Skip to main content

Heavy Metals Pollution and Role of Soil PGPR: A Mitigation Approach

  • Chapter
  • First Online:
Climate Change and Microbiome Dynamics

Part of the book series: Climate Change Management ((CCM))

Abstract

Heavy metal pollution is a serious threat to human health and the environment. It is severely augmented by several industrial activities. The main causes of metal pollution include several industrial processes such as metal forging, smelting, mining, fossil fuel burning, and the use of sewage sludge on agricultural sites. Toxic heavy metals discharged from these sources adversely affect the population of soil microorganisms and the physicochemical properties of the soil, reducing soil fertility and crop productivity. These heavy metals are not biodegradable and remain in the environment. Several conventional methods are used for removal or detoxification of heavy metals that have several drawbacks such as high cost, difficult to operate and toxic in nature. Therefore, bioremediation techniques have emerged as an alternative technique for remediation of heavy metals that have polluted soils. In metal-contaminated soil, the natural role of metal-tolerant plant growth-promoting rhizobacteria (PGPR) in maintaining soil fertility is fading with increasing use of pesticides. In addition to its role in detoxifying or removing toxic metals, rhizobacteria also promote plant growth via other mechanisms such as the production of growth promoting substances and siderophores. Phytoremediation is another new, low-cost in situ technology used to remove toxic pollutants from contaminated soil. The efficiency of phytoremediation can be enhanced by heavy-metal tolerant PGPR. In this book chapter, the significance of the PGPR for direct application to metal contaminated soil under a wide range of agro-ecological conditions has been discussed. The chapter also gives insight on re-establishment of metal contaminated soils and consequently, promotes crop productivity and their significance in phytoremediation. Thus, in the future bioremediation can be an effective technology for treatment of metal polluted environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ersoy A, Yunsel TY, Cetin M et al (2004) Characterization of land contaminated by past heavy metal mining using geostatistical methods. Arch Environ Contam Toxicol 46:162–175

    Article  CAS  Google Scholar 

  2. Bankar A, Kumar A, Zinjarde S et al (2009a) Removal of chromium (VI) ions from aqueous solution by adsorption onto two marine isolates of Y. lipolytica. J Hazard Mater 170(1):487–494

    Google Scholar 

  3. WHO (2000) Safety evaluation of certain food additives and contaminants. In: Fifty-Third Meeting of the Joint FAO/WHO Expert Committee on Food Additives, Food Additives Series No 830. WHO, Geneva

    Google Scholar 

  4. Yahaghi Z, Shirvani M, Nourbakhsh F, de la Peña TC, Pueyo JJ, Talebi M et al (2018) Isolation and characterization of Pb-solubilizing bacteria and their effects on Pb uptake by Brassica juncea: implications for microbe-assisted phytoremediation. J Microbiol Biotechnol 28:1156–1167

    Article  CAS  Google Scholar 

  5. Bankar AV, Kumar AR, Zinjarde SS et al (2009) Environmental and industrial applications of Yarrowia lipolytica. Appl Microbiol Biotechnol 84(5):847–865

    Article  CAS  Google Scholar 

  6. Rajendran S, Priya TAK, Khoo KS, Hoang TKA, Ng HS, Munawaroh HSH, Rajkumar M, Freitas H et al (2008) Effects of inoculation of plant growth promoting bacteria on Ni uptake by Indian mustard. Bioresour Technol 99:3491–3498

    Article  Google Scholar 

  7. Emenike CU, Jayanthi B, Agamuthu P, Fauziah SH et al (2018) Biotransformation and removal of heavy metals: a review of phytoremediation and microbial remediation assessment on contaminated soil. Environ Rev 26:156–168

    Article  CAS  Google Scholar 

  8. Sandaa RA, Torsvik V, Enger O et al (2001) Influence of long term heavy-metal contamination on microbial communities in soil. Soil Biol Biochem 33:287–295

    Article  CAS  Google Scholar 

  9. Zafar S, Aqil F, Ahmad I et al (2007) Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agriculture soil. Bioresour Technol 98:2557–2561

    Article  CAS  Google Scholar 

  10. Jan AT, Azam M, Siddiqui K, Ali A, Choi I, Haq QM et al (2015) Heavy metals and human health: mechanistic insight into toxicity and counter defense system of antioxidants. Int J Mol Sci 16:29592–29630

    Article  CAS  Google Scholar 

  11. Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M et al (2021) Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol 12:643972

    Article  CAS  Google Scholar 

  12. Brooks PR, Crowe TP (2019) Combined effects of multiple stressors: new insights into the influence of timing and sequence. Front Ecol Evol 7:387

