing flowers. Antisense suppression or constitutive overexpression of DEF2 reduces pollen viability and seed production. Furthermore, overexpression of DEF2 pleiotropically alters the growth of various organs and enhances foliar resistance to the fungal pathogen Botrytis cinerea. Partially purified extracts from leaves of a DEF2-overexpressing line inhibited tip growth of B. cinerea. Besides providing insights into regulation of defensin expression, these data demonstrate that plant defensins, like their animal counterparts, can assume multiple functions related to defense and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allan A, Snyder AK, Preuss M, NIelsen EE, Shah DM, Smith TJ (2008) Plant defensins and virally encoded fungal toxin KP4 inhibit plant root growth. Planta 227:331–339

    Article  CAS  Google Scholar 

  • Becker D, Kemper E, Schell J, Masterson R (1992) New plant binary vectors with selectable markers located proximal to the left T-DNA border. Plant Mol Biol 20:1195–1197

    Article  PubMed  CAS  Google Scholar 

  • Bloch C Jr, Richardson M (1991) A new family of small (5 kD) protein inhibitors of insect alpha-amylases from seeds of sorghum (Sorghum bicolor Moench) have sequence homologies with wheat gamma-purothionins. FEBS Lett 279:101–104

    Article  PubMed  CAS  Google Scholar 

  • Brandstadter J, Rossbach C, Theres K (1996) Expression of genes for a defensin and a proteinase inhibitor in specific areas of the shoot apex and the developing flower in tomato. Mol Gen Genet 252:146–154

    Article  PubMed  CAS  Google Scholar 

  • Chipps TJ, Gilmore B, Myers JR, Stotz HU (2005) Relationship between oxalate, oxalate oxidase activity, oxalate sensitivity, and white mold susceptibility in Phaseolus coccineus. Phytopathology 95:292–299

    Article  PubMed  CAS  Google Scholar 

  • Enerly E, Sheng Z, Li KB (2005) Natural antisense as potential regulator of alternative initiation, splicing and termination. In Silico Biol 5:0033

    Google Scholar 

  • Faghihi MA, Wahlestedt C (2006) RNA interference is not involved in natural antisense mediated regulation of gene expression in mammals. Genome Biol 7:R38

    Article  PubMed  CAS  Google Scholar 

  • Ferrandon D, Jung AC, Criqui MC, Lemaitre B, Uttenweiler-Joseph S, Michaut L, Reichhart JM, Hoffmann JA (1998) A drosomycin-GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway. EMBO J 17:1217–1227

    Article  PubMed  CAS  Google Scholar 

  • Fulton TM, Chunwongse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rep 13:207–209

    Article  CAS  Google Scholar 

  • Gao A-G, Hakimi SM, Mittanck CA, Wu Y, Woerner BM, Stark DM, Shah DM, Liang J, Rommens CMT (2000) Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol 18:1307–1310

    Article  PubMed  CAS  Google Scholar 

  • Goldberg RB, Beals TP, Sanders PM (1993) Anther development: basic principles and practical applications. Plant Cell 5:1217–1229

    Article  PubMed  CAS  Google Scholar 

  • Gorman SW, McCormick S (1997) Male sterility in tomato. Crit Rev Plant Sci 16:31–53

    Article  CAS  Google Scholar 

  • Graham MA, Silverstein KAT, VandenBosch KA (2008) Defensin-like genes: genomic perspectives on a diverse superfamily in plants. Crop Sci 48:S3–S11

    Article  CAS  Google Scholar 

  • Guimaraes RL, Chetelat RT, Stotz HU (2004) Resistance to Botrytis cinerea in Solanum lycopersicoides is dominant in hybrids with tomato, and involves induced hyphal death. Eur J Plant Pathol 110:13–23

    Article  Google Scholar 

  • Hastings ML, Milcarek C, Martincic K, Peterson ML, Monroe SH (1997) Expression of the thyroid hormone receptor gene, erbAalpha, in B lymphocytes: alternative mRNA processing is independent of differentiation but correlates with antisense RNA levels. Nucleic Acids Res 25:4296–4300

