Skip to main content

Galanin and Consummatory Behavior: Special Relationship with Dietary Fat, Alcohol and Circulating Lipids

  • Chapter
  • First Online:
Galanin

Part of the book series: Experientia Supplementum ((EXS,volume 102))

Abstract

Galanin (GAL) plays an integral role in consummatory behavior. In particular, hypothalamic GAL has a positive, reciprocal relationship with dietary fat and alcohol. In this relationship, GAL increases the consumption of fat or alcohol which, in turn, stimulates the expression of GAL, ultimately leading to overconsumption. Through actions in the amygdala, this relationship may become especially important in stress-induced food or drug intake. These effects of GAL in promoting overconsumption may involve various neurotransmitters, with GAL facilitating intake by stimulating norepinephrine and dopamine and reducing satiety by decreasing serotonin and acetylcholine. In addition, GAL in the hypothalamus stimulates the opioid, enkephalin, throughout the brain, which also promotes overconsumption. The relationship between GAL, fat, and alcohol may involve triglycerides, circulating lipids that are released by fat or alcohol and that correlate positively with hypothalamic GAL expression. In females, levels of endogenous GAL also fluctuate across the reproductive cycle, driven by a rise in the ovarian steroids, estrogen, and progesterone. They peak during the proestrous phase and also at puberty, simultaneous to a sharp increase in preference for fat to meet energy demands. Prenatal exposure to a high-fat diet also enhances hypothalamic expression of GAL into adulthood because of an increase in neurogenesis and proliferation of GAL-expressing neurons in this region. This organizational change may reflect the role of GAL in neuronal development, including neurite growth in adulthood, cell survival in aging, and cell stability in the disease state. By responding positively to fat and alcohol and guiding further neuronal development, GAL potentiates a long-term propensity to overconsume fat and alcohol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gundlach AL, Burazin TCD, Larm JA (2001) Distribution, regulation and role of hypothalamic galanin systems: renewed interest in a pleiotropic peptide family. Clin Exp Pharmacol Physiol 28:100–105

    Article  PubMed  CAS  Google Scholar 

  2. Kyrkouli SE, Stanley BG, Leibowitz SF (1986) Galanin: stimulation of feeding induced by medial hypothalamic injection of this novel peptide. Eur J Pharmacol 122:159–160

    Article  PubMed  CAS  Google Scholar 

  3. Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS (1999) Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev 20:68–100

    Article  PubMed  CAS  Google Scholar 

  4. Leibowitz SF, Wortley KE (2004) Hypothalamic control of energy balance: different peptides, different functions. Peptides 25:473–504

    Article  PubMed  CAS  Google Scholar 

  5. Kyrkouli SE, Stanley BG, Seirafi RD, Leibowitz SF (1990) Stimulation of feeding by galanin: anatomical localization and behavioral specificity of this peptide's effects in the brain. Peptides 11:995–1001

    Article  PubMed  CAS  Google Scholar 

  6. Corwin RL, Robinson JK, Crawley JN (1993) Galanin antagonists block galanin-induced feeding in the hypothalamus and amygdala of the rat. Eur J Neurosci 5:1528–1533

    Article  PubMed  CAS  Google Scholar 

  7. Koegler FH, York DA, Bray GA (1999) The effects on feeding of galanin and M40 when injected into the nucleus of the solitary tract, the lateral parabrachial nucleus, and the third ventricle. Physiol Behav 67:259–267

    Article  PubMed  CAS  Google Scholar 

  8. Yun R, Dourmashkin JT, Hill J, Gayles EC, Fried SK, Leibowitz SF (2005) PVN galanin increases fat storage and promotes obesity by causing muscle to utilize carbohydrate more than fat. Peptides 26:2265–2273

    Article  PubMed  CAS  Google Scholar 

  9. Leibowitz SF, Dourmashkin JT, Chang GQ, Hill JO, Gayles EC, Fried SK, Wang J (2004) Acute high-fat diet paradigms link galanin to triglycerides and their transport and metabolism in muscle. Brain Res 1008:168–178

    Article  PubMed  CAS  Google Scholar 

  10. Smith BK, Berthoud HR, York DA, Bray GA (1997) Differential effects of baseline macronutrient preferences on macronutrient selection after galanin, NPY, and an overnight fast. Peptides 18:207–211

    Article  PubMed  CAS  Google Scholar 

  11. Tempel DL, Leibowitz KJ, Leibowitz SF (1988) Effects of PVN galanin on macronutrient selection. Peptides 9:309–314

    Article  PubMed  CAS  Google Scholar 

  12. Corwin RL, Rowe PM, Crawley JN (1995) Galanin and the galanin antagonist M40 do not change fat intake in a fat-chow choice paradigm in rats. Am J Physiol 269:R511–R518

    PubMed  CAS  Google Scholar 

  13. Nagase H, Nakajima A, Sekihara H, York DA, Bray GA (2002) Regulation of feeding behavior, gastric emptying, and sympathetic nerve activity to interscapular brown adipose tissue by galanin and enterostatin: the involvement of vagal-central nervous system interactions. J Gastroenterol 37(Suppl 14):118–127

    PubMed  CAS  Google Scholar 

  14. Lin L, York DA, Bray GA (1996) Comparison of Osborne-Mendel and S5B/PL strains of rat: central effects of galanin, NPY, beta-casomorphin and CRH on intake of high-fat and low-fat diets. Obes Res 4:117–124

    Article  PubMed  CAS  Google Scholar 

  15. Odorizzi M, Fernette B, Angel E, Burlet C, Tankosic P, Burlet A (2002) Galanin receptor antagonists decrease fat preference in Brattleboro rat. Neuropharmacology 42:134–141

