Skip to main content

Potential of Nanomaterials in Bio-Based Wood Adhesives: An Overview

  • Chapter
  • First Online:
Emerging Nanomaterials

Abstract

In recent years, bio-based wood adhesives have received a lot of attention as a sustainable and renewable alternative to the conventional synthetic adhesives used in the wood-based industry. Bio-based adhesives, on the other hand, such as protein, starch, lignin, and tannin, have inferior properties when compared with thermosetting synthetic resins. Reinforcement with nanomaterials with a high aspect ratio has the potential to improve the performance of bio-based wood adhesives. Therefore, this chapter discusses recent advances in the use of nanomaterials, such as nanocellulose, nanolignin, and nanoclay, in the synthesis of sustainable, bio-based wood adhesives for the production of wood-based composites with improved properties and a lower environmental footprint for advanced value-added applications. The majority of studies have found that nanomaterials have a positive reinforcing effect on adhesive performance. This chapter also discusses the challenges and future prospects of using these nanomaterials in bio-based wood adhesives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelmoula M, Ben Hlima H, Michalet F, Bourduche G, Chavant JY, Gravier A, Delattre C, Grédiac M, Mathias JD, Abdelkafi S, Michaud P, de Baynast H (2021) Chitosan-based adhesive: optimization of tensile shear strength in dry and wet conditions. Polysaccharides 2(1):110–120

    Article  CAS  Google Scholar 

  • Adler E (1977) Lignin chemistry: past, present and future. Wood Sci Technol 11:169–218

    Article  CAS  Google Scholar 

  • Akinyemi BA, Kolajo TE, Adedolu O (2022) Blended formaldehyde adhesive bonded particleboards made from groundnut shell and rice husk wastes. Clean Technol Environ: 1–10.

    Google Scholar 

  • Amini E, Tajvidi M, Gardner DJ, Bousfield DW (2017) Utilization of cellulose nanofibrils as a binder for particleboard manufacture. BioResources 12:4093–4110

    Article  CAS  Google Scholar 

  • Ang AF, Ashaari Z, Lee SH et al (2019) Lignin-based copolymer adhesives for composite wood panels – a review. Int J Adhes Adhes 95:102408

    Article  Google Scholar 

  • Antov P, Jivkov V, Savov V, Simeonova R, Yavorov N (2020a) Structural application of eco-friendly composites from recycled wood fibres bonded with magnesium lignosulfonate. Appl Sci 10:7526

    Article  CAS  Google Scholar 

  • Antov P, Savov V, Neykov N (2020b) Reduction of formaldehyde emission from engineered wood panels by formaldehyde scavengers - a review. In: Proceedings of the 13th International Scientific Conference Wood EMA 2020 and 31st International Scientific Conference ICWST 2020 Sustainability of Forest-Based Industries in the Global Economy, Vinkovci, Croatia, 28–30 September 2020, pp. 7–11

    Google Scholar 

  • Antov P, Savov V, Krišt’ák L, Réh R, Mantanis GI (2021a) Eco-friendly, high-density fiberboards bonded with urea-formaldehyde and ammonium lignosulfonate. Polymers 13:220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antov P, Savov V, Trichkov N, Krišťák Ľ, Réh R, Papadopoulos AN, Taghiyari HR, Pizzi A, Kunecová D, Pachikova M (2021b) Properties of high-density fiberboard bonded with urea–formaldehyde resin and ammonium lignosulfonate as a bio-based additive. Polymers 13(16):2775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arias A, Feijoo G, Moreira MT (2021a) Evaluation of starch as an environmental-friendly bioresource for the development of wood bioadhesives. Molecules 26:4526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arias A, González-Rodríguez S, Vetroni Barros M, Salvador R, de Francisco AC, Piekarski CM, Moreira MT (2021b) Recent developments in bio-based adhesives from renewable natural resources. J Clean Prod 314:127892

    Google Scholar 

  • Arias A, Entrena-Barbero E, Feijoo G, Maria Teresa Moreira MT (2022) Sustainable non-isocyanate polyurethanes bio-adhesives for engineered wood panels are revealed as promising candidates to move from formaldehyde-based alternatives. J Environ Chem Eng 10:107053