    Article  Google Scholar 

  13. Tang J, Zhang J, Ren L, Zhou Y, Gao J, Luo L, Yuan Y, Qinghui P, Hongli H, Anwei C et al (2019) Diagnosis of soil contamination using microbiological indices: a review on heavy metal pollution. Environ Manage 242:121–130

    CAS  Google Scholar 

  14. Nagajyoti PC, Lee KD, Sreekanth TVM et al (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  15. McLaren RG, Clucas LM, Taylor MD, Hendry T et al (2004) Leaching of macronutrients and metals from undisturbed soils treated with metal-spiked sewage sludge. 2. Leaching of metals. Soil Res 42(4):459–471

    Google Scholar 

  16. Baker AJM, McGrath SP, Sidoli CMD, Reeves RD et al (1994) The possibility of in-situ heavy-metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conserv Recycl 11:41–49

    Article  Google Scholar 

  17. Liu S, Yang B, Liang Y, Xiao Y, Fang J et al (2020) Prospect of phytoremediation combined with other approaches for remediation of heavy metal-polluted soils. Environ Sci Pollut Res 27:16069–16085

    Article  CAS  Google Scholar 

  18. Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14:1504

    Article  Google Scholar 

  19. Hadiani MR, Darani KK, Rahimifard N, Younesi H et al (2018) Biosorption of low concentration levels of lead (II) and cadmium (II) from aqueous solution by Saccharomyces cerevisiae: Response surface methodology. Biocatal Agric Biotechnol 15:25–34

    Article  Google Scholar 

  20. Khan I, Aftab M, Shakir SU, Ali M, Qayyum S, Rehman MU, Haleem KS, Touseef I et al (2019) Mycoremediation of heavy metal (Cd and Cr)-polluted soil through indigenous metallotolerant fungal isolates. Environ Monit Assess 191:585

    Article  CAS  Google Scholar 

  21. Lopes CSC, Teixeira DB, Braz BF, Santelli RE, de Castilho LVA, Gomez JGC, Castro RPV, Seldin L, Freire DMG et al (2021) Application of rhamnolipid surfactant for remediation of toxic metals of long- and short-term contamination sites. Int J Environ Sci Technol 18:575–588

    Article  CAS  Google Scholar 

  22. Chang J, Si G, Dong J, Yang Q, Shi Y, Chen Y, Zhou K, Chen J et al (2021) Transcriptomic analyses reveal the pathways associated with the volatilization and resistance of Mercury (II) in the fungus Lecythophora sp. DC-F1. Sci Total Environ 752:42172

    Google Scholar 

  23. Dobrowolski R, Szczé SA, Czemierska M, Jarosz-Wikołazka A et al (2017) Studies of Cadmium (II), Lead (II), Nickel (II), Cobalt (II) and Chromium (VI) sorption on extracellular polymeric substances produced by Rhodococcus opacus and Rhodococcus rhodochrous. Bioresour Technol 225:113–120

    Google Scholar 

  24. Nayak AK, Panda SS, Basu A, Dhal NK et al (2018) Enhancement of toxic Cr (VI), Fe, and other heavy metals phytoremediation by the synergistic combination of native Bacillus cereus strain and Vetiveria zizanioides L. Int J Phytoremediat 20:682–691

    Article  CAS  Google Scholar 

  25. Ashraf S, Ali Q, Zahir ZA, Ashraf S, Asghar HN et al (2019) Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf 174:714–727

    Article  CAS  Google Scholar 

  26. Raklami A, Meddich A, Oufdou K, Baslam M et al (2022) Plants-microorganisms-based bioremediation for heavy metal cleanup: recent developments, phytoremediation techniques, regulation mechanisms, and molecular responses. Int J Mol Sci 23:5031

    Article  CAS  Google Scholar 

  27. Tank N, Saraf M (2009) Enhancement of plant growth and decontamination of nickel spiked soil using PGPR. J Basic Microbiol 49:195–204

    Article  CAS  Google Scholar 

  28. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  29. Wani PA, Khan MS, Zaidi A et al (2008) Effect of heavy metal toxicity on growth, symbiosis, seed yield and metal uptake in pea grown in metal amended soil. Bull Environ Contam Toxicol 81:152–158

    Article  CAS  Google Scholar 

  30. Wani PA, Khan MS, Zaidi A et al (2008) Chromium reducing and plant growth promoting Mesorhizobium improves chickpea growth in chromium amended soil. Biotechnol Lett 30:159–163

    Article  CAS  Google Scholar 

  31. Mamaril JC, Paner ET, Alpante BM et al (1997) Biosorption and desorption studies of chromium (iii) by free and immobilized Rhizobium (BJVr 12) cell biomass. Biodegradation 8:275–285