    Article  PubMed  CAS  Google Scholar 

  16. Leibowitz SF, Kim T (1992) Impact of a galanin antagonist on exogenous galanin and natural patterns of fat ingestion. Brain Res 599:148–152

    Article  PubMed  CAS  Google Scholar 

  17. Akabayashi A, Koenig JI, Watanabe Y, Alexander JT, Leibowitz SF (1994) Galanin-containing neurons in the paraventricular nucleus: a neurochemical marker for fat ingestion and body weight gain. Proc Natl Acad Sci USA 91:10375–10379

    Article  PubMed  CAS  Google Scholar 

  18. Barton C, Lin L, York DA, Bray GA (1995) Differential effects of enterostatin, galanin and opioids on high-fat diet consumption. Brain Res 702:55–60

    Article  PubMed  CAS  Google Scholar 

  19. Barton C, York DA, Bray GA (1996) Opioid receptor subtype control of galanin-induced feeding. Peptides 17:237–240

    Article  PubMed  CAS  Google Scholar 

  20. Leibowitz SF (2007) Overconsumption of dietary fat and alcohol: mechanisms involving lipids and hypothalamic peptides. Physiol Behav 91:513–521

    Article  PubMed  CAS  Google Scholar 

  21. Leibowitz SF, Akabayashi A, Wang JA (1998) Obesity on a high-fat diet: role of hypothalamic galanin in neurons of the anterior paraventricular nucleus projecting to the median eminence. J Neurosci 18:2709–2719

    PubMed  CAS  Google Scholar 

  22. Dourmashkin JT, Chang GQ, Gayles EC, Hill JO, Fried SK, Julien C, Leibowitz SF (2005) Different forms of obesity as a function of diet composition. Int J Obes 29:1368–1378

    Article  CAS  Google Scholar 

  23. Alexander J, Chang GQ, Dourmashkin JT, Leibowitz SF (2006) Distinct phenotypes of obesity-prone AKR/J, DBA2J and C57BL/6J mice compared to control strains. Int J Obes 30:50–59

    Article  CAS  Google Scholar 

  24. Mercer JG, Lawrence CB, Atkinson T (1996) Regulation of galanin gene expression in the hypothalamic paraventricular nucleus of the obese Zucker rat by manipulation of dietary macronutrients. Brain Res Mol Brain Res 43:202–208

    Article  PubMed  CAS  Google Scholar 

  25. Odorizzi M, Max JP, Tankosic P, Burlet C, Burlet A (1999) Dietary preferences of Brattleboro rats correlated with an overexpression of galanin in the hypothalamus. Eur J Neurosci 11:3005–3014

    Article  PubMed  CAS  Google Scholar 

  26. Beck B, Max JP (2007) Hypothalamic galanin and plasma leptin and ghrelin in the maintenance of energy intake in the Brattleboro rat. Biochem Biophys Res Commun 364:60–65

    Article  PubMed  CAS  Google Scholar 

  27. Landry M, Aman K, Hokfelt T (1998) Galanin-R1 receptor in anterior and mid-hypothalamus: distribution and regulation. J Comp Neurol 399:321–340

    Article  PubMed  CAS  Google Scholar 

  28. Xu B, Kalra PS, Farmerie WG, Kalra SP (1999) Daily changes in hypothalamic gene expression of neuropeptide Y, galanin, proopiomelanocortin, and adipocyte leptin gene expression and secretion: effects of food restriction. Endocrinology 140:2868–2875

    Article  PubMed  CAS  Google Scholar 

  29. Leibowitz SF, Akabayashi A, Alexander JT, Wang J (1998) Gonadal steroids and hypothalamic galanin and neuropeptide Y: role in eating behavior and body weight control in female rats. Endocrinology 139:1771–1780

    Article  PubMed  CAS  Google Scholar 

  30. Wang J, Akabayashi A, Yu HJ, Dourmashkin J, Alexander JT, Silva I, Lighter J, Leibowitz SF (1998) Hypothalamic galanin: control by signals of fat metabolism. Brain Res 804:7–20

    Article  PubMed  CAS  Google Scholar 

  31. Gorbatyuk O, Hokfelt T (1998) Effect of inhibition of glucose and fat metabolism on galanin-R1 receptor mRNA levels in the rat hypothalamic paraventricular and supraoptic nuclei. Neuroreport 9:3565–3569

    Article  PubMed  CAS  Google Scholar 

  32. Hohmann JG, Krasnow SM, Teklemichael DN, Clifton DK, Wynick D, Steiner RA (2003) Neuroendocrine profiles in galanin-overexpressing and knockout mice. Neuroendocrinology 77:354–366

    Article  PubMed  CAS  Google Scholar 

  33. Adams AC, Clapham JC, Wynick D, Speakman JR (2008) Feeding behaviour in galanin knockout mice supports a role of galanin in fat intake and preference. J Neuroendocrinol 20:199–206

    Article  PubMed  CAS  Google Scholar 

  34. Karatayev O, Baylan J, Weed V, Chang S, Wynick D, Leibowitz SF (2009) Galanin knockout mice show disturbances in ethanol consumption and expression of hypothalamic peptides that stimulate ethanol intake. Alcohol Clin Exp Res 34(1):72–80

    Article  PubMed  CAS  Google Scholar 

  35. Zorrilla EP, Brennan M, Sabino V, Lu X, Bartfai T (2007) Galanin type 1 receptor knockout mice show altered responses to high-fat diet and glucose challenge. Physiol Behav 91:479–485

    Article  PubMed  CAS  Google Scholar 

  36. Karatayev O, Baylan J, Leibowitz SF (2009) Increased intake of ethanol and dietary fat in galanin overexpressing mice. Alcohol 43(8):571–580

    Article  PubMed  CAS  Google Scholar 

  37. Smith BK, York DA, Bray GA (1994) Chronic cerebroventricular galanin does not induce sustained hyperphagia or obesity. Peptides 15:1267–1272

