Skip to main content

Involvement of GABAergic Mechanisms in the Laterodorsal and Pedunculopontine Tegmental Nuclei (LDT–PPT) in the Promotion of REM Sleep

  • Chapter
  • First Online:
GABA and Sleep

Abstract

The neurons of the laterodorsal and pedunculopontine tegmental nuclei (LDT–PPT) have a dual function in the control of behavioral states: they promote either wakefulness (W) or REM sleep. During W, these neurons are also related to cognitive and motor functions. In fact, the PPT is the main output station of the basal ganglia circuit and has a major role in the akinesia of Parkinson´s disease (PD). Interest in this area has grown tremendously following recent demonstrations that the PPT is a promising target for treating PD symptoms by deep brain stimulation. Further progress in treating PD will be greatly assisted by a clear understanding of the structure and function of the LDT–PPT.

Cholinergic neurons are the principal mediators of activity originating in the LDT–PPT. These neurons project widely to the forebrain and brainstem and increase their firing rate either during W and REM sleep or during REM sleep exclusively. Microinjections of cholinergic agonists into the nucleus pontis oralis, which is a recipient of LDT–PPT cholinergic neuronal projections, prolongs the duration of the REM sleep state. Although GABAergic neurons in the LDT–PPT outnumber cholinergic neurons by two to one, the function of these neurons is mostly unknown. These neurons may have local functions such as controlling the input and the output of cholinergic neurons; however, these cells also project outside the LDT–PPT. Utilizing Fos immunoreactivity as a marker of neuronal activity, it was shown in cats and rats that GABAergic neurons of the LDT–PPT are active during REM sleep. In addition, microinjections of muscimol (GABAA agonist) within this area generate REM sleep both in cats and rats; on the contrary, GABAA antagonists induce W. These data suggest that GABAergic neurons of the LDT–PPT promote REM sleep. In the present report, we review the role of GABA within the LDT–PPT in REM sleep regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aserinsky E, Kleitman N (1953) Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 118:273–274

    Article  PubMed  CAS  Google Scholar 

  2. Siegel JM (2005) REM sleep. In: Kryger MH, Roth T, Dement WC (eds) Principles and practices of sleep medicine. Elsevier-Saunders, Philadelphia, pp 120–135

    Chapter  Google Scholar 

  3. Mugnaini E, Oertel WH (1985) An atlas of the distribution of GABAergic neurons and terminals. In: Bjorklund A, Hokfelt T (eds) Handbook of chemical neuroanatomy. Elsevier, Amsterdam, pp 436–608

    Google Scholar 

  4. Xi MC, Morales FR, Chase MH (1999) Evidence that wakefulness and REM sleep are controlled by a GABAergic pontine mechanism. J Neurophysiol 82:2015–2019

    PubMed  CAS  Google Scholar 

  5. Vanini G, Watson CJ, Lydic R, Baghdoyan HA (2008) Gamma-aminobutyric acid-mediated neurotransmission in the pontine reticular formation modulates hypnosis, immobility, and breathing during isoflurane anesthesia. Anesthesiology 109:978–988

    Article  PubMed  CAS  Google Scholar 

  6. Monti JM, Jantos H (2008) The roles of dopamine and serotonin, and of their receptors, in regulating sleep and waking. Prog Brain Res 172:625–646

    Article  PubMed  CAS  Google Scholar 

  7. McGinty DJ, Harper RM (1976) Dorsal raphe neurons: depression of firing during sleep in cats. Brain Res 101:569–575

    Article  PubMed  CAS  Google Scholar 

  8. Gervasoni D, Peyron C, Rampon C, Barbagli B, Chouvet G, Urbain N, Fort P, Luppi PH (2000) Role and origin of the GABAergic innervation of dorsal raphe serotonergic neurons. J Neurosci 20:4217–4225

    PubMed  CAS  Google Scholar 

  9. Nitz D, Siegel J (1997) GABA release in the dorsal raphe nucleus: role in the control of REM sleep. Am J Physiol 273:R451–R455

    PubMed  CAS  Google Scholar 

  10. Torterolo P, Yamuy J, Sampogna S, Morales FR, Chase MH (2000) GABAergic neurons of the cat dorsal raphe nucleus express c-fos during carbachol-induced active sleep. Brain Res 884:68–76