    Article  CAS  Google Scholar 

  • Aristri MA, Lubis MAR, Iswanto AH, Fatriasari W, Sari RK, Antov P, Gajtanska M, Papadopoulos AN, Pizzi A (2021a) Bio-based polyurethane resins derived from tannin: source, synthesis, characterisation, and application. Forests 12(11):1516

    Article  Google Scholar 

  • Aristri MA, Lubis MAR, Yadav SM et al (2021b) Recent developments in lignin- and tannin-based non-isocyanate polyurethane resins for wood adhesives—a review. Appl Sci 11:4242

    Article  CAS  Google Scholar 

  • Ayrilmis N, Lee YK, Kwon JH, Han TH, Kim HJ (2016) Formaldehyde emission and VOCs from LVLs produced with three grades of urea-formaldehyde resin modified with nanocellulose. Build Environ 97:82–87

    Article  Google Scholar 

  • Bandara N, Esparza Y, Wu J (2017) Exfoliating nanomaterials in canola protein derived adhesive improves strength and water resistance. RSC Adv 7:6743–6752

    Article  CAS  Google Scholar 

  • Barari B, Omrani E (2016) Mechanical, physical and tribological characterization of nano-cellulose fibers reinforced bio-epoxy composites: An attempt to fabricate and scale the ‘Green’ composite. Carbohydr Polym 147:282–293

    Article  CAS  PubMed  Google Scholar 

  • Barbu MC, Lohninger Y, Hofmann S, Kain G, Petutschnigg A, Tudor EM (2020a) Larch Bark as a formaldehyde scavenger in thermal insulation panels. Polymers 12(11):2632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbu MC, Sepperer T, Tudor EM, Petutschnigg A (2020b) Walnut and Hazelnut Shells: untapped industrial resources and their suitability in lignocellulosic composites. Appl Sci 10:6340

    Article  CAS  Google Scholar 

  • Barkane A, Kampe E, Platnieks O, Gaidukovs S (2021) Cellulose nanocrystals vs. cellulose nanofibers: a comparative study of reinforcing effects in UV-cured vegetable oil nanocomposites. Nanomaterials 11:1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basara C, Yilmazer U, Bayram G (2005) Synthesis and characterization of epoxy based nanocomposites. J Appl Polym Sci 98:1081–1086

    Article  CAS  Google Scholar 

  • Beisl S, Friedl A (2017) Miltner A. Lignin from micro- To nanosize, Applications

    Google Scholar 

  • Bekhta P, Sedliačik J, Jones D (2018) Effect of short-term thermomechanical densification of wood veneers on the properties of birch plywood. Eur J Wood Wood Prod 76(2):549–562

    Article  Google Scholar 

  • Bekhta P, Sedliačik J, Bekhta N (2020) Effect of veneer-drying temperature on selected properties and formaldehyde emission of birch plywood. Polymers 12(3):593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bekhta P, Noshchenko G, Réh R, Kristak L, Sedliačik J, Antov P, Mirski R, Savov V (2021a) Properties of eco-friendly particleboards bonded with lignosulfonate-urea-formaldehyde adhesives and pMDI as a crosslinker. Materials 14(17):4875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bekhta P, Sedliačik J, Noshchenko G, Kačík F, Bekhta N (2021b) Characteristics of Beech Bark and its effect on properties of UF adhesive and on bonding strength and formaldehyde emission of plywood panels. Eur J Wood Prod 79:423–433

    Article  CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  CAS  PubMed  Google Scholar 

  • Boran S, Usta M, Ondaral S, Gümüşkaya E (2012) The efficiency of tannin as a formaldehyde scavenger chemical in medium density fiberboard. Compos Part B 43(5):487–2491

    Article  Google Scholar 

  • Borrero-López AM, Valencia C, Domínguez G, Eugenio ME, Franco JM (2021) Rheology and adhesion performance of adhesives formulated with lignins from agricultural waste straws subjected to solid-state fermentation. Ind Crop Prod 171:113876

    Article  Google Scholar 

  • Brigham C (2018) Biopolymers: biodegradable alternatives to traditional plastics. In: Török B, Dransfield T (eds) Green chemistry. Elsevier, Amsterdam, pp 753–770