    Article  PubMed  CAS  Google Scholar 

  38. Leibowitz SF, Alexander J, Dourmashkin JT, Hill JO, Gayles EC, Chang GQ (2005) Phenotypic profile of SWR/J and A/J mice compared to control strains: possible mechanisms underlying resistance to obesity on a high-fat diet. Brain Res 1047:137–147

    Article  PubMed  CAS  Google Scholar 

  39. Schauble N et al (2005) Human galanin (GAL) and galanin 1 receptor (GALR1) variations are not involved in fat intake and early onset obesity. J Nutr 135:1387–1392

    PubMed  Google Scholar 

  40. Sutton BS, Langefeld CD, Campbell JK, Haffner SM, Norris JM, Scherzinger AL, Wagenknecht LE, Bowden DW (2006) Genetic mapping of a 17q chromosomal region linked to obesity phenotypes in the IRAS family study. Int J Obes 30:1433–1441

    Article  CAS  Google Scholar 

  41. Milewicz A, Bidzinska B, Mikulski E, Demissie M, Tworowska U (2000) Influence of obesity and menopausal status on serum leptin, cholecystokinin, galanin and neuropeptide Y levels. Gynecol Endocrinol 14:196–203

    Article  PubMed  CAS  Google Scholar 

  42. Frank GK, Kaye WH, Sahu A, Fernstrom J, McConaha C (2001) Could reduced cerebrospinal fluid (csf) galanin contribute to restricted eating in anorexia nervosa? Neuropsychopharmacology 24:706–709

    Article  PubMed  CAS  Google Scholar 

  43. Rada P, Avena NM, Leibowitz SF, Hoebel BG (2004) Ethanol intake is increased by injection of galanin in the paraventricular nucleus and reduced by a galanin antagonist. Alcohol 33:91–97

    PubMed  CAS  Google Scholar 

  44. Lewis MJ, Johnson DF, Waldman D, Leibowitz SF, Hoebel BG (2004) Galanin microinjection in the third ventricle increases voluntary ethanol intake. Alcohol Clin Exp Res 28:1822–1828

    Article  PubMed  CAS  Google Scholar 

  45. Schneider ER, Rada P, Darby RD, Leibowitz SF, Hoebel BG (2007) Orexigenic peptides and alcohol intake: differential effects of orexin, galanin, and ghrelin. Alcohol Clin Exp Res 31:1858–1865

    Article  PubMed  CAS  Google Scholar 

  46. Leibowitz SF, Avena NM, Chang GQ, Karatayev O, Chau DT, Hoebel BG (2003) Ethanol intake increases galanin mRNA in the hypothalamus and withdrawal decreases it. Physiol Behav 79:103–111

    Article  PubMed  CAS  Google Scholar 

  47. Pickering C, Avesson L, Liljequist S, Lindblom J, Schioth HB (2007) The role of hypothalamic peptide gene expression in alcohol self-administration behavior. Peptides 28:2361–2371

    Article  PubMed  CAS  Google Scholar 

  48. Belfer I et al (2006) Association of galanin haplotypes with alcoholism and anxiety in two ethnically distinct populations. Mol Psychiatry 11:301–311

    Article  PubMed  CAS  Google Scholar 

  49. Belfer I et al (2007) Alcoholism is associated with GALR3 but not two other galanin receptor genes. Genes Brain Behav 6:473–481

    Article  PubMed  CAS  Google Scholar 

  50. Smith BK, York DA, Bray GA (1996) Effects of dietary preference and galanin administration in the paraventricular or amygdaloid nucleus on diet self-selection. Brain Res Bull 39:149–154

    Article  PubMed  CAS  Google Scholar 

  51. Michel C, Levin BE, Dunn-Meynell AA (2003) Stress facilitates body weight gain in genetically predisposed rats on medium-fat diet. Am J Physiol Regul Integr Comp Physiol 285:R791–R799

    PubMed  CAS  Google Scholar 

  52. Pecoraro N, Reyes F, Gomez F, Bhargava A, Dallman MF (2004) Chronic stress promotes palatable feeding, which reduces signs of stress: feedforward and feedback effects of chronic stress. Endocrinology 145:3754–3762

    Article  PubMed  CAS  Google Scholar 

  53. Siegmund S, Vengeliene V, Singer MV, Spanagel R (2005) Influence of age at drinking onset on long-term ethanol self-administration with deprivation and stress phases. Alcohol Clin Exp Res 29:1139–1145

    Article  PubMed  Google Scholar 

  54. Nash JF Jr, Maickel RP (1985) Stress-induced consumption of ethanol by rats. Life Sci 37:757–765

    Article  PubMed  CAS  Google Scholar 

  55. Tempel DL, Leibowitz SF (1990) Diurnal variations in the feeding responses to norepinephrine, neuropeptide Y and galanin in the PVN. Brain Res Bull 25:821–825

    Article  PubMed  CAS  Google Scholar 

  56. Palkovits M (2000) Stress-induced expression of co-localized neuropeptides in hypothalamic and amygdaloid neurons. Eur J Pharmacol 405:161–166

    Article  PubMed  CAS  Google Scholar 

  57. Sweerts BW, Jarrott B, Lawrence AJ (2000) Acute and chronic restraint stress: effects on [125I]-galanin binding in normotensive and hypertensive rat brain. Brain Res 873:318–329

    Article  PubMed  CAS  Google Scholar 

  58. Bing O, Moller C, Engel JA, Soderpalm B, Heilig M (1993) Anxiolytic-like action of centrally administered galanin. Neurosci Lett 164:17–20