    Article  PubMed  CAS  Google Scholar 

  11. Maloney KJ, Mainville L, Jones BE (1999) Differential c-Fos expression in cholinergic, monoaminergic, and GABAergic cell groups of the pontomesencephalic tegmentum after paradoxical sleep deprivation and recovery. J Neurosci 19:3057–3072

    PubMed  CAS  Google Scholar 

  12. Aston-Jones G, Bloom FE (1981) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1:876–886

    PubMed  CAS  Google Scholar 

  13. Luppi PH, Gervasoni D, Verret L, Goutagny R, Peyron C, Salvert D, Leger L, Fort P (2007) Paradoxical (REM) sleep genesis: the switch from an aminergic-cholinergic to a GABAergic-glutamatergic hypothesis. J Physiol (Paris) 100:271–283

    Article  Google Scholar 

  14. McCarley RW (2007) Neurobiology of REM and NREM sleep. Sleep Med 8:302–330

    Article  PubMed  Google Scholar 

  15. Vanini G, Torterolo P, McGregor R, Chase MH, Morales FR (2007) GABAergic processes in the mesencephalic tegmentum modulate the occurrence of active (rapid eye movement) sleep in guinea pigs. Neuroscience 145:1157–1167

    Article  PubMed  CAS  Google Scholar 

  16. Sastre JP, Buda C, Kitahama K, Jouvet M (1996) Importance of the ventrolateral region of the periaqueductal gray and adjacent tegmentum in the control of paradoxical sleep as studied by muscimol microinjections in the cat. Neuroscience 74:415–426

    Article  PubMed  CAS  Google Scholar 

  17. Torterolo P, Sampogna S, Morales FR, Chase MH (2002) Gudden’s dorsal tegmental nucleus is activated in carbachol-induced active (REM) sleep and active wakefulness. Brain Res 944:184–189

    Article  PubMed  CAS  Google Scholar 

  18. Mesulam MM, Mufson EJ, Wainer BH, Levey AI (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1–Ch6). Neuroscience 10:1185–1201

    Article  PubMed  CAS  Google Scholar 

  19. Rye DB, Saper CB, Lee HJ, Wainer BH (1987) Pedunculopontine tegmental nucleus of the rat: cytoarchitecture, cytochemistry, and some extrapyramidal connections of the mesopontine tegmentum. J Comp Neurol 259:483–528

    Article  PubMed  CAS  Google Scholar 

  20. Inglis WL, Winn P (1995) The pedunculopontine tegmental nucleus: where the striatum meets the reticular formation. Prog Neurobiol 47:1–29

    Article  PubMed  CAS  Google Scholar 

  21. Garcia-Rill E (1991) The pedunculopontine nucleus. Prog Neurobiol 36:363–389

    Article  PubMed  CAS  Google Scholar 

  22. Paxinos G, Watson C (2005) The rat brain. Academic Press, New York

    Google Scholar 

  23. Olszewsky J, Baxter D (1954) Cytoarchitecture of the human brain. Lippincott, Philadelphia

    Google Scholar 

  24. Wang HL, Morales M (2009) Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat. Eur J Neurosci 29:340–358

    Article  PubMed  Google Scholar 

  25. Manaye KF, Zweig R, Wu D, Hersh LB, De Lacalle S, Saper CB, German DC (1999) Quantification of cholinergic and select non-cholinergic mesopontine neuronal populations in the human brain. Neuroscience 89:759–770

    Article  PubMed  CAS  Google Scholar 

  26. Jones BE (1990) Immunohistochemical study of choline acetyltransferase-immunoreactive processes and cells innervating the pontomedullary reticular formation in the rat. J Comp Neurol 295:485–514

    Article  PubMed  CAS  Google Scholar 

  27. Ford B, Holmes CJ, Mainville L, Jones BE (1995) GABAergic neurons in the rat pontomesencephalic tegmentum: codistribution with cholinergic and other tegmental neurons projecting to the posterior lateral hypothalamus. J Comp Neurol 363:177–196