    Chapter  Google Scholar 

  • Bütün Buschalsky FY, Mai C (2021) Repeated thermo-hydrolytic disintegration of medium density fibreboards (MDF) for the production of new MDF. Eur J Wood Prod 79:1451–1459

    Article  Google Scholar 

  • Buyuksari U, Ayrilmis N, Avci E, Koc E (2010) Evaluation of the physical, mechanical properties and formaldehyde emission of particleboard manufactured from waste stone pine (Pinus pinea L.) cones. Bioresour Technol 101:255–259

    Article  CAS  PubMed  Google Scholar 

  • Cai X, Riedl B, Wan H, Zhang SY (2008) The impact of interphase between wood, melamine-ureaformaldehyde and layered silicate on the performance of wood polymer nanocomposites. Compos Part A 39:727–737

    Article  Google Scholar 

  • Camlibel O (2020) Mechanical and formaldehyde-related properties of medium density fiberboard with zeolite additive. BioResources 15(4):7918–7932

    Article  CAS  Google Scholar 

  • Chauhan PS (2020) Lignin nanoparticles: Eco-friendly and versatile tool for new era. Bioresour Technol Reports 9:100374

    Article  Google Scholar 

  • Chen N, Zheng P, Zeng Q, Lin Q, Rao J (2017) Characterization and performance of soy-based adhesives cured with epoxy resin. Polymers 9(10):514

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Xi X, Pizzi A, Fredon E, Du G, Gerardin C, Amirou S (2020) Oxidized demethylated lignin as a bio-based adhesive for wood bonding. J Adhes 97:873–890

    Article  Google Scholar 

  • Chen X, Pizzi A, Xi X, Zhou X, Fredon E, Gerardin C (2021) Soy protein isolate non-isocyanates polyurethanes (NIPU) wood adhesives. J Renew Mater 9(6):1045–1057

    Article  Google Scholar 

  • Chen X, Pizzi A, Fredon E, Gerardin C, Zhou X, Zhang B, Du G (2022) Low curing temperature tannin-based non-isocyanate polyurethane (NIPU) wood adhesives: preparation and properties evaluation. Int J Adhes Adhes 112:103001

    Article  CAS  Google Scholar 

  • Cheng HN, Kilgore K, Ford C, Fortier C, Dowd MK, He Z (2019) Cottonseed protein-based wood adhesive reinforced with nanocellulose. J Adhes Sci Technol 33:1357–1368

    Article  CAS  Google Scholar 

  • Costa NA, Pereira J, Ferra J, Cruz P, Martins J, Magalhães FD, Mendes A, Carvalho LH (2013a) Scavengers for achieving zero formaldehyde emission of wood-based panels. Wood Sci Technol 47:1261–1272

    Article  CAS  Google Scholar 

  • Costa NA, Pereira J, Ferra J, Cruz P, Martins J, Magalhães FD, Mendes A, Carvalho LH (2013b) Sodium metabisulphite as a scavenger of air pollutants for wood-based building materials. Int Wood Prod J 4(4):242–247

    Article  Google Scholar 

  • Costa NA, Ohlmeyer M, Ferra J, Magalhães F, Mendes A, Carvalho L (2014) The influence of scavengers on VOC emissions in particleboards made from pine and poplar. Eur J Wood Prod 72:117–121

    Article  CAS  Google Scholar 

  • Cui J, Lu X, Zhou X, Chrusciel L, Deng Y, Zhou H, Zhu S, Brosse N (2015) Enhancement of mechanical strength of particleboard using environmentally friendly pine (Pinus pinaster L.) tannin adhesives with cellulose nanofibers. Ann For Sci 72:27–32

    Article  Google Scholar 

  • Dammer L, Bowyer C, Breitmayer E, Eder A, Nanni S, Allen B, Carus M, Essel R (2016) Mapping study on cascading use of wood products, WWF Technical Report. Available online at https://wwfeu.awsassets.panda.org/downloads/wwf_mondi_cascading_use_of_wood_final_web.pdf. Accessed 6 Mar 2022

  • Darmawan S, Sofyan K, Pari G, Sugiyanto K (2010) Effect of activated charcoal addition on formaldehyde emission of medium density fibreboard. J For Res 7(2):100–111