    Article  PubMed  CAS  Google Scholar 

  59. Rajarao SJ et al (2007) Anxiolytic-like activity of the non-selective galanin receptor agonist, galnon. Neuropeptides 41:307–320

    Article  PubMed  CAS  Google Scholar 

  60. Bailey KR, Pavlova MN, Rohde AD, Hohmann JG, Crawley JN (2007) Galanin receptor subtype 2 (GalR2) null mutant mice display an anxiogenic-like phenotype specific to the elevated plus-maze. Pharmacol Biochem Behav 86:8–20

    Article  PubMed  CAS  Google Scholar 

  61. Lu X, Ross B, Sanchez-Alavez M, Zorrilla EP, Bartfai T (2008) Phenotypic analysis of GalR2 knockout mice in anxiety- and depression-related behavioral tests. Neuropeptides 42:387–397

    Article  PubMed  CAS  Google Scholar 

  62. Holmes A, Yang RJ, Crawley JN (2002) Evaluation of an anxiety-related phenotype in galanin overexpressing transgenic mice. J Mol Neurosci 18:151–165

    Article  PubMed  CAS  Google Scholar 

  63. Kuteeva E, Hokfelt T, Ogren SO (2005) Behavioural characterisation of transgenic mice overexpressing galanin under the PDGF-B promoter. Neuropeptides 39:299–304

    Article  PubMed  CAS  Google Scholar 

  64. Kaplan LM, Spindel ER, Isselbacher KJ, Chin WW (1988) Tissue-specific expression of the rat galanin gene. Proc Natl Acad Sci USA 85:1065–1069

    Article  PubMed  CAS  Google Scholar 

  65. Jungnickel SR, Gundlach AL (2005) [125I]-Galanin binding in brain of wildtype, and galanin- and GalR1-knockout mice: strain and species differences in GalR1 density and distribution. Neuroscience 131:407–421

    Article  PubMed  CAS  Google Scholar 

  66. Lu X, Sharkey L, Bartfai T (2007) The brain galanin receptors: targets for novel antidepressant drugs. CNS Neurol Disord Drug Targets 6:183–192

    Article  PubMed  CAS  Google Scholar 

  67. Hawes JJ, Picciotto MR (2004) Characterization of GalR1, GalR2, and GalR3 immunoreactivity in catecholaminergic nuclei of the mouse brain. J Comp Neurol 479:410–423

    Article  PubMed  Google Scholar 

  68. Hawes JJ, Brunzell DH, Narasimhaiah R, Langel U, Wynick D, Picciotto MR (2008) Galanin protects against behavioral and neurochemical correlates of opiate reward. Neuropsychopharmacology 33:1864–1873

    Article  PubMed  CAS  Google Scholar 

  69. Robinson JK, Brewer A (2008) Galanin: a potential role in mesolimbic dopamine-mediated instrumental behavior. Neurosci Biobehav Rev 32:1485–1493

    Article  PubMed  CAS  Google Scholar 

  70. Kyrkouli SE, Stanley BG, Leibowitz SF (1992) Differential effects of galanin and neuropeptide Y on extracellular norepinephrine levels in the paraventricular hypothalamic nucleus of the rat: a microdialysis study. Life Sci 51:203–210

    Article  PubMed  CAS  Google Scholar 

  71. Leibowitz SF (1978) Adrenergic stimulation of the paraventricular nucleus and its effects on ingestive behavior as a function of drug dose and time of injection in the light-dark cycle. Brain Res Bull 3:357–363

    Article  PubMed  CAS  Google Scholar 

  72. Leibowitz SF (1978) Paraventricular nucleus: a primary site mediating adrenergic stimulation of feeding and drinking. Pharmacol Biochem Behav 8:163–175

    Article  PubMed  CAS  Google Scholar 

  73. Leibowitz SF (1988) Hypothalamic paraventricular nucleus: interaction between alpha 2-noradrenergic system and circulating hormones and nutrients in relation to energy balance. Neurosci Biobehav Rev 12:101–109

    Article  PubMed  CAS  Google Scholar 

  74. Leibowitz SF, Weiss GF, Yee F, Tretter JB (1985) Noradrenergic innervation of the paraventricular nucleus: specific role in control of carbohydrate ingestion. Brain Res Bull 14:561–567

    Article  PubMed  CAS  Google Scholar 

  75. Kyrkouli SE, Stanley BG, Hutchinson R, Seirafi RD, Leibowitz SF (1990) Peptide-amine interactions in the hypothalamic paraventricular nucleus: analysis of galanin and neuropeptide Y in relation to feeding. Brain Res 521:185–191

    Article  PubMed  CAS  Google Scholar 

  76. Melander T, Hokfelt T, Rokaeus A, Cuello AC, Oertel WH, Verhofstad A, Goldstein M (1986) Coexistence of galanin-like immunoreactivity with catecholamines, 5-hydroxytryptamine, GABA and neuropeptides in the rat CNS. J Neurosci 6:3640–3654

    PubMed  CAS  Google Scholar 

  77. Sevcik J, Finta EP, Illes P (1993) Galanin receptors inhibit the spontaneous firing of locus coeruleus neurones and interact with mu-opioid receptors. Eur J Pharmacol 230:223–230

    Article  PubMed  CAS  Google Scholar 

  78. Pieribone VA, Xu ZQ, Zhang X, Grillner S, Bartfai T, Hokfelt T (1995) Galanin induces a hyperpolarization of norepinephrine-containing locus coeruleus neurons in the brainstem slice. Neuroscience 64:861–874

    Article  PubMed  CAS  Google Scholar 

  79. Xu ZQ, Tong YG, Hokfelt T (2001) Galanin enhances noradrenaline-induced outward current on locus coeruleus noradrenergic neurons. Neuroreport 12:1779–1782