    Article  PubMed  CAS  Google Scholar 

  • Jackson SL, Heath IB (1993) Roles of calcium-ions in hyphal tip growth. Microbiol Rev 57:367–382

    PubMed  CAS  Google Scholar 

  • Jen CH, Michalopoulos I, Westhead DR, Meyer P (2005) Natural antisense transcripts with coding capacity in Arabidopsis may have a regulatory role that is not linked to double-stranded RNA degradation. Genome Biol 6:R51

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen RA (1995) Cosuppression, flower color patterns, and metastable gene expression states. Science 268:686–691

    Article  PubMed  CAS  Google Scholar 

  • Katiyar-Agarwal S, Morgan R, Dahlbeck D, Borsani O, Villegas AJ, Zhu JK, Staskawicz BJ, Jin H (2006) A pathogen-inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci USA 103:18002–18007

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lay FT, Brugliera F, Anderson MA (2003) Isolation and properties of floral defensins from ornamental tobacco and petunia. Plant Physiol 131:1283–1293

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Lawrence CB, Xing HY, Babbitt RA, Bass WT, Maiti IB, Everett NP (2001) Enhanced disease resistance conferred by expression of an antimicrobial magainin analog in transgenic tobacco. Planta 212:635–639

    Article  PubMed  CAS  Google Scholar 

  • Li L, Zhao YF, McCaig BC, Wingerd BA, Wang JH, Whalon ME, Pichersky E, Howe GA (2004) The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell 16:126 p. 783

    Article  PubMed  CAS  Google Scholar 

  • Martin RC, Mok DWS, Smets R, Van Onckelen HA, Mok MC (2001) Development of transgenic tobacco harboring a zeatin O-glucosyltransferase gene from Phaseolus. In Vitro Cell Dev Biol Plant 37:354–360

    Article  CAS  Google Scholar 

  • Matsui A, Ishida J, Morosawa T, Mochizuki Y, Kaminuma E, Endo TA, Okamoto M, Nambara E, Nakajima M, Kawashima M, Satou M, Kim J-M, Kobayashi N, Toyoda T, Shinozaki K, Seki M (2008a) Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array. Plant Cell Physiol 49:1135–1149

    Article  PubMed  CAS  Google Scholar 

  • Matsui K, Nishizawa M, Ozaki T, Kimura T, Hashimoto I, Yamada M, Kaibori M, Kamiyama Y, Ito S, Okumura T (2008b) Natural antisense transcript stabilizes inducible nitric oxide synthase messenger RNA in rat hepatocytes. Hepatology 47:686–697

    Article  PubMed  CAS  Google Scholar 

  • Mendez E, Moreno A, Colilla F, Pelaez R, Limas GG, Mendez R, Soriano F, Salinas M, de Haro C (1990) Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, gamma-thionin, from barley endosperm. Eur J Biochem 194:533–539

    Article  PubMed  CAS  Google Scholar 

  • Milligan SB, Gasser CS (1995) Nature and regulation of pistil-expressed genes in tomato. Plant Mol Biol 28:691–711

    Article  PubMed  CAS  Google Scholar 

  • Moniz DSM, Drouin G (1996) Phylogeny and substitution rates of angiosperm actin genes. Mol Biol Evol 13:1198–1212

    Google Scholar 

  • Nakai K, Horton P (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24:34–36

    Article  PubMed  CAS  Google Scholar 

  • Nasrallah JB (2002) Recognition and rejection of self in plant reproduction. Science 296:305–308

    Article  PubMed  CAS  Google Scholar 

  • Osborn RW, De Samblanx GW, Thevissen K, Goderis I, Torrekens S, Van Leuven F, Attenborough S, Rees SB, Broekaert WF (1995) Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. FEBS Lett 368:257–262

    Article  PubMed  CAS  Google Scholar 

  • Prescott EM, Proudfoot NJ (2002) Transcriptional collision between convergent genes in budding yeast. Proc Natl Acad Sci USA 99:8796–8801