    Article  PubMed  CAS  Google Scholar 

  28. Mena-Segovia J, Micklem BR, Nair-Roberts RG, Ungless MA, Bolam JP (2009) GABAergic neuron distribution in the pedunculopontine nucleus defines functional subterritories. J Comp Neurol 515:397–408

    Article  PubMed  CAS  Google Scholar 

  29. Boucetta S, Jones BE (2009) Activity profiles of cholinergic and intermingled GABAergic and putative glutamatergic neurons in the pontomesencephalic tegmentum of urethane-anesthetized rats. J Neurosci 29:4664–4674

    Article  PubMed  CAS  Google Scholar 

  30. Clements JR, Grant S (1990) Glutamate-like immunoreactivity in neurons of the laterodorsal tegmental and pedunculopontine nuclei in the rat. Neurosci Lett 120:70–73

    Article  PubMed  CAS  Google Scholar 

  31. Lavoie B, Parent A (1994) Pedunculopontine nucleus in the squirrel monkey: cholinergic and glutamatergic projections to the substantia nigra. J Comp Neurol 344:232–241

    Article  PubMed  CAS  Google Scholar 

  32. Jones BE, Beaudet A (1987) Distribution of acetylcholine and catecholamine neurons in the cat brainstem: a choline acetyltransferase and tyrosine hydroxylase immunohistochemical study. J Comp Neurol 261:15–32

    Article  PubMed  CAS  Google Scholar 

  33. Leonard CS, Kerman I, Blaha G, Taveras E, Taylor B (1995) Interdigitation of nitric oxide synthase-, tyrosine hydroxylase-, and serotonin-containing neurons in and around the laterodorsal and pedunculopontine tegmental nuclei of the guinea pig. J Comp Neurol 362:411–432

    Article  PubMed  CAS  Google Scholar 

  34. Winn P (2006) How best to consider the structure and function of the pedunculopontine tegmental nucleus: evidence from animal studies. J Neurol Sci 248:234–250

    Article  PubMed  Google Scholar 

  35. Pahapill PA, Lozano AM (2000) The pedunculopontine nucleus and Parkinson’s disease. Brain 123(Pt 9):1767–1783

    Article  PubMed  Google Scholar 

  36. Jenkinson N, Nandi D, Muthusamy K, Ray NJ, Gregory R, Stein JF, Aziz TZ (2009) Anatomy, physiology, and pathophysiology of the pedunculopontine nucleus. Mov Disord 24:319–328

    Article  PubMed  Google Scholar 

  37. Brown RE, McKenna JT, Winston S, Basheer R, Yanagawa Y, Thakkar MM, McCarley RW (2008) Characterization of GABAergic neurons in rapid-eye-movement sleep controlling regions of the brainstem reticular formation in GAD67-green fluorescent protein knock-in mice. Eur J Neurosci 27:352–363

    Article  PubMed  Google Scholar 

  38. Yamuy J, Rojas MJ, Torterolo P, Sampogna S, Chase MH (2002) Induction of rapid eye movement sleep by neurotrophin-3 and its co- localization with choline acetyltransferase in mesopontine neurons. Neuroscience 115:85–95

    Article  PubMed  CAS  Google Scholar 

  39. Yamuy J, Ramos O, Torterolo P, Sampogna S, Chase MH (2005) The role of tropomyosin-related kinase receptors in neurotrophin-induced rapid eye movement sleep in the cat. Neuroscience 135:357–369

    Article  PubMed  CAS  Google Scholar 

  40. Lavoie B, Parent A (1994) Pedunculopontine nucleus in the squirrel monkey: distribution of cholinergic and monoaminergic neurons in the mesopontine tegmentum with evidence for the presence of glutamate in cholinergic neurons. J Comp Neurol 344:190–209

    Article  PubMed  CAS  Google Scholar 

  41. Jia H, Yamuy J, Sampogna S, Morales FR, Chase MH (2000) Subcelullar location of GABA and its relationships with cholinergic neurons in the laterodorsal and pedunculopontine tegmental nuclei in the cat. Sleep 23:A109