    Google Scholar 

  • de Cademartori PHG, Artner MA, de Freitas RA, Magalhães WLE (2019) Alumina nanoparticles as formaldehyde scavenger for urea-formaldehyde resin: Rheological and in-situ cure performance. Compos Part B 176:107281

    Article  CAS  Google Scholar 

  • Del Saz-Orozco B, Oliet M, Alonso MV et al (2012) Formulation optimization of unreinforced and lignin nanoparticle-reinforced phenolic foams using an analysis of variance approach. Compos Sci Technol 72:667–674

    Article  Google Scholar 

  • Dunky M (2003) Chapter 47: Adhesives in the wood industry. In: Pizzi A, mittal k l (eds) Handbook of adhesive technology. Marcel Dekker, New York, pp 872–941

    Google Scholar 

  • Dunky M (2020) Wood adhesives based on natural resources: a critical review Part III. Tannin- and Lignin-based adhesives. Rev Adhes Adhes 8:379–525

    CAS  Google Scholar 

  • Dutta S, Karak N (2005) Synthesis, characterization of poly (urethane amide) resins from Nahar seed oil for surface coating applications. Prog Org Coat 53:147–152

    Article  CAS  Google Scholar 

  • El Mansouri NE, Pizzi A, Salvadó J (2006) Lignin-based wood panel adhesives without formaldehyde. Holz Roh Werkst 65:65

    Article  Google Scholar 

  • El Mansouri NE, Yuan Q, Huang F (2011) Characterization of alkaline lignins for use in phenol-formaldehyde and epoxy resins. BioResources 6:2647–2662

    Google Scholar 

  • Eom YG, Kim JS, Kim S, Kim JA, Kim HJ (2006) Reduction of formaldehyde emission from particleboards by bio-scavengers. Mokchae Konghak 34(5):29–41

    Google Scholar 

  • Esmailpour A, Taghiyari HR, Majidi R, Morrell JJ, Mohammad-Panah B (2019) Nano-wollastonite to improve fire retardancy in medium-density fiberboard (MDF) made from wood fibers and camel-thorn. Wood Mater Sci Eng. https://doi.org/10.1080/17480272.2019.1641838

  • Esposito L, Ciannamea EM, Solaberrieta I, Piter JC, Ruseckaite RA, Stefani PM (2022) Tannin-modified soybean protein concentrate for wood adhesive. J Appl Res Technol Eng 3(1):1–7

    Article  Google Scholar 

  • Feng W, Ait-kadi A, Riedl B (2002) Polymerization compounding: epoxy-montmorillonite nanocomposites. Polym Eng Sci 42:1827–1835

    Article  CAS  Google Scholar 

  • Foti D, Voulgaridou EE, Karastergiou S, Taghiyari HR, Papadopoulos AN (2022) Physical and mechanical properties of eco-friendly composites made from wood dust and recycled polystyrene. J Renew Mater 10(1):75

    Article  CAS  Google Scholar 

  • Forest Product Statistics (2021) Available online: https://www.fao.org/forestry/statistics/80938/en/ (accessed on 6 March 2022)

  • Frangville C, Rutkevičius M, Richter AP et al (2012) Fabrication of environmentally biodegradable lignin nanoparticles. ChemPhysChem 13:4235–4243

    Article  CAS  PubMed  Google Scholar 

  • Frazier CE (2003) Chapter 33: Isocyanate wood binders. In: Pizzi A, Mittal KL (eds) Handbook of adhesive technology, 2nd edn. Marcel Dekker, New York, pp 681–694

    Google Scholar 

  • Frihart CR (2015) Wood Adhesives: Past, Present, and Future. For Prod J 65:4–8

    Google Scholar 

  • Frihart CR, Satori H (2013) Soy flour dispersibility and performance as wood adhesive. J Adhes Sci Technol 27:2043–2052

    Article  CAS  Google Scholar 

  • Gagnon M, Roy C, Riedl B (2004) Adhesives made from isocyanates and pyrolysis oils for wood composites. Holzforschung 58:400–407

    Article  CAS  Google Scholar 

  • Galland S, Leterrier Y, Nardi T, Plummer CJG, Månson JAE, Berglund LA (2014) UV-cured cellulose nanofiber composites with moisture durable oxygen barrier properties. J Appl Polym Sci 2014:131