    Article  PubMed  CAS  Google Scholar 

  • Robson GD, Wiebe MG, Trinci APJ (1991) Involvement of Ca2+ in the regulation of hyphal extension and branching in fusarium-graminearum A-3/5. Exp Mycol 15:263–272

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schagger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379

    Article  PubMed  CAS  Google Scholar 

  • Schröder J-M, Gregory H, Young J, Christophers E (1992) Neutrophil-activating proteins in psoriasis. J Invest Dermatol 98:241–247

    Article  PubMed  Google Scholar 

  • Schroeder J-M (1999) Epithelial antimicrobial peptides: innate local host response elements. Cell Mol Life Sci 56:32–46

    Article  Google Scholar 

  • Silverstein KAT, Graham MA, Paape TD, VandenBosch KA (2005) Genome organization of more than 300 defensin-like genes in arabidopsis. Plant Physiol 138:600–610

    Article  PubMed  CAS  Google Scholar 

  • Spelbrink RG, Dilmac N, Allen A, Smith TJ, Shah DM, Hockerman GH (2004) Differential antifungal and calcium channel-blocking activity among structurally related plant defensins. Plant Physiol 135:2055–2067

    Article  PubMed  CAS  Google Scholar 

  • Strizhov N, Keller M, Mathur J, Koncz-Kalman Z, Bosch D, Prudovsky E, Schell J, Sneh B, Koncz C, Zilberstein A (1996) A synthetic cryIC gene, encoding a Bacillus thuringiensis delta-endotoxin, confers Spodoptera resistance in alfalfa and tobacco. Proc Natl Acad Sci USA 93:15012–15017

    Article  PubMed  CAS  Google Scholar 

  • Takayama S, Shimosato H, Shiba H, Funato M, Che F-S, Watanabe M, Iwano M, Isogai A (2001) Direct ligand-receptor complex interaction controls Brassica self-incompatibility. Nature 413:534–538

    Article  PubMed  CAS  Google Scholar 

  • Terras FRG, Eggermont K, Kovaleva V, Raikhel NV, Osborn RW, Kester A, Rees SB, Torrekens S, Van LF, Vanderleyden J, Cammue BPA, Broekaert WF (1995) Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell 7:573–588

    Article  PubMed  CAS  Google Scholar 

  • Thevissen K, Cammue BPA, Lemaire K, Winderickx J, Dickson RC, Lester RL, Ferket KKA, Van Even F, Parret AHA, Broekaert WF (2000) A gene encoding a sphingolipid biosynthesis enzyme determines the sensitivity of Saccharomyces cerevisiae to an antifungal plant defensin from dahlia (Dahlia merckii). Proc Natl Acad Sci USA 97:9531–9536

    Article  PubMed  CAS  Google Scholar 

  • Thomma BPHJ, Broekaert WF (1998) Tissue-specific expression of plant defensin genes PDF2.1 and PDF2.2 in Arabidopsis thaliana. Plant Physiol Biochem 36:533–537

    Article  CAS  Google Scholar 

  • Thomma BPHJ, Cammue BPA, Thevissen K (2002) Plant defensins. Planta 216:193–202

    Article  PubMed  CAS  Google Scholar 

  • Tirlapur UK, Willemse MTM (1992) Changes in calcium and calmodulin levels during microsporogenesis, pollen development and germination in gasteria-verrucosa (Mill) duval, H. Sex Plant Reprod 5:214–223

    Article  Google Scholar 

  • Titus D (1990) Probe-design peptide separation system technical manual. Promega Corporation, Madison

    Google Scholar 

  • Tufarelli C, Stanley JA, Garrick D, Sharpel JA, Ayyub H, Wood WG, Higgs DR (2003) Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat Genet 34:157–165

    Article  PubMed  CAS  Google Scholar 

  • Van Der Leede-Plegt LM, Van De Ven BCE, Bino RJ, Van Der Salm TPM, Van Tunen AJ (1992) Introduction and differential use of various promoters in pollen grains of nicotiana-glutinosa and lilium-longiflorum. Plant Cell Rep 11:20–24