    Google Scholar 

  42. Rondini TA, de Crudis RB, de Oliveira AP, Bittencourt JC, Elias CF (2007) Melanin-concentrating hormone is expressed in the laterodorsal tegmental nucleus only in female rats. Brain Res Bull 74:21–28

    Article  PubMed  CAS  Google Scholar 

  43. Torterolo P, Sampogna S, Chase MH (2009) MCHergic projections to the nucleus pontis oralis participate in the control of active (REM) sleep. Brain Res 1268:76–87

    Article  PubMed  CAS  Google Scholar 

  44. Lagos P, Torterolo P, Jantos H, Chase MH, Monti JM (2009) Effects on sleep of melanin-concentrating hormone microinjections into the dorsal raphe nucleus. Brain Res 1265:103–110

    Article  PubMed  CAS  Google Scholar 

  45. Peyron C, Sapin E, Leger L, Luppi PH, Fort P (2009) Role of the melanin-concentrating hormone neuropeptide in sleep regulation. Peptides 30(11):2052–2059

    Article  PubMed  CAS  Google Scholar 

  46. Datta S, Siwek DF (1997) Excitation of the brain stem pedunculopontine tegmentum cholinergic cells induces wakefulness and REM sleep. J Neurophysiol 77:2975–2988

    PubMed  CAS  Google Scholar 

  47. Datta S, Spoley EE, Patterson EH (2001) Microinjection of glutamate into the pedunculopontine tegmentum induces REM sleep and wakefulness in the rat. Am J Physiol Regul Integr Comp Physiol 280:R752–R759

    PubMed  CAS  Google Scholar 

  48. Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262:679–685

    Article  PubMed  CAS  Google Scholar 

  49. Winn P (2008) Experimental studies of pedunculopontine functions: are they motor, sensory or integrative? Parkinsonism Relat Disord 14(Suppl 2):S194–S198

    Article  PubMed  Google Scholar 

  50. el Mansari M, Sakai K, Jouvet M (1990) Responses of presumed cholinergic mesopontine tegmental neurons to carbachol microinjections in freely moving cats. Exp Brain Res 83:115–123

    Article  PubMed  CAS  Google Scholar 

  51. Steriade M, Datta S, Pare D, Oakson G, Curro Dossi RC (1990) Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems. J Neurosci 10:2541–2559

    PubMed  CAS  Google Scholar 

  52. Kayama Y, Ohta M, Jodo E (1992) Firing of ‘possibly’ cholinergic neurons in the rat laterodorsal tegmental nucleus during sleep and wakefulness. Brain Res 569:210–220

    Article  PubMed  CAS  Google Scholar 

  53. Thakkar M, Portas C, McCarley RW (1996) Chronic low-amplitude electrical stimulation of the laterodorsal tegmental nucleus of freely moving cats increases REM sleep. Brain Res 723:223–227

    Article  PubMed  CAS  Google Scholar 

  54. Webster HH, Jones BE (1988) Neurotoxic lesions of the dorsolateral pontomesencephalic tegmentum- cholinergic cell area in the cat. II. Effects upon sleep-waking states. Brain Res 458:285–302

    Article  PubMed  CAS  Google Scholar 

  55. Williams JA, Comisarow J, Day J, Fibiger HC, Reiner PB (1994) State-dependent release of acetylcholine in rat thalamus measured by in vivo microdialysis. J Neurosci 14:5236–5242

    PubMed  CAS  Google Scholar 

  56. Kodama T, Takahashi Y, Honda Y (1990) Enhancement of acetylcholine release during paradoxical sleep in the dorsal tegmental field of the cat brain stem. Neurosci Lett 114:277–282

    Article  PubMed  CAS  Google Scholar 

  57. Baghdoyan HA, Rodrigo-Angulo ML, McCarley RW, Hobson JA (1987) A neuroanatomical gradient in the pontine tegmentum for the cholinoceptive induction of desynchronized sleep signs. Brain Res 414:245–261

    Article  PubMed  CAS  Google Scholar 

  58. Torterolo P, Yamuy J, Sampogna S, Morales FR, Chase MH (2001) Hypothalamic neurons that contain hypocretin (orexin) express c-fos during active wakefulness and carbachol-induced active sleep. Sleep Res Online 4:25–32