    Google Scholar 

  • Gao Q, Li J, Shi SQ, Liang K, Zhang X (2012) Soybean meal-based adhesive reinforced with cellulose nano-whiskers. BioResources 7:5622–5633

    Article  Google Scholar 

  • Ghahri S, Pizzi A (2018) Improving soy-based adhesives for wood particleboard by tannins addition. Wood Sci Technol 52:261–279

    Article  CAS  Google Scholar 

  • Ghahri S, Bari E, Pizzi A (2021) The challenge of environment-friendly adhesives for bio-composites. In: Jawaid M, Khan TA, Nasir M, Asim M (eds) Eco-friendly adhesives for wood and natural fiber composites; composites science and technology. Springer, Singapore

    Google Scholar 

  • Ghahri S, Pizzi A, Hajihassani R (2022) A study of concept to prepare totally biosourced wood adhesives from only soy protein and tannin. Polymers 14(6):1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghani A, Paiman B, Lee SH, Zaidon A (2019) Physico-mechanical properties and formaldehyde emission of rubberwood particleboard made with UF resin admixed with ammonium and aluminium-based hardeners. Pertanika J Sci Technol 27(1):473–488

    Google Scholar 

  • Gillela S, Yadav SM, Sihag K, Lubis MAR, Wibowo ES, Negi A, Iswanto AH, Antov P, Kristak L (2022) A review on Lantana camara lignocellulose fiber-reinforced polymer composites. Biomass Conv Bioref. https://doi.org/10.1007/s13399-022-02402-7

  • Goodsell JE, Moon RJ, Huizar A, Pipes RB (2014) A strategy for prediction of the elastic properties of epoxy-cellulose nanocrystal-reinforced fiber networks. Nord Pulp Paper Res J 29:85–94

    Article  CAS  Google Scholar 

  • Gosselink RJA, Abächerli A, Semke H et al (2004a) Analytical protocols for characterisation of sulphur-free lignin. Ind Crops Prod 19:271–281

    Article  CAS  Google Scholar 

  • Gosselink RJA, Snijder MHB, Kranenbarg A et al (2004b) Characterisation and application of NovaFiber lignin. Ind Crops Prod 20:191–203

    Article  CAS  Google Scholar 

  • Grand View Research (2019) Wood adhesives market size worth $6.34 billion by 2025 | CAGR: 4.7%. https://www.grandviewresearch.com/press-release/global-wood-adhesives-market. Assessed 23 Mar 2022.

  • Gu Y, Cheng L, Gu Z, Hong Y, Li Z, Li C (2019) Preparation, characterization and properties of starch-based adhesive for wood-based panels. Int J Biol Macromol 134:247–254

    Article  CAS  PubMed  Google Scholar 

  • Hafiz AA (2013) Synthesis and characterization of eva-cloisite clay nanocomposites. Master of Science in Nanotechnology, The American University in Cairo, Cairo

    Google Scholar 

  • Hagel S, Joy J, Cicala G, Saake B (2021) Recycling of waste MDF by steam refining: evaluation of fiber and paper strength properties. Waste Biomass Valor 12:5701–5713

    Article  CAS  Google Scholar 

  • Hakimi NM, Lee SH, Lum WC, Mohamad SF, Osman Al Edrus SS, Park BD, Azmi A (2021) Surface modified nanocellulose and its reinforcement in natural rubber matrix nanocomposites: A review. Polymers 13:3241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haq M, Burgueño R, Mohanty AK, Misra M (2008) Hybrid bio-based composites from blends of unsaturated polyester and soybean oil reinforced with nanoclay and natural fibers. Compos Sci Technol 68:3344–3351

    Article  CAS  Google Scholar 

  • Haq M, Burgueño R, Mohanty AK, Misra M (2009) Bio-based unsaturated polyester/layered silicate nanocomposites: characterization and thermo-physical properties. Compos Part A 40:540–547

    Article  Google Scholar 

  • Haq M, Burgueño R, Mohanty AK, Misra M (2011) Bio-based polymer nanocomposites from UPE/EML blends and nanoclay: development, experimental characterization and limits to synergistic performance. Compos Part A 42:41–49

