Skip to main content
Log in

Galanin Alters GABAergic Neurotransmission in the Dorsal Raphe Nucleus

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The neuropeptide galanin and its three receptor subtypes (Gal R1-3) are highly expressed in the dorsal raphe nucleus (DRN), a region of the brain that contains a large population of serotonergic neurons. Galanin is co-expressed with serotonin in approximately 40% of the DRN neurons, and galanin and GALR2 expression are elevated by antidepressants like the SSRI fluoxetine, suggesting an interaction between serotonin and galanin. The present study examines the effect of galanin (Gal 1–29), a pan ligand for GalR (1–3) and the GalR2/GalR3-selective ligand, Gal 2–11, on the electrophysiological properties of DRN serotonergic neurons in a slice preparation. We recorded from cells in the DRN with electrophysiological characteristics consistent with those of serotonergic neurons that exhibit high input resistance, large after-hyperpolarizations and long spike duration as defined by Aghajanian and Vandermaelen. Both Gal 1–29 and Gal 2–11 decreased the amplitudes pharmacologically-isolated GABAergic inhibitory postsynaptic potentials (IPSPs) in these putative serotonergic neurons. Furthermore, based on paired pulse facilitation studies, we show that Gal 1–29 likely decreases GABA release through a presynaptic mechanism, whereas Gal 2–11 may act postsynaptically. These findings may enhance understanding of the cellular mechanisms underlying the effects of antidepressant treatments on galanin and galanin receptors in DRN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aghajanian GK (1982) Regulation of serotonergic neuronal activity: autoreceptors and pacemaker potentials. Adv Biochem Psychopharmacol 34:173–181

    PubMed  CAS  Google Scholar 

  2. Aghajanian GK, Vandermaelen CP (1982) Intracellular identification of central noradrenergic and serotonergic neurons by a new double labeling procedure. J Neurosci 2:1786–1792

    PubMed  CAS  Google Scholar 

  3. Aghajanian GK, Vandermaelen CP (1982) Intracellular recordings from serotonergic dorsal raphe neurons: pacemaker potentials and the effect of LSD. Brain Res 238:463–469

    Article  PubMed  CAS  Google Scholar 

  4. Bonci A, Williams JT (1997) Increased probability of GABA release during withdrawal from morphine. J Neurosci 17:796–803

    PubMed  CAS  Google Scholar 

  5. Branchek TA, Smith KE, Gerald C, Walker MW (2000) Galanin receptor subtypes. Trends Pharmacol Sci 21:109–117

    Article  PubMed  CAS  Google Scholar 

  6. Burlhis TM, Aghajanian GK (1987) Pacemaker potentials of serotonergic dorsal raphe neurons: contribution of a low-threshold Ca2 + conductance. Synapse 1:582–588

    Article  PubMed  CAS  Google Scholar 

  7. Crunelli V, Forda S, Brooks PA, Wilson KC, Wise JC, Kelly JS (1983) Passive membrane properties of neurones in the dorsal raphe and periaqueductal grey recorded in vitro. Neurosci Lett 40:263–268

    Article  PubMed  CAS  Google Scholar 

  8. Dutar P, Lamour Y, Nicoll RA (1989) Galanin blocks the slow cholinergic EPSP in CA1 pyramidal neurons from ventral hippocampus. Eur J Pharmacol 164:355–360

    Article  PubMed  CAS  Google Scholar 

  9. Fisone G, Wu CF, Consolo S, Nordstrom O, Brynne N, Bartfai T, Melander T, Hokfelt T (1987) Galanin inhibits acetylcholine release in the ventral hippocampus of the rat: histochemical, autoradiographic, in vivo, and in vitro studies. Proc Natl Acad Sci USA 84:7339–7343

    Article  PubMed  CAS  Google Scholar 

  10. Fisone G, Berthold M, Bedecs K, Unden A, Bartfai T, Bertorelli R, Consolo S, Crawley J, Martin B, Nilsson S et al (1989) N-terminal galanin-(1–16) fragment is an agonist at the hippocampal galanin receptor. Proc Natl Acad Sci USA 86:9588–9591

    Article  PubMed  CAS  Google Scholar 

  11. Graeff FG, Guimaraes FS, De Andrade TG, Deakin JF (1996) Role of 5-HT in stress, anxiety, and depression. Pharmacol Biochem Behav 54:129–141

    Article  PubMed  CAS  Google Scholar 

  12. Gustafson EL, Smith KE, Durkin MM, Gerald C, Branchek TA (1996) Distribution of a rat galanin receptor mRNA in rat brain. Neuroreport 7:953–957

    Article  PubMed  CAS  Google Scholar 

  13. Hokfelt T, Xu ZQ, Shi TJ, Holmberg K, Zhang X (1998) Galanin in ascending systems. Focus on coexistence with 5-hydroxytryptamine and noradrenaline. Ann N Y Acad Sci 863:252–263

    Article  PubMed  CAS  Google Scholar 

  14. Kerekes N, Mennicken F, O’Donnell D, Hokfelt T, Hill RH (2003) Galanin increases membrane excitability and enhances Ca(2 + ) currents in adult, acutely dissociated dorsal root ganglion neurons. Eur J Neurosci 18:2957–2966

    Article  PubMed  Google Scholar 

  15. Lu X, Barr AM, Kinney JW, Sanna P, Conti B, Behrens MM, Bartfai T (2005) A role for galanin in antidepressant actions with a focus on the dorsal raphe nucleus. Proc Natl Acad Sci USA 102:874–879