    Article  PubMed  CAS  Google Scholar 

  80. Foote SL, Aston-Jones G, Bloom FE (1980) Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proc Natl Acad Sci USA 77:3033–3037

    Article  PubMed  CAS  Google Scholar 

  81. Sara SJ (1998) Learning by neurones: role of attention, reinforcement and behaviour. C R Acad Sci III 321:193–198

    Article  PubMed  CAS  Google Scholar 

  82. Sharkey LM, Madamba SG, Siggins GR, Bartfai T (2008) Galanin alters GABAergic neurotransmission in the dorsal raphe nucleus. Neurochem Res 33:285–291

    Article  PubMed  CAS  Google Scholar 

  83. Xu ZQ, Zhang X, Pieribone VA, Grillner S, Hokfelt T (1998) Galanin-5-hydroxytryptamine interactions: electrophysiological, immunohistochemical and in situ hybridization studies on rat dorsal raphe neurons with a note on galanin R1 and R2 receptors. Neuroscience 87:79–94

    Article  PubMed  CAS  Google Scholar 

  84. Ogren SO, Schott PA, Kehr J, Yoshitake T, Misane I, Mannstrom P, Sandin J (1998) Modulation of acetylcholine and serotonin transmission by galanin. Relationship to spatial and aversive learning. Ann N Y Acad Sci 863:342–363

    Article  PubMed  CAS  Google Scholar 

  85. Kehr J, Yoshitake T, Wang FH, Razani H, Gimenez-Llort L, Jansson A, Yamaguchi M, Ogren SO (2002) Galanin is a potent in vivo modulator of mesencephalic serotonergic neurotransmission. Neuropsychopharmacology 27:341–356

    Article  PubMed  CAS  Google Scholar 

  86. Ward AS, Comer SD, Haney M, Fischman MW, Foltin RW (1999) Fluoxetine-maintained obese humans: effect on food intake and body weight. Physiol Behav 66:815–821

    Article  PubMed  CAS  Google Scholar 

  87. Foltin RW, Haney M, Comer SD, Fischman MW (1996) Effect of fluoxetine on food intake of humans living in a residential laboratory. Appetite 27:165–181

    Article  PubMed  CAS  Google Scholar 

  88. Lawton CL, Wales JK, Hill AJ, Blundell JE (1995) Serotoninergic manipulation, meal-induced satiety and eating pattern: effect of fluoxetine in obese female subjects. Obes Res 3:345–356

    Article  PubMed  CAS  Google Scholar 

  89. Mancilla-Diaz JM, Escartin-Perez RE, Lopez-Alonso VE, Floran-Garduno B, Romano-Camacho JB (2005) Role of 5-HT1A and 5-HT1B receptors in the hypophagic effect of 5-HT on the structure of feeding behavior. Med Sci Monit 11:BR74–BR79

    PubMed  CAS  Google Scholar 

  90. Fletcher PJ, Paterson IA (1989) A comparison of the effects of tryptamine and 5-hydroxytryptamine on feeding following injection into the paraventricular nucleus of the hypothalamus. Pharmacol Biochem Behav 32:907–911

    Article  PubMed  CAS  Google Scholar 

  91. Rouch C, Meile MJ, Gerozissis K (2005) Persisting neural and endocrine modifications induced by a single fat meal. Cell Mol Neurobiol 25:995–1008

    Article  PubMed  Google Scholar 

  92. Banas SM, Rouch C, Kassis N, Markaki EM, Gerozissis K (2009) A dietary fat excess alters metabolic and neuroendocrine responses before the onset of metabolic diseases. Cell Mol Neurobiol 29:157–168

    Article  PubMed  CAS  Google Scholar 

  93. Skofitsch G, Sills MA, Jacobowitz DM (1986) Autoradiographic distribution of 125I-galanin binding sites in the rat central nervous system. Peptides 7:1029–1042

    Article  PubMed  CAS  Google Scholar 

  94. Ericson E, Ahlenius S (1999) Suggestive evidence for inhibitory effects of galanin on mesolimbic dopaminergic neurotransmission. Brain Res 822:200–209

    Article  PubMed  CAS  Google Scholar 

  95. Merchenthaler I, Lopez FJ, Negro-Vilar A (1993) Anatomy and physiology of central galanin-containing pathways. Prog Neurobiol 40:711–769

    Article  PubMed  CAS  Google Scholar 

  96. Perez SE, Wynick D, Steiner RA, Mufson EJ (2001) Distribution of galaninergic immunoreactivity in the brain of the mouse. J Comp Neurol 434:158–185

    Article  PubMed  CAS  Google Scholar 

  97. Rada P, Mark GP, Hoebel BG (1998) Galanin in the hypothalamus raises dopamine and lowers acetylcholine release in the nucleus accumbens: a possible mechanism for hypothalamic initiation of feeding behavior. Brain Res 798:1–6

    Article  PubMed  CAS  Google Scholar 

  98. Di Chiara G (2002) Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav Brain Res 137:75–114

    Article  PubMed  Google Scholar 

  99. Wilson C, Nomikos GG, Collu M, Fibiger HC (1995) Dopaminergic correlates of motivated behavior: importance of drive. J Neurosci 15:5169–5178

    PubMed  CAS  Google Scholar 

  100. Di Chiara G (1997) Cortical and limbic dopamine (on opiate addiction): do not mix before use! Trends Pharmacol Sci 18:77–78

    PubMed  Google Scholar 

  101. Antoniou K, Kehr J, Snitt K, Ogren SO (1997) Differential effects of the neuropeptide galanin on striatal acetylcholine release in anaesthetized and awake rats. Br J Pharmacol 121:1180–1186

    Article  PubMed  CAS  Google Scholar 

  102. Pratt WE, Kelley AE (2005) Striatal muscarinic receptor antagonism reduces 24-h food intake in association with decreased preproenkephalin gene expression. Eur J Neurosci 22:3229–3240