    Article  Google Scholar 

  • Wang Y, Wisniewski M, Meilan R, Cui M, Webb R, Fuchigami L (2005) Overexpression of cytosolic ascorbate peroxidase in tomato confers tolerance to chilling and salt stress. J Am Soc Hortic Sci 130:167–173

    CAS  Google Scholar 

  • Wilson CL, Ouellette AJ, Satchell DP, Ayabe T, Lopez-Boado YS, Stratman JL, Hultgren SJ, Matrisian LM, Parks WC (1999) Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286:113–117

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, Anderson M, Schroeder JM, Wang JM, Howard OMZ, Oppenheim JJ (1999) Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286:525–528

    Article  PubMed  CAS  Google Scholar 

  • Yang S-L, Xie L-F, Mao H-Z, San Puah C, Yang W-C, Jiang L, Sundaresan V, Ye D (2003) Tapetum Determinant1 is required for cell specialization in the Arabidopsis anther. Plant Cell 15:2792–2804

    Article  PubMed  CAS  Google Scholar 

  • Zasloff M, Martin B, Chen H-C (1988) Antimicrobial activity of synthetic magainin peptides and several analogues. Proc Natl Acad Sci USA 85:910–913

    Article  PubMed  CAS  Google Scholar 

  • Zhou CX, Zhang Y-L, Xiao L, Zheng M, Leung KM, Chan MY, Lo PS, Tsang LL, Wong HY, Ho LS, Chung YW, Hg Chan (2004) An epididymis-specific beta-defensin is important for the initiation of sperm maturation. Nat Cell Biol 6:458–464

    Article  PubMed  CAS  Google Scholar 

  • Zubko E, Meyer P (2007) A natural antisense transcript of the Petunia hybrida Sho gene suggests a role for an antisense mechanism in cytokinin regulation. Plant J 52:1131–1139

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank M. P. Junkin and C. T. Batson for assistance with genotyping and antimicrobial assays, respectively; L. Meninghelli for vegetative propagation of transgenic tomato plants during the T0 generation; K. Cook for generating cross-sections of flowers; J. Fowler for use of the epifluorescent microscope; R. Cole and M. Asahina for helpful suggestions with microscopy and real-time PCR, respectively; J. Beckman for insights into production of anti-peptide antibody; J. Myers, T. Chen, V. Zarsky, and K. VandenBosch for critical reading of the manuscript. This study was supported by the current research information system (CRIS) project ORE00374.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueju Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. S1.

Predicted primary and tertiary structures of DEF2. (A) Predicted structure of DEF2. SWISS-MODEL was used to compare DEF2 to the solved structure of the defensin 1GPT from barley (Hordeum vulgare). Disulfide bonds are labeled pink. (B) ClustalW alignment of predicted amino acid sequences of selected genes from tomato, Arabidopsis, and radish (Raphanus sativus). Identical residues are shaded in black, similar residues are shaded in gray. The predicted cleavage site of the signal peptide is marked with an arrow. Note that floral defensins from tomato have a C-terminal domain in addition to the mature defensin domain. Identifiers for three SGN unigenes are shown. (JPG 1062 kb)

Supplemental Fig. S2.

Effect of altered DEF2 expression on pollen viability. Staining of alive and dead pollen grains from untransformed (UT) or transgenic sense (S8) or antisense (A2) tomato cv. Zhongshu 5 with fluorescein diacetate (green) and propidium iodide (red), respectively. (JPG 974 kb)

Supplemental Fig. S3.

No apparent effect of DEF2 on ovary development. Cross sections through ovaries from untransformed (UT) and transgenic (S8 and A2) plants; bar, 1 mm. Arrow indicates an individual ovule. (TIF 4483 kb)

Supplemental Fig. S4.

Expression of defensin peptides and DEF2 mRNA in primary antisense transformants. (TIF 910 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stotz, H.U., Spence, B. & Wang, Y. A defensin from tomato with dual function in defense and development. Plant Mol Biol 71, 131–143 (2009). https://doi.org/10.1007/s11103-009-9512-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-009-9512-z

Keywords

Navigation