    Article  PubMed  CAS  Google Scholar 

  16. Ma X, Tong YG, Schmidt R, Brown W, Payza K, Hodzic L, Pou C, Godbout C, Hokfelt T, Xu ZQ (2001) Effects of galanin receptor agonists on locus coeruleus neurons. Brain Res 919:169–174

    Article  PubMed  CAS  Google Scholar 

  17. Melander T, Hokfelt T, Rokaeus A, Cuello AC, Oertel WH, Verhofstad A, Goldstein M (1986) Coexistence of galanin-like immunoreactivity with catecholamines, 5-hydroxytryptamine, GABA and neuropeptides in the rat CNS. J Neurosci 6:3640–3654

    PubMed  CAS  Google Scholar 

  18. Melander T, Staines WA, Rokaeus A (1986) Galanin-like immunoreactivity in hippocampal afferents in the rat, with special reference to cholinergic and noradrenergic inputs. Neuroscience 19:223–240

    Article  PubMed  CAS  Google Scholar 

  19. Melander T, Kohler C, Nilsson S, Hokfelt T, Brodin E, Theodorsson E, Bartfai T (1988) Autoradiographic quantitation and anatomical mapping of 125I-galanin binding sites in the rat central nervous system. J Chem Neuroanat 1:213–233

    PubMed  CAS  Google Scholar 

  20. Mennerick S, Zorumski CF (1995) Paired-pulse modulation of fast excitatory synaptic currents in microcultures of rat hippocampal neurons. J Physiol 488(Pt 1):85–101

    PubMed  CAS  Google Scholar 

  21. Mennicken F, Hoffert C, Pelletier M, Ahmad S, O’Donnell D (2002) Restricted distribution of galanin receptor 3 (GalR3) mRNA in the adult rat central nervous system. J Chem Neuroanat 24:257–268

    Article  PubMed  CAS  Google Scholar 

  22. O’Donnell D, Ahmad S, Wahlestedt C, Walker P (1999) Expression of the novel galanin receptor subtype GALR2 in the adult rat CNS: distinct distribution from GALR1. J Comp Neurol 409:469–481

    Article  PubMed  CAS  Google Scholar 

  23. Pieribone VA, Xu ZQ, Zhang X, Grillner S, Bartfai T, Hokfelt T (1995) Galanin induces a hyperpolarization of norepinephrine-containing locus coeruleus neurons in the brainstem slice. Neuroscience 64:861–874

    Article  PubMed  CAS  Google Scholar 

  24. Salin PA, Scanziani M, Malenka RC, Nicoll RA (1996) Distinct short-term plasticity at two excitatory synapses in the hippocampus. Proc Natl Acad Sci USA 93:13304–13309

    Article  PubMed  CAS  Google Scholar 

  25. Swanson CJ, Blackburn TP, Zhang X, Zheng K, Xu ZQ, Hokfelt T, Wolinsky TD, Konkel MJ, Chen H, Zhong H, Walker MW, Craig DA, Gerald CP, Branchek TA (2005) From the cover: anxiolytic- and antidepressant-like profiles of the galanin-3 receptor (Gal3) antagonists SNAP 37889 and SNAP 398299. Proc Natl Acad Sci USA 102:17489–17494

    Article  PubMed  CAS  Google Scholar 

  26. Vandermaelen CP, Aghajanian GK (1983) Electrophysiological and pharmacological characterization of serotonergic dorsal raphe neurons recorded extracellularly and intracellularly in rat brain slices. Brain Res 289:109–119

    Article  PubMed  CAS  Google Scholar 

  27. Xu ZQ, Bartfai T, Langel U, Hokfelt T (1998) Effects of three galanin analogs on the outward current evoked by galanin in locus coeruleus. Ann N Y Acad Sci 863:459–465

    Article  PubMed  CAS  Google Scholar 

  28. Xu ZQ, Shi TJ, Hokfelt T (1998) Galanin/GMAP- and NPY-like immunoreactivities in locus coeruleus and noradrenergic nerve terminals in the hippocampal formation and cortex with notes on the galanin-R1 and -R2 receptors. J Comp Neurol 392:227–251

    Article  PubMed  CAS  Google Scholar 

  29. Xu ZQ, Zhang X, Pieribone VA, Grillner S, Hokfelt T (1998) Galanin-5-hydroxytryptamine interactions: electrophysiological, immunohistochemical and in situ hybridization studies on rat dorsal raphe neurons with a note on galanin R1 and R2 receptors. Neuroscience 87:79–94

    Article  PubMed  CAS  Google Scholar 

  30. Xu ZQ, Tong YG, Hokfelt T (2001) Galanin enhances noradrenaline-induced outward current on locus coeruleus noradrenergic neurons. Neuroreport 12:1779–1782

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Marisa Roberto, Paul Schweitzer for helpful comments on the manuscript, and Novartis Pharma AG for the gift of CGP 55845A. This work has been supported by grants from NIMH to TB and from NIDA to GRS, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa M. Sharkey.

Additional information

Special issue article in honor of Dr. Frode Fonnum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharkey, L.M., Madamba, S.G., Siggins, G.R. et al. Galanin Alters GABAergic Neurotransmission in the Dorsal Raphe Nucleus. Neurochem Res 33, 285–291 (2008). https://doi.org/10.1007/s11064-007-9524-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9524-5

Keywords

Navigation