    Article  PubMed  Google Scholar 

  103. Pratt WE, Blackstone K (2009) Nucleus accumbens acetylcholine and food intake: decreased muscarinic tone reduces feeding but not food-seeking. Behav Brain Res 198:252–257

    Article  PubMed  CAS  Google Scholar 

  104. Hoebel BG, Avena NM, Rada P (2007) Accumbens dopamine-acetylcholine balance in approach and avoidance. Curr Opin Pharmacol 7:617–627

    Article  PubMed  CAS  Google Scholar 

  105. Mark GP, Rada P, Pothos E, Hoebel BG (1992) Effects of feeding and drinking on acetylcholine release in the nucleus accumbens, striatum, and hippocampus of freely behaving rats. J Neurochem 58:2269–2274

    Article  PubMed  CAS  Google Scholar 

  106. Elvander E, Ogren SO (2005) Medial septal galanin and acetylcholine: influence on hippocampal acetylcholine and spatial learning. Neuropeptides 39:245–248

    Article  PubMed  CAS  Google Scholar 

  107. Elvander E, Schott PA, Sandin J, Bjelke B, Kehr J, Yoshitake T, Ogren SO (2004) Intraseptal muscarinic ligands and galanin: influence on hippocampal acetylcholine and cognition. Neuroscience 126:541–557

    Article  PubMed  CAS  Google Scholar 

  108. Counts SE, He B, Che S, Ginsberg SD, Mufson EJ (2009) Galanin fiber hyperinnervation preserves neuroprotective gene expression in cholinergic basal forebrain neurons in Alzheimer’s disease. J Alzheimers Dis 18(4):885–896

    PubMed  CAS  Google Scholar 

  109. Orsetti M, Casamenti F, Pepeu G (1996) Enhanced acetylcholine release in the hippocampus and cortex during acquisition of an operant behavior. Brain Res 724:89–96

    Article  PubMed  CAS  Google Scholar 

  110. Chang Q, Gold PE (2003) Switching memory systems during learning: changes in patterns of brain acetylcholine release in the hippocampus and striatum in rats. J Neurosci 23:3001–3005

    PubMed  CAS  Google Scholar 

  111. Berger-Sweeney J, Stearns NA, Frick KM, Beard B, Baxter MG (2000) Cholinergic basal forebrain is critical for social transmission of food preferences. Hippocampus 10:729–738

    Article  PubMed  CAS  Google Scholar 

  112. Karatayev O, Barson JR, Chang GQ, Leibowitz SF (2009) Hypothalamic injection of non-opioid peptides increases gene expression of the opioid enkephalin in hypothalamic and mesolimbic nuclei: possible mechanism underlying their behavioral effects. Peptides 30(12):2423–2431

    Article  PubMed  CAS  Google Scholar 

  113. Stanley BG, Lanthier D, Leibowitz SF (1988) Multiple brain sites sensitive to feeding stimulation by opioid agonists: a cannula-mapping study. Pharmacol Biochem Behav 31:825–832

    Article  PubMed  CAS  Google Scholar 

  114. Naleid AM, Grace MK, Chimukangara M, Billington CJ, Levine AS (2007) Paraventricular opioids alter intake of high-fat but not high-sucrose diet depending on diet preference in a binge model of feeding. Am J Physiol Regul Integr Comp Physiol 293:R99–R105

    Article  PubMed  CAS  Google Scholar 

  115. Barson JR, Carr AJ, Soun JE, Sobhani NC, Rada P, Leibowitz SF, Hoebel BG (2009) Opioids in the hypothalamic paraventricular nucleus stimulate ethanol intake. Alcohol Clin Exp Res 34(2):214–222

    Article  PubMed  CAS  Google Scholar 

  116. Rada P, Barson JR, Leibowitz SF, Hoebel BG (2010) Opioids in the hypothalamus control dopamine and acetylcholine levels in the nucleus accumbens. Brain Res 1312:1–9

    Article  PubMed  CAS  Google Scholar 

  117. Dube MG, Horvath TL, Leranth C, Kalra PS, Kalra SP (1994) Naloxone reduces feeding evoked by intracerebroventricular galanin injection. Physiol Behav 56(4):811–813

    Article  PubMed  CAS  Google Scholar 

  118. Tachibana T, Mori M, Khan MS, Ueda H, Sugahara K, Hiramatsu K (2008) Central administration of galanin stimulates feeding behavior in chicks. Comp Biochem Physiol A Mol Integr Physiol 151:637–640

    Article  PubMed  CAS  Google Scholar 

  119. Zachariou V et al (2003) The neuropeptide galanin modulates behavioral and neurochemical signs of opiate withdrawal. Proc Natl Acad Sci USA 100:9028–9033

    Article  PubMed  CAS  Google Scholar 

  120. Kim EM, Quinn JG, Levine AS, O'Hare E (2004) A bi-directional mu-opioid-opioid connection between the nucleus of the accumbens shell and the central nucleus of the amygdala in the rat. Brain Res 1029:135–139

    Article  PubMed  CAS  Google Scholar 

  121. Foster KL, McKay PF, Seyoum R, Milbourne D, Yin W, Sarma PV, Cook JM, June HL (2004) GABA(A) and opioid receptors of the central nucleus of the amygdala selectively regulate ethanol-maintained behaviors. Neuropsychopharmacology 29:269–284

    Article  PubMed  CAS  Google Scholar 

  122. Bahceci M, Tuzcu A, Akkus M, Yaldiz M, Ozbay A (1999) The effect of high-fat diet on the development of obesity and serum leptin level in rats. Eat Weight Disord 4:128–132