    Google Scholar 

  59. Kang Y, Kitai ST (1990) Electrophysiological properties of pedunculopontine neurons and their postsynaptic responses following stimulation of substantia nigra reticulata. Brain Res 535:79–95

    Article  PubMed  CAS  Google Scholar 

  60. Granata AR, Kitai ST (1991) Inhibitory substantia nigra inputs to the pedunculopontine neurons. Exp Brain Res 86:459–466

    Article  PubMed  CAS  Google Scholar 

  61. Noda T, Oka H (1986) Distribution and morphology of tegmental neurons receiving nigral inhibitory inputs in the cat: an intracellular HRP study. J Comp Neurol 244:254–266

    Article  PubMed  CAS  Google Scholar 

  62. Bittencourt JC, Presse F, Arias C, Peto C, Vaughan J, Nahon JL, Vale W, Sawchenko PE (1992) The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization. J Comp Neurol 319:218–245

    Article  PubMed  CAS  Google Scholar 

  63. Torterolo P, Sampogna S, Morales FR, Chase MH (2006) MCH-containing neurons in the hypothalamus of the cat: searching for a role in the control of sleep and wakefulness. Brain Res 1119:101–114

    Article  PubMed  CAS  Google Scholar 

  64. Elias CF, Sita LV, Zambon BK, Oliveira ER, Vasconcelos LA, Bittencourt JC (2008) Melanin-concentrating hormone projections to areas involved in somatomotor responses. J Chem Neuroanat 35:188–201

    Article  PubMed  CAS  Google Scholar 

  65. Elias CF, Lee CE, Kelly JF, Ahima RS, Kuhar M, Saper CB, Elmquist JK (2001) Characterization of CART neurons in the rat and human hypothalamus. J Comp Neurol 432:1–19

    Article  PubMed  CAS  Google Scholar 

  66. Bowery NG, Hudson AL, Price GW (1987) GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience 20:365–383

    Article  PubMed  CAS  Google Scholar 

  67. Chu DC, Albin RL, Young AB, Penney JB (1990) Distribution and kinetics of GABAB binding sites in rat central nervous system: a quantitative autoradiographic study. Neuroscience 34:341–357

    Article  PubMed  CAS  Google Scholar 

  68. Ulloor J, Mavanji V, Saha S, Siwek DF, Datta S (2004) Spontaneous REM sleep is modulated by the activation of the pedunculopontine tegmental GABAB receptors in the freely moving rat. J Neurophysiol 91:1822–1831

    Article  PubMed  CAS  Google Scholar 

  69. Wafford KA, Ebert B (2006) Gaboxadol–a new awakening in sleep. Curr Opin Pharmacol 6:30–36

    Article  PubMed  CAS  Google Scholar 

  70. Torterolo P, Yamuy J, Sampogna S, Morales FR, Chase MH (2003) Hypocretinergic neurons are primarily involved in activation of the somatomotor system. Sleep 1:25–28

    Google Scholar 

  71. Bevan MD, Bolam JP (1995) Cholinergic, GABAergic, and glutamate-enriched inputs from the mesopontine tegmentum to the subthalamic nucleus in the rat. J Neurosci 15:7105–7120

    PubMed  CAS  Google Scholar 

  72. Scarnati E, Hajdu F, Pacitti C, Tombol T (1988) An EM and Golgi study on the connection between the nucleus tegmenti pedunculopontinus and the pars compacta of the substantia nigra in the rat. J Hirnforsch 29:95–105

    PubMed  CAS  Google Scholar 

  73. Torterolo P, Yamuy J, Sampogna S, Morales FR, Chase MH (2001) GABAergic neurons of the laterodorsal and pedunculopontine tegmental nuclei of the cat express c-fos during carbachol-induced active sleep. Brain Res 892:309–319

    Article  PubMed  CAS  Google Scholar 

  74. Torterolo P, Morales FR, Chase MH (2002) GABAergic mechanisms in the pedunculopontine tegmental nucleus of the cat promote active (REM) sleep. Brain Res 944:1–9