    Article  CAS  Google Scholar 

  32. Kumar P, Deshwal VK (2013) Effect of heavy metals on growth and PGPR activity of Pseudomonads. J Acad Ind Res 2:286–290

    Google Scholar 

  33. Gao J, Wu S, Liu Y, Wu S, Jiang C, Li X, Wang R, Bai Z, Zhuang G, Zhuang X et al (2020) Characterization and transcriptomic analysis of a highly Cr (VI)-resistant and-reductive plant-growth-promoting rhizobacterium Stenotrophomonas rhizophila DSM14405T. Environ Pollut 263:114622

    Google Scholar 

  34. Patel M, Patel K, Al-Keridis LA, Alshammari N, Badraoui R, Elasbali AM, Al-Soud WA, Hassan MI, Yadav DK, Adnan M et al (2022) Cadmium-tolerant plant growth-promoting bacteria Curtobacterium oceanosedimentum improves growth attributes and strengthens antioxidant system in Chili (Capsicum frutescens). Sustainability 14:4335

    Article  CAS  Google Scholar 

  35. Khanna K, Jamwal VL, Gandhi SG, Ohri P, Bhardwaj R et al (2019) Metal resistant PGPR lowered Cd uptake and expression of metal transporter genes with improved growth and photosynthetic pigments in Lycopersicon esculentum under metal toxicity. Sci Rep 9:5855

    Article  ADS  Google Scholar 

  36. Tirry N, Kouchou A, El Omari B, Ferioun M, El Ghachtouli N et al (2021) Improved chromium tolerance of Medicago sativa by plant growth-promoting rhizobacteria (PGPR). J Genet Eng Biotechnol 19:149

    Article  Google Scholar 

  37. Mazhar R, Ilyas N, Arshad M, Khalid A, Hussain M et al (2020) Isolation of heavy metal-tolerant PGPR strains and amelioration of chromium effect in wheat in combination with biochar. Iran J Sci Technol Trans Sci 44:1–12

    Article  Google Scholar 

  38. Zaidi S, Usmani S, Singh BR, Musarrat J et al (2006) Significance of Bacillus subtilis strain SJ 101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997

    Article  ADS  CAS  Google Scholar 

  39. Pinter IF, Salomon MV, Berli F, Bottini R, Piccoli P et al (2017) Characterization of the As (III) tolerance conferred by plant growth promoting rhizobacteria to in vitro-grown grapevine. Appl Soil Ecol 109:60–68

    Article  Google Scholar 

  40. Hao X, Taghavi S, Xie P, Orbach MJ, Alwathnani HA, Rensing C et al (2014) Phytoremediation of heavy and transition metals aided by legume-rhizobia symbiosis. Int J Phytoremediat 16:179–202

    Article  CAS  Google Scholar 

  41. Rangel WM, Thijs S, Janssen J, Oliveira Longatti SM, Bonaldi DS, Ribeiro PR et al (2017) Native rhizobia from Zn mining soil promote the growth of Leucaena leucocephala on contaminated soil. Int J Phytoremediat 19:142–156

    Article  CAS  Google Scholar 

  42. He J, Zhang Q, Achal V et al (2020) Heavy metals immobilization in soil with plant-growth promoting precipitation in support of radish growth. Microbiol Biotechnol Lett 48:223–229

    Article  CAS  Google Scholar 

  43. Wani PA, Khan S, Zaidi A et al (2008) Effect of metal-tolerant plant growth-promoting Rhizobium on the performance of pea grown in metal-amended soil. Arch Environ Contam Toxicol 55:33–42

    Article  CAS  Google Scholar 

  44. Wang Q, Xiong D, Zhao P, Yu X, Tu B, Wang G et al (2011) Effect of applying an arsenic-resistant and plant growth-promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoides LH05-17. J Appl Microbiol 111:1065–1074

    Article  CAS  Google Scholar 

  45. Di Gregorio S, Barbafieri M, Lampis S, Sanangelantoni AM, Tassi E, Vallini G et al (2006) Combined application of Triton X-100 and Sinorhizobium sp. Pb002 inoculum for the improvement of lead phytoextraction by Brassica juncea in EDTA amended soil. Chemosphere 63(2):293–299

    Google Scholar 

  46. Oubohssaine M, Sbabou L, Aurag J et al (2022) Native heavy metal-tolerant plant growth promoting rhizobacteria improves Sulla spinosissima (L.) growth in post-mining contaminated soils. Microorganisms 10(5):838