    PubMed  CAS  Google Scholar 

  123. Gaysinskaya VA, Karatayev O, Chang GQ, Leibowitz SF (2007) Increased caloric intake after a high-fat preload: relation to circulating triglycerides and orexigenic peptides. Physiol Behav 91:142–153

    Article  PubMed  CAS  Google Scholar 

  124. Chang GQ, Karatayev O, Davydova Z, Leibowitz SF (2004) Circulating triglycerides impact on orexigenic peptides and neuronal activity in hypothalamus. Endocrinology 145:3904–3912

    Article  PubMed  CAS  Google Scholar 

  125. Poritsanos NJ, Mizuno TM, Lautatzis ME, Vrontakis M (2009) Chronic increase of circulating galanin levels induces obesity and marked alterations in lipid metabolism similar to metabolic syndrome. Int J Obes 33(12):1381–1389

    Article  CAS  Google Scholar 

  126. Mally P, Mishra R, Gandhi S, Decastro MH, Nankova BB, Lagamma EF (2004) Stereospecific regulation of tyrosine hydroxylase and proenkephalin genes by short-chain fatty acids in rat PC12 cells. Pediatr Res 55:847–854

    Article  PubMed  CAS  Google Scholar 

  127. Plaisier CL et al (2009) Galanin preproprotein is associated with elevated plasma triglycerides. Arterioscler Thromb Vasc Biol 29:147–152

    Article  PubMed  CAS  Google Scholar 

  128. Banks WA, Coon AB, Robinson SM, Moinuddin A, Shultz JM, Nakaoke R, Morley JE (2004) Triglycerides induce leptin resistance at the blood-brain barrier. Diabetes 53:1253–1260

    Article  PubMed  CAS  Google Scholar 

  129. Urayama A, Banks WA (2008) Starvation and triglycerides reverse the obesity-induced impairment of insulin transport at the blood-brain barrier. Endocrinology 149:3592–3597

    Article  PubMed  CAS  Google Scholar 

  130. Cheung CC, Hohmann JG, Clifton DK, Steiner RA (2001) Distribution of galanin messenger RNA-expressing cells in murine brain and their regulation by leptin in regions of the hypothalamus. Neuroscience 103:423–432

    Article  PubMed  CAS  Google Scholar 

  131. Wang J, Leibowitz KL (1997) Central insulin inhibits hypothalamic galanin and neuropeptide Y gene expression and peptide release in intact rats. Brain Res 777:231–236

    Article  PubMed  CAS  Google Scholar 

  132. Ji H, Friedman MI (2003) Fasting plasma triglyceride levels and fat oxidation predict dietary obesity in rats. Physiol Behav 78:767–772

    Article  PubMed  CAS  Google Scholar 

  133. Karatayev O, Gaysinskaya V, Chang GQ, Leibowitz SF (2009) Circulating triglycerides after a high-fat meal: predictor of increased caloric intake, orexigenic peptide expression, and dietary obesity. Brain Res 1298:111–122

    Article  PubMed  CAS  Google Scholar 

  134. Carrillo CA, Leibowitz SF, Karatayev O, Hoebel BG (2004) A high-fat meal or injection of lipids stimulates ethanol intake. Alcohol 34:197–202

    Article  PubMed  CAS  Google Scholar 

  135. Krahn DD, Gosnell BA (1991) Fat-preferring rats consume more alcohol than carbohydrate-preferring rats. Alcohol 8:313–316

    Article  PubMed  CAS  Google Scholar 

  136. Barson JR, Karatayev O, Chang GQ, Johnson DF, Bocarsly ME, Hoebel BG, Leibowitz SF (2009) Positive relationship between dietary fat, ethanol intake, triglycerides, and hypothalamic peptides: counteraction by lipid-lowering drugs. Alcohol 43:433–441

    Article  PubMed  CAS  Google Scholar 

  137. Herbeth B, Didelot-Barthelemy L, Lemoine A, Le Devehat C (1988) Dietary behavior of French men according to alcohol drinking pattern. J Stud Alcohol 49:268–272

    PubMed  CAS  Google Scholar 

  138. Swinburn BA, Walter L, Ricketts H, Whitlock G, Law B, Norton R, Jackson R, MacMahon S (1998) The determinants of fat intake in a multi-ethnic New Zealand population. Fletcher Challenge–University of Auckland Heart and Health Study Management Committee. Int J Epidemiol 27:416–421

    Article  PubMed  CAS  Google Scholar 

  139. Forsander OA (1998) Dietary influences on alcohol intake: a review. J Stud Alcohol 59:26–31

    PubMed  CAS  Google Scholar 

  140. Yung L, Gordis E, Holt J (1983) Dietary choices and likelihood of abstinence among alcoholic patients in an outpatient clinic. Drug Alcohol Depend 12:355–362

    Article  PubMed  CAS  Google Scholar 

  141. Mechenthaler I (2008) Galanin and the neuroendocrine axes. Cell Mol Life Sci 65:1826–1835

    Article  PubMed  CAS  Google Scholar 

  142. Leibowitz SF, Akabayashi A, Alexander J, Karatayev O, Chang GQ (2009) Puberty onset in female rats: relationship with fat intake, ovarian steroids and the peptides, galanin and enkephalin, in the paraventricular and medial preoptic nuclei. J Neuroendocrinol 21:538–549

    Article  PubMed  CAS  Google Scholar 

  143. Beck B, Kozak R, Moar KM, Mercer JG (2006) Hypothalamic orexigenic peptides are overexpressed in young Long-Evans rats after early life exposure to fat-rich diets. Biochem Biophys Res Commun 342:452–458

    Article  PubMed  CAS  Google Scholar 

  144. Chang GQ, Gaysinskaya V, Karatayev O, Leibowitz SF (2008) Maternal high-fat diet and fetal programming: increased proliferation of hypothalamic peptide-producing neurons that increase risk for overeating and obesity. J Neurosci 28:12107–12119