    Article  PubMed  CAS  Google Scholar 

  75. Sanford LD, Hunt WK, Ross RJ, Morrison AR, Pack AI (1998) Microinjections into the pedunculopontine tegmentum: effects of the GABAA antagonist, bicuculline, on sleep, PGO waves and behavior. Arch Ital Biol 136:205–214

    PubMed  CAS  Google Scholar 

  76. Pal D, Mallick BN (2004) GABA in pedunculo pontine tegmentum regulates spontaneous rapid eye movement sleep by acting on GABAA receptors in freely moving rats. Neurosci Lett 365:200–204

    Article  PubMed  CAS  Google Scholar 

  77. Pal D, Mallick BN (2006) Role of noradrenergic and GABA-ergic inputs in pedunculopontine tegmentum for regulation of rapid eye movement sleep in rats. Neuropharmacology 51:1–11

    Article  PubMed  CAS  Google Scholar 

  78. Pal D, Mallick BN (2009) GABA in pedunculopontine tegmentum increases rapid eye movement sleep in freely moving rats: possible role of GABA-ergic inputs from substantia nigra pars reticulata. Neuroscience 164(2):404–414

    Article  PubMed  CAS  Google Scholar 

  79. Datta S (2007) Activation of pedunculopontine tegmental PKA prevents GABAB receptor activation-mediated rapid eye movement sleep suppression in the freely moving rat. J Neurophysiol 97:3841–3850

    Article  PubMed  CAS  Google Scholar 

  80. Sakai K, Jouvet M (1980) Brain stem PGO-on cells projecting directly to the cat dorsal lateral geniculate nucleus. Brain Res 194:500–505

    Article  PubMed  CAS  Google Scholar 

  81. Steriade M, Pare D, Datta S, Oakson G, Curro Dossi R (1990) Different cellular types in mesopontine cholinergic nuclei related to ponto-geniculo-occipital waves. J Neurosci 10:2560–2579

    PubMed  CAS  Google Scholar 

  82. Datta S, Curro Dossi R, Pare D, Oakson G, Steriade M (1991) Substantia nigra reticulata neurons during sleep-waking states: relation with ponto-geniculo-occipital waves. Brain Res 566:344–347

    Article  PubMed  CAS  Google Scholar 

  83. Takakusaki K, Saitoh K, Harada H, Kashiwayanagi M (2004) Role of basal ganglia-brainstem pathways in the control of motor behaviors. Neurosci Res 50:137–151

    Article  PubMed  CAS  Google Scholar 

  84. Matsumura M (2005) The pedunculopontine tegmental nucleus and experimental parkinsonism. A review. J Neurol 252(Suppl 4):IV5–IV12

    Article  PubMed  Google Scholar 

  85. Aziz TZ, Davies L, Stein J, France S (1998) The role of descending basal ganglia connections to the brain stem in parkinsonian akinesia. Br J Neurosurg 12:245–249

    Article  PubMed  CAS  Google Scholar 

  86. Nandi D, Jenkinson N, Stein J, Aziz T (2008) The pedunculopontine nucleus in Parkinson’s disease: primate studies. Br J Neurosurg 22(Suppl 1):S4–S8

    Article  PubMed  Google Scholar 

  87. Plaha P, Gill SS (2005) Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. NeuroReport 16:1883–1887

    Article  PubMed  Google Scholar 

  88. Mazzone P, Lozano A, Stanzione P, Galati S, Scarnati E, Peppe A, Stefani A (2005) Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson’s disease. NeuroReport 16:1877–1881

    Article  PubMed  Google Scholar 

  89. Thorpy MJ, Adler CH (2005) Parkinson’s disease and sleep. Neurol Clin 23:1187–1208

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Patricia Lagos and Dr. Holly N. Brevig for their critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Torterolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser Basel

About this chapter

Cite this chapter

Torterolo, P., Vanini, G. (2010). Involvement of GABAergic Mechanisms in the Laterodorsal and Pedunculopontine Tegmental Nuclei (LDT–PPT) in the Promotion of REM Sleep. In: Monti, J., Pandi-Perumal, S., Möhler, H. (eds) GABA and Sleep. Springer, Basel. https://doi.org/10.1007/978-3-0346-0226-6_10

Download citation

Publish with us

Policies and ethics