    Google Scholar 

  47. Gupta DK, Rai UN, Sinha S, Tripathi RD, Nautiyal BD, Rai P, Inouhe M et al (2004) Role of Rhizobium (CA-1) inoculation in increasing growth and metal accumulation in Cicer arietinum L. growing under fly-ash stress condition. Bull Environ Contam Toxicol 73:424–431

    Article  CAS  Google Scholar 

  48. Wani PA, Khan MS, Zaidi A et al (2007) Impact of zinc-tolerant plant growth promoting rhizobacteria on lentil grown in zinc-amended soil. Agron Sustain Dev 28:449–455

    Article  Google Scholar 

  49. Zaidi A, Khan MS (2006) Co-inoculation effects of phosphate solubilizing microorganisms and Glomus fasciculatum on greengram-Bradyrhizobium symbiosis. Turk J Agric For 30:223–230

    CAS  Google Scholar 

  50. Zaidi A, Khan MS, Aamil M et al (2004) Bioassociative effect of rhizospheric microorganisms on growth, yield and nutrient uptake of greengram. J Plant Nutr 27:599–610

    Article  Google Scholar 

  51. Maier RM, Pepper IL, Gerba CP (2009) Introduction to environmental microbiology. In: Environmental microbiology. Academic Press, pp 3–7

    Google Scholar 

  52. Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  CAS  Google Scholar 

  53. Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR et al (2005) Cadmium-tolerant plant growth promoting rhizobacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250

    Article  CAS  Google Scholar 

  54. Uchiumi T, Oowada T, Itakura M, Mitsui H, Nukui N, Dawadi P, Kaneko T, Tabata S, Yokoyama T, Tejima T, Saeki K, Oomori H, Hayashi M, Maekawa T, Sriprang R, Murooka Y, Tajima S, Simomura K, Nomura M, Suzuki A, Shimoda S, Sioya K, Abe M, Minamisawa K et al (2004) Expression islands clustered on symbiosis island of mesorhizobium loti genome. J Bacteriol 186:2439–2448

    Article  CAS  Google Scholar 

  55. Roane TM, Pepper IL (2000) Microorganisms and metal pollution. In: Maier RM, Pepper IL, Gerba CB (eds) Environmental microbiology. Academic Press, London, p 55

    Google Scholar 

  56. Zubair M, Shakir M, Ali Q, Rani N, Fatima N, Farooq S, Nasir IA et al (2016) Rhizobacteria and phytoremediation of heavy metals. Environ Technol Rev 5:112–119

    Article  Google Scholar 

  57. Yang J, Kloepper JW, Ryu CM et al (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  ADS  CAS  Google Scholar 

  58. Zhuang X, Chen J, Shim H, Bai Z et al (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406–413

    Article  Google Scholar 

  59. Valls M, De Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26:327–338

    Article  ADS  CAS  Google Scholar 

  60. Alotaibi F, Hijri M, St-Arnaud M et al (2021) Overview of approaches to improve rhizoremediation of petroleum hydrocarbon contaminated soils. Appl Microbiol 1:329–351

    Article  Google Scholar 

  61. Guo JK, Ding YZ, Feng RW, Wang RG, Xu YM, Chen C, Wei XL, Chen WM et al (2015) Burkholderia metalliresistens sp. nov., a multiple metal-resistant and phosphate-solubilising species isolated from heavy metal-polluted soil in Southeast China. Antonie Leeuwenhoek Int J G 107:1591–1598

    Article  CAS  Google Scholar 

  62. Ranjard L, Nazaret S, Cournoyer B et al (2003) Freshwater bacteria can methylate selenium through the thiopurine methyltransferase pathway. Appl Environ Microbiol 69(7):3784–3790

    Article  ADS  CAS  Google Scholar 

  63. Lovley DR, Holmes DE, Nevin KP et al (2004) Dissimilatory Fe(iii) and Mn (iv) reduction. Adv Microbial Physiol 49:219–286

    Article  CAS  Google Scholar 

  64. Lasat MM (2002) Phytoextraction of toxic metals. J Environ Qual 31:109–120

    CAS  Google Scholar 

  65. Whiting SN, de Souza MP, Terry N et al (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35:3144–3150

    Article  ADS  CAS  Google Scholar 

  66. Khan MS, Zaidi A, Wani PA et al (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture-a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  67. Ledin M, Krantz-Rulcker C, Allard B et al (1996) Zn, Cd and Hg accumulation by microorganisms, organic and inorganic soil components in multicompartment system. Soil Biol Biochem 28:791–799

    Article  CAS  Google Scholar 

  68. Madhaiyan M, Poonguzhali S, Sa T et al (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69:220–228

    Google Scholar 

  69. Mishra A, Malik A (2013) Recent advances in microbial metal bioaccumulation. Crit Rev Environ Sci Technol 43:1162–1222