    Article  PubMed  CAS  Google Scholar 

  145. Sanford SD, Gatlin JC, Hokfelt T, Pfenninger KH (2008) Growth cone responses to growth and chemotropic factors. Eur J Neurosci 28:268–278

    Article  PubMed  Google Scholar 

  146. Mahoney SA et al (2003) The second galanin receptor GalR2 plays a key role in neurite outgrowth from adult sensory neurons. J Neurosci 23:416–421

    PubMed  CAS  Google Scholar 

  147. Hobson SA, Holmes FE, Kerr NC, Pope RJ, Wynick D (2006) Mice deficient for galanin receptor 2 have decreased neurite outgrowth from adult sensory neurons and impaired pain-like behaviour. J Neurochem 99:1000–1010

    Article  PubMed  CAS  Google Scholar 

  148. Villar MJ, Cortes R, Theodorsson E, Wiesenfeld-Hallin Z, Schalling M, Fahrenkrug J, Emson PC, Hokfelt T (1989) Neuropeptide expression in rat dorsal root ganglion cells and spinal cord after peripheral nerve injury with special reference to galanin. Neuroscience 33:587–604

    Article  PubMed  CAS  Google Scholar 

  149. Shi TJ, Tandrup T, Bergman E, Xu ZQ, Ulfhake B, Hokfelt T (2001) Effect of peripheral nerve injury on dorsal root ganglion neurons in the C57 BL/6J mouse: marked changes both in cell numbers and neuropeptide expression. Neuroscience 105:249–263

    Article  PubMed  CAS  Google Scholar 

  150. Chan-Palay V (1988) Galanin hyperinnervates surviving neurons of the human basal nucleus of Meynert in dementias of Alzheimer's and Parkinson's disease: a hypothesis for the role of galanin in accentuating cholinergic dysfunction in dementia. J Comp Neurol 273:543–557

    Article  PubMed  CAS  Google Scholar 

  151. Beal MF, MacGarvey U, Swartz KJ (1990) Galanin immunoreactivity is increased in the nucleus basalis of Meynert in Alzheimer's disease. Ann Neurol 28:157–161

    Article  PubMed  CAS  Google Scholar 

  152. Unger JW, Schmidt Y (1993) Galanin-immunoreactivity in the nucleus basalis of Meynert in the rat: age-related changes and differential response to lesion-induced cholinergic cell loss. Neurosci Lett 153:140–143

    Article  PubMed  CAS  Google Scholar 

  153. McMillan PJ, Peskind E, Raskind MA, Leverenz JB (2004) Increased galanin receptor occupancy in Alzheimer's disease. Neurobiol Aging 25:1309–1314

    Article  PubMed  CAS  Google Scholar 

  154. Mazarati AM, Halaszi E, Telegdy G (1992) Anticonvulsive effects of galanin administered into the central nervous system upon the picrotoxin-kindled seizure syndrome in rats. Brain Res 589:164–166

    Article  PubMed  CAS  Google Scholar 

  155. Mazarati AM, Liu H, Soomets U, Sankar R, Shin D, Katsumori H, Langel U, Wasterlain CG (1998) Galanin modulation of seizures and seizure modulation of hippocampal galanin in animal models of status epilepticus. J Neurosci 18:10070–10077

    PubMed  CAS  Google Scholar 

  156. Mazarati AM, Hohmann JG, Bacon A, Liu H, Sankar R, Steiner RA, Wynick D, Wasterlain CG (2000) Modulation of hippocampal excitability and seizures by galanin. J Neurosci 20:6276–6281

    PubMed  CAS  Google Scholar 

  157. Jacoby AS, Hort YJ, Constantinescu G, Shine J, Iismaa TP (2002) Critical role for GALR1 galanin receptor in galanin regulation of neuroendocrine function and seizure activity. Brain Res Mol Brain Res 107:195–200

    Article  PubMed  CAS  Google Scholar 

  158. Mazarati A, Lu X, Shinmei S, Badie-Mahdavi H, Bartfai T (2004) Patterns of seizures, hippocampal injury and neurogenesis in three models of status epilepticus in galanin receptor type 1 (GalR1) knockout mice. Neuroscience 128:431–441

    Article  PubMed  CAS  Google Scholar 

  159. McColl CD, Jacoby AS, Shine J, Iismaa TP, Bekkers JM (2006) Galanin receptor-1 knockout mice exhibit spontaneous epilepsy, abnormal EEGs and altered inhibition in the hippocampus. Neuropharmacology 50:209–218

    Article  PubMed  CAS  Google Scholar 

  160. Kossoff EH (2004) More fat and fewer seizures: dietary therapies for epilepsy. Lancet Neurol 3:415–420

    Article  PubMed  Google Scholar 

  161. Eagles DA (2008) Design of dietary treatment: humans versus rodents. Epilepsia 49(Suppl 8):61–63

    Article  PubMed  Google Scholar 

  162. Tabb K, Szot P, White SS, Liles LC, Weinshenker D (2004) The ketogenic diet does not alter brain expression of orexigenic neuropeptides. Epilepsy Res 62:35–39

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research described in this review has been supported by USPHS Grants AA12882 and DA21518.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah F. Leibowitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Basel AG

About this chapter

Cite this chapter

Barson, J.R., Morganstern, I., Leibowitz, S.F. (2010). Galanin and Consummatory Behavior: Special Relationship with Dietary Fat, Alcohol and Circulating Lipids. In: Hökfelt, T. (eds) Galanin. Experientia Supplementum, vol 102. Springer, Basel. https://doi.org/10.1007/978-3-0346-0228-0_8

Download citation

Publish with us

Policies and ethics