    Article  Google Scholar 

  • Hejna A, Marć M, Kowalkowska-Zedler D, Pladzyk A, Barczewski M (2021) Insights into the thermo-mechanical treatment of brewers’ spent grain as a potential filler for polymer composites. Polymers 13:879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hematabadi H, Behrooz R, Shakibi A, Arabi M (2012) The reduction of indoor air formaldehyde from wood based composites using urea treatment for building materials. Constr Build Mater 28:743–746

    Article  Google Scholar 

  • Hemmilä V, Adamopoulos S, Karlsson O, Kumar A (2017) Development of sustainable bio-adhesives for engineered wood panels - a review. RSC Adv 7:8604–38630

    Article  Google Scholar 

  • Hornus M, Via KB, Gallagher T, Peresin MS (2020) Partial substitution of pMDI with lignin containing cellulose nanofibrils: low density oriented strand board. Wood Mater Sci Eng 16(6):391–396

    Article  Google Scholar 

  • Hosseinpourpia R, Adamopoulos S, Mai C, Taghiyari HR (2019) Properties of medium-density fiberboards bonded with dextrin-based wood adhesives. Wood Res 64:185–194

    Google Scholar 

  • Hunt JF, Leng W, Tajvidi M (2017) Vertical density profile and internal bond strength of wet-formed particleboard bonded with cellulose nanofibrils. Wood Fiber Sci 49:413–423

    CAS  Google Scholar 

  • Hussin MH, Appaturi JN, Poh NE, Latif NHA, Brosse N, Ziegler-Devin I, Vahabi H, Syamani FA, Fatriasari W, Solihat NN, Karimah A, Iswanto AH, Sekeri SH, Ibrahim MNM (2022) A recent advancement on preparation, characterization and application of nanolignin. Int J Biol Macromol 200:303–326

    Article  CAS  PubMed  Google Scholar 

  • Ilyas RA, Aisyah HA, Nordin AH, Ngadi N, Zuhri MYM, Asyraf MRM, Sapuan SM, Zainudin ES, Sharma S, Abral H, Asrofi M, Syafri E, Sari NH, Rafidah M, Zakaria SZS, Razman MR, Majid NA, Ramli Z, Azmi A, Bangar SP, Ibrahim R (2022) Natural-Fiber-reinforced chitosan, chitosan blends and their nanocomposites for various advanced applications. Polymers 14(5):874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irle M, Privat F, Couret L, Belloncle C, Déroubaix G, Bonnin E, Cathala B (2018) Advanced recycling of post-consumer solid wood and MDF. Wood Mater Sci Eng 11:1–5

    Google Scholar 

  • Iždinský J, Vidholdová Z, Reinprecht L (2020) Particleboards from recycled wood. Forests 11:1166

    Article  Google Scholar 

  • Jial P, Song F, Li Q, Xia H, Shu X, Zhou Y (2019) Recent development of cardanol based polymer materials: a review. J Renew Mater 7:601–619

    Article  Google Scholar 

  • Jiang C, He H, Jiang H et al (2013) Nano-lignin filled natural rubber composites: preparation and characterization. Express Polym Lett 7:480–493

    Article  CAS  Google Scholar 

  • Jiang W, Haapala A, Tomppo L, Pakarinen T, Sirviö JA, Liimatainen H (2018) Effect of cellulose nanofibrils on the bond strength of polyvinyl acetate and starch adhesives for wood. BioResources 13:2283–2292

    Article  CAS  Google Scholar 

  • Kaboorani A, Riedl B, Blanchet P, Fellin M, Hosseinaei O, Wang S (2012) Nanocrystalline Cellulose (NCC): a renewable nano-material for Polyvinyl Acetate (PVA) adhesive. Eur Polym J 48:1829–1837

    Article  CAS  Google Scholar 

  • Kalami S, Arefmanesh M, Master E, Nejad M (2017) Replacing 100% of phenol in phenolic adhesive formulations with lignin. J Appl Polym Sci 134:1–9

    Article  Google Scholar 

  • Kargarzadeh H, Huang J, Lin N, Ahmad I, Mariano M, Dufresne A, Thomas S, Galeski A (2018a) Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites. Prog Polym Sci 87:197–227