    Article  CAS  Google Scholar 

  70. Gorfer M, Persak H, Berger H, Brynda S, Bandian D, Strauss J et al (2009) Identification of heavy metal regulated genes from the root associated ascomycete Cadophora finlandica using a genomic microarray. Mycol Res 113:1377–1388

    Article  CAS  Google Scholar 

  71. Italiano F, Buccolieri A, Giotta L, Agostiano A, Valli L, Milano F, Trotta M et al (2009) Response of the carotenoidless mutant Rhodobacter sphaeroides growing cells to cobalt and nickel exposure. Int Biodeterior Biodegrad 63:948–957

    Article  CAS  Google Scholar 

  72. Choi DH, Kwon YM, Kwon KK, Kim SJ et al (2015) Complete genome sequence of Novosphingobium pentaromativorans US6-1(T). Stand Genom Sci 10(1):1–8

    Google Scholar 

  73. Shi B, Huang Z, Xiang X, Huang M, Wang WX, Ke C et al (2015) Transcriptome analysis of the key role of GAT2 gene in the hyper-accumulation of copper in the oyster Crassostrea angulata. Sci Rep 5:1–12

    Article  Google Scholar 

  74. Stadnicka J, Schirmer K, Ashauer R et al (2012) Predicting concentrations of organic chemicals in fish by using toxicokinetic models. Environ Sci Technol 46:3273–3280

    Article  ADS  CAS  Google Scholar 

  75. Hong SH, Ryu HW, Kim J, Cho KS et al (2011) Rhizoremediation of diesel-contaminated soil using the plant growth-promoting rhizobacterium Gordonia sp S2RP-17. Biodegradation 22:593–601

    Article  CAS  Google Scholar 

  76. Khan MS, Zaidi A, Wani PA, Oves M et al (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  Google Scholar 

  77. Bankar A, Patil S (2021) Microbial cell factories for treatment of soil polluted with heavy metals: a green approach. In: Microbiome stimulants for crops. Woodhead Publishing, pp 315–332

    Google Scholar 

  78. Khan M, Asghar H, Jamshaid M, Akhtar M, Zahir Z et al (2013) Effect of microbial inoculation on wheat growth and phytostabilization of chromium contaminated soil. Pak J Bot 45:27–34

    CAS  Google Scholar 

  79. Sorour AA, Khairy H, Zaghloul EH, Zaghloul HA et al (2022) Microbe-plant interaction as a sustainable tool for mopping up heavy metal contaminated sites. BMC Microbiol 22:1–13

    Article  Google Scholar 

  80. Jiang J, Pan C, Xiao A, Yang X, Zhang G et al (2017) Isolation, identification, and environmental adaptability of heavy-metal-resistant bacteria from ramie rhizosphere soil around mine refinery. 3 Biotech 7:5

    Google Scholar 

  81. Chowdhury SK (2021) Application of heavy metal tolerance plant growth promoting bacteria for remediation of metalliferous soils and their growth efficiency on maize (Zeamays L.). Plant Isol Sci J Biol 4(1):039–050

    Google Scholar 

  82. Wang Q, Zhang WJ, He LY, Sheng XF et al (2018) Increased biomass and quality and reduced heavy metal accumulation of edible tissues of vegetables in the presence of Cd-tolerant and immobilizing Bacillus megaterium H3. Ecotoxicol Environ Saf 148:269–274

    Article  ADS  CAS  Google Scholar 

  83. Mousavi SM, Motesharezadeh B, Hosseini HM, Alikhani H, Zolfaghari AA et al (2018) Root-induced changes of Zn and Pb dynamics in the rhizosphere of sunflower with different plant growth promoting treatments in a heavily contaminated soil. Ecotoxicol Environ Saf 147:206–216

    Article  CAS  Google Scholar 

  84. Arunakumara KKIU, Walpola BC, Yoon MH et al (2015) Bioaugmentation-assisted phytoextraction of Co, Pb and Zn: an assessment with a phosphate-solubilizing bacterium isolated from metal-contaminated mines of Boryeong area in South Korea. Biotechnol Agron Soc Environ 19:143–152

    Google Scholar 

  85. Chakraborty S, Das S, Banerjee S, Mukherjee S, Ganguli A, Mondal S et al (2021) Heavy metals bio-removal potential of the isolated Klebsiella Sp TIU20 strain which improves growth of economic crop plant (Vigna radiata L.) under heavy metals stress by exhibiting plant growth promoting and protecting traits. Biocatal Agric Biotechnol 38:102204

    Google Scholar 

  86. Mallick I, Bhattacharyya C, Mukherji S, Dey D, Sarkar SC, Mukhopadhyay UK, Ghosh A et al (2018) Effective rhizoinoculation and biofilm formation by arsenic immobilizing halophilic plant growth promoting bacteria (PGPB) isolated from mangrove rhizosphere: a step towards arsenic rhizoremediation. Sci Total Environ 610:1239–1250

    Article  ADS  Google Scholar 

  87. Fomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:314

    Article  Google Scholar 

  88. Aryal M, Liakopoulou-Kyriakides M (2015) Bioremoval of heavy metals by bacterial biomass. Environ Monit Assess 187(1):1–26

    Article  CAS  Google Scholar 

  89. Saba RY, Ahmed M, Sabri AN et al (2019) Potential role of bacterial extracellular polymeric substances as biosorbent material for arsenic bioremediation. Bioremediat J 23:2–81

    Article  Google Scholar 

  90. Bankar A, Geetha N (2018) Recent trends in biosorption of heavy metals by Actinobacteria. In: Singh B, Gupta V, Passari A (eds) Actinobacteria: diversity and biotechnological applications. Elsevier, pp 257–275

    Google Scholar 

  91. Alloway BJ (1995) Heavy metals in soils, 2nd ed. Springer, Dordrecht

    Google Scholar 

  92. Bankar A, Zinjarde S, Shinde M, Gopalghare G, Ravikumar A et al (2018) Heavy metal tolerance in marine strain of Yarrowia lipolytica. Extremophiles 22(4):617–628

    Article  CAS  Google Scholar 

  93. Bankar A, Zinjarde S, Telmore A, Walke A, Ravikumar A (2018) Morphological response of Yarrowia lipolytica under stress of heavy metals. Can J Microbiol 64(8):559–566

    Article  CAS  Google Scholar 

  94. Wang Y, Guo J, Liu R et al (2001) Biosorption of heavy metals by bacteria isolated from activated sludge. Appl Biochem Biotechnol 91:171–184

    Google Scholar 

  95. Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291

    Article  CAS  Google Scholar 

  96. Brady D, Duncan JR (1994) Cation loss during accumulation of heavy metal cations by Saccharomyces cerevisiae. Biotechnol Lett 16:543–548

    Article  CAS  Google Scholar 

  97. Sarret G, Manceau A, Spadini L, Roux JC, Hazemann JL, Soldo Y, Eybert-BÉrard L, Menthonnex J et al (1998) Structural determination of Zn and Pb binding sites in Penicillium chrysogenum cell walls by EXAFS spectroscopy. Environ Sci Technol 32:1648–1655

    Article  ADS  CAS  Google Scholar 

  98. Van Hullebusch ED, Zandvoort MH, Lens PN et al (2003) Metal immobilisation by biofilms: mechanisms and analytical tools. Rev Environ Sci Biotechnol 2:9–33

    Article  Google Scholar 

  99. Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257

    Article  CAS  Google Scholar 

  100. Abdi O, Kazemi M (2015) A review study of biosorption of heavy metals and comparison between different biosorbents. J Mater Environ Sci 6(5):1386–1399

    Google Scholar 

  101. Tsezos M, Remoundaki E, Hatzikioseyian A et al (2014) Biosorption - principles and applications for metal immobilization from waste-water streams. Clean Prod Nano Technol 23–33

    Google Scholar 

  102. Ilyas S, Kim MS, Lee JC, Jabeen A, Bhatti HN et al (2017) Bio-reclamation of strategic and energy critical metals from secondary resources. Metals 7:1–17

    Article  Google Scholar 

  103. Volesky B (2007) Biosorption and me. Water Res 41:4017–4029

    Article  CAS  Google Scholar 

  104. Tangaromsuk J, Pokethitiyook P, Kruatrachue M, Upatham E et al (2002) Cadmium biosorption by Sphingomonas paucimobilis biomass. Bioresour Technol 85:103–105

    Article  CAS  Google Scholar 

  105. Xu C, He S, Liu Y, Zhang W, Lu D et al (2017) Bioadsorption and biostabilization of cadmium by Enterobacter cloacae TU. Chemosphere 173:622–629

    Article  ADS  CAS  Google Scholar 

  106. Huang FZ, Dang CL, Guo GN, Lu RR, Gu HJ, Liu HZ et al (2013) Biosorption of Cd (II) by live and dead cells of Bacillus cereus RC-1 isolated from cadmium-contaminated soil. Colloids Surf B 107:11–18

    Article  CAS  Google Scholar 

  107. Guo J, Zheng XD, Chen QB, Zhang L, Xu XP et al (2012) Biosorption of Cd (II) from aqueous solution by Pseudomonas plecoglossicida: kinetics and mechanism. Curr Microbiol 65(4):350–355

    Article  CAS  Google Scholar 

  108. Li X, Li D, Yan Z, Ao Y et al (2018) Adsorption of cadmium by live and dead biomass of plant growth-promoting rhizobacteria. RSC Adv 8:33523–33533

    Article  ADS  CAS  Google Scholar 

  109. Titah HS, Abdullah SRS, Idris M, Anuar N, Basri H, Mukhlisin M, Tangahu BV, Purwanti IF, Kurniawan SB et al (2018) Arsenic resistance and biosorption by isolated rhizobacteria from the roots of Ludwigia octovalvis. Int J Microbiol e3101498

    Google Scholar 

  110. Li X, Li D, Yan Z, Ao Y et al (2018) Biosorption and bioaccumulation characteristics of cadmium by plant growth-promoting rhizobacteria. RSC Adv 8(54):30902–30911

    Article  ADS  CAS  Google Scholar 

  111. Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14(1):94

    Article  Google Scholar 

  112. Ueda M (2016) Establishment of cell surface engineering and its development. Biosci Biotechnol Biochem 80:1243–1253

    Article  CAS  Google Scholar 

  113. Samuelson P, Wernérus H, Svedberg M, Stahl S et al (2000) Staphylococcal surface display of metal-binding polyhistidyl peptides. Appl Environ Microbiol 66:1243–1248

    Google Scholar 

  114. Li Q, Yu Z, Shao X, He J, Li L et al (2009) Improved phosphate biosorption by bacterial surface display of phosphate-binding protein utilizing ice nucleation protein. FEMS Microbiol Lett 299:4452

    Article  Google Scholar 

  115. Krishnaswamy R, Wilson DB (2000) Construction and characterization of an Escherichia coli strain genetically engineered for Ni (II) bioaccumulation. Appl Environ Microbiol 66:53835386

    Article  Google Scholar 

  116. Mowell JL, Gadd GM (1984) Cadmium uptake by Aureobasidium pullulans. J Gen Microbiol 130:279–284

    Google Scholar 

  117. Mosa KA, Saadoun I, Kumar K, Helmy M, Dhankher OP et al (2016) Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front Plant Sci 7:303

    Article  Google Scholar 

  118. Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M et al (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194

    Article  CAS  Google Scholar 

  119. Saier MH (2016) Transport protein evolution deduced from analysis of sequence, topology and structure. Curr Opin Struct Biol 38:9–17

    Article  ADS  CAS  Google Scholar 

  120. Bankar AV, Zinjarde SS, Kapadnis BP et al (2012) Management of heavy metal pollution by using yeast biomass. In: Satyanarayana T, Johri BN, Prakash A (eds) Microorganisms in environmental management. Springer, pp 335–363. ISBN 978-94-007-2228-6

    Google Scholar 

  121. Bankar A, Winey M, Prakash D, Kumar AR, Gosavi S, Kapadnis B, Zinjarde S et al (2012) Bioleaching of fly ash by the tropical marine yeast, Yarrowia lipolytica NCIM 3589. Appl Biochem Biotechnol 168(8):2205–2217

    Article  CAS  Google Scholar 

  122. Limcharoensuk T, Sooksawat N, Sumarnrote A, Awutpet T, Kruatrachue M, Pokethitiyook P, Auesukaree C et al (2015) Bioaccumulation and biosorption of Cd2+ and Zn2+ by bacteria isolated from a zinc mine in Thailand. Ecotox Environ Saf 122:322–330

    Article  CAS  Google Scholar 

  123. Alam MZ, Ahmad S (2013) Multi-metal biosorption and bioaccumulation by Exiguobacterium sp. ZM-2. Ann Microbiol 63(3):1137–1146

    Google Scholar 

  124. Das S, Elavarasi A, Lyla PS, Khan SA et al (2009) Biosorption of heavy metals by marine bacteria: potential tool for detecting marine pollution. Environ Health 9:38–43

    Google Scholar 

  125. Gupta P, Diwan B (2017) Bacterial exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep 13:58–71

    Article  Google Scholar 

  126. Rasulov BA, Yili A, Aisa HA et al (2013) Biosorption of metal ions by exopolysaccharide produced by 1025 Azotobacter chroococcum XU1. J Environ Prot 4(09):989

    Article  Google Scholar 

  127. Sheng GP, Yu HQ, Li XY et al (2010) Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnology 28:882–894

    CAS  Google Scholar 

  128. Vanderlinde EM, Harrison JJ, Muszynski A, Carlson RW, Turner RJ, Yost CK et al (2010) Identification of a novel ABC transporter required for desiccation tolerance and biofilm formation in Rhizobium leguminosarum bv. viciae 3841. FEMS Microbiol Ecol 71:327–340

    Article  CAS  Google Scholar 

  129. Shukla SK, Mangwani N, Karley D, Rao TS et al (2017) Bacterial biofilms and genetic regulation for metal detoxification. In: Handbook of metal-microbe interactions and bioremediation. CRC Press, pp 317–332

    Google Scholar 

  130. Zhang D, Pan X, Mostofa KM, Chen X, Mu G, Wu F, Liu J, Song W, Yang J, Liu Y, Fu Q et al (2010) Complexation between Hg (II) and biofilm extracellular polymeric substances: an application of fluorescence spectroscopy. J Hazard Mater 175:359–365

    Article  CAS  Google Scholar 

  131. Joshi PM, Juwarkar AA (2009) In vivo studies to elucidate the role of extracellular polymeric substances from Azotobacter in immobilization of heavy metals. Environ Sci Technol 43:5884–5889

    Article  ADS  CAS  Google Scholar 

  132. Wei X, Fang L, Cai P, Huang Q, Chen H, Liang W, Rong X et al (2011) Influence of extracellular polymeric substances (EPS) on Cd adsorption by bacteria. Environ Pollut 159:1369–1374

    Article  CAS  Google Scholar 

  133. Meliani A, Bensoltane A (2016) Biofilm-mediated heavy metals bioremediation in PGPR Pseudomonas. J Bioremed Biodegrad 7:370

    Article  Google Scholar 

  134. Nocelli N, Bogino PC, Banchio E, Giordano W et al (2016) Roles of extracellular polysaccharides and biofilm formation in heavy metal resistance of rhizobia. Materials 9:418

    Article  ADS  Google Scholar 

  135. Xing Y, Tan S, Liu S, Xu S, Wan W, Huang Q, Chen W et al (2022) Effective immobilization of heavy metals via reactive barrier by rhizosphere bacteria and their biofilms. Environ Res 207:112080

    Article  CAS  Google Scholar 

  136. Itusha A, Osborne WJ, Vaithilingam M et al (2019) Enhanced uptake of Cd by biofilm forming Cd-resistant plant growth promoting bacteria bioaugmented to the rhizosphere of Vetiveria zizanioides. Int J Phytoremediat 21:487–495

    Article  CAS  Google Scholar 

  137. Lal S, Ratna S, Said OB, Kumar R et al (2018) Biosurfactant and exopolysaccharide-assisted rhizobacterial technique for the remediation of heavy metal contaminated soil: an advancement in metal phytoremediation technology. Environ Technol Innov 10:243–263

    Article  Google Scholar 

  138. Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants. Environ Microbiol 3:229–236

    Article  CAS  Google Scholar 

  139. Maier RM, Soberón-Chávez G (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633

    Google Scholar 

  140. Saikia RR, Deka S, Deka M, Sarma H et al (2012) Optimization of environmental factors for improved production of rhamnolipid biosurfactant by Pseudomonas aeruginosa RS29 on glycerol. J Basic Microbiol 52:446–457

    Google Scholar 

  141. He HD, Ye ZH, Yang DJ, Yan JL, Xiao L, Zhong T, Yuan M, Cai XD, Fang ZQ, Jing YX et al (2013) Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Chemosphere 90:1960–9165

    Google Scholar 

  142. Chen L, Luo S, Li X, Wan Y, Chen J, Liu C et al (2014) Interaction of Cd-hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol Biochem 68:300–308

    Article  CAS  Google Scholar 

  143. Babu AG, Shea PJ, Sudhakar D, Jung IB, Oh BT et al (2015) Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal (loid)-contaminated mining site soil. J Environ Manage 151:160–166

    Google Scholar 

  144. Braud A, Jezequel K, Vieille E, Tritter A, Lebeau T et al (2006) Changes in extractability of Cr and Pb in a polycontaminated soil after bioaugmentation with microbial producers of biosurfactants, organic acids and siderophores. Water Air Soil Pollut 6:261–279

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All authors are thankful to DST, New Delhi, India for financial assistance in the form of a major project (DST-SERB file no. EEQ/2018/001202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Bankar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patil, S., Ansari, A., Sarje, A., Bankar, A. (2023). Heavy Metals Pollution and Role of Soil PGPR: A Mitigation Approach. In: Parray, J.A. (eds) Climate Change and Microbiome Dynamics. Climate Change Management. Springer, Cham. https://doi.org/10.1007/978-3-031-21079-2_18

Download citation

Publish with us

Policies and ethics