    Article  CAS  Google Scholar 

  • Kargarzadeh H, Mariano M, Gopakumar D, Ahmad I, Thomas S, Dufresne A, Huang J, Lin N (2018b) Advances in cellulose nanomaterials. Cellulose 25:2151–2189

    Article  CAS  Google Scholar 

  • Karthäuser J, Biziks V, Mai C, Militz H (2021) Lignin and lignin-derived compounds for wood applications—a review. Molecules 26(9):2533

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaur I, Misra BN, Sarkar A, Chauhan GS, Singh B (2002) Preparation and characterization of forest waste pine cellulosic fiber-UF resin based polymer composites. Sci Eng Compos Mater 10:437–451

    Article  CAS  Google Scholar 

  • Kawalerczyk J, Siuda J, Mirski R, Dziurka D (2020a) Hemp flour as a formaldehyde scavenger for melamine-urea-formaldehyde adhesive in plywood production. BioResources 15:4052–4064

    Article  CAS  Google Scholar 

  • Kawalerczyk J, Dziurka D, Mirski R, Szentner K (2020b) Properties of plywood produced with urea-formaldehyde adhesive modified with nanocellulose and microcellulose. Drv Ind 71:61–67

    Article  Google Scholar 

  • Khalaf Y, El Hage P, Mihajlova J, Bergeret A, Lacroix P, El Hage R (2021) Influence of agricultural fibers size on mechanical and insulating properties of innovative chitosan-based insulators. Constr Build Mater 287:123071

    Article  CAS  Google Scholar 

  • Kim S (2009) Environment-friendly adhesives for surface bonding of wood-based flooring using natural tannin to reduce formaldehyde and TVOC emission. Bioresour Technol 100:744–748

    Article  CAS  PubMed  Google Scholar 

  • Kminiak R, Orlowski KA, Dzurenda L, Chuchala D, Banski A (2020) Effect of thermal treatment of birch wood by saturated water vapor on granulometric composition of chips from sawing and milling processes from the point of view of its processing to composites. Appl Sci 10(21):7545

    Article  CAS  Google Scholar 

  • Kojima Y, Kato N, Ota K, Kobori H, Suzuki S, Aoki K, Ito H (2018) Cellulose nanofiber as complete natural binder for particleboard. For Prod J 68:203–210

    Google Scholar 

  • Köse K, Mavlan M, Youngblood JP (2020) Applications and impact of nanocellulose based adsorbents. Cellulose 27:2967–2990

    Article  Google Scholar 

  • Kristak L, Antov P, Bekhta P, Lubis MAR, Iswanto AH, Reh R, Sedliacik J, Savov V, Taghiyari H, Papadopoulos AN, Pizzi A, Hejna A (2022) Recent progress in ultra-low formaldehyde emitting adhesive systems and formaldehyde scavengers in wood-based panels: a review. Wood Mater Sci Eng. https://doi.org/10.1080/17480272.2022.2056080

  • Krišťáková S, Neykov N, Antov P, Sedliačiková M, Reh R, Halalisan AF, Hajdúchová I (2021) Efficiency of wood-processing enterprises - evaluation based on DEA and MPI: a comparison between Slovakia and Bulgaria for the period 2014–2018. Forests 12:1026

    Article  Google Scholar 

  • Kumar RN, Pizzi A (2019) Urea-formaldehyde resins. In: Adhesives for wood and lignocellulosic materials. Wiley-Scrivener Publishing, Hoboken, pp 61–100

    Chapter  Google Scholar 

  • Kunaver M, Medved S, Čuk N, Jasiukaitytė E, Poljanšek I, Strnad T (2010) Application of liquefied wood as a new particle board adhesive system. BioresTechnol 101(4):1361–1368

    CAS  Google Scholar 

  • Łebkowska M, Radziwiłł MZ, Tabernacka A (2017) Adhesives based on formaldehyde—environmental problems. BioTechnol 98:53–65

    Article  Google Scholar 

  • Lee W, Liu C (2002) Preparation of liquefied bark based reso resin and its application to particle board. J Appl Polym Sci 87:1837–1841

    Article  Google Scholar 

  • Lee SH, Md Tahir P, Lum WC, Tan LP, Bawon P, Park BD, Osman Al Edrus SS, Abdullah UH (2020) A review on citric acid as green modifying agent and binder for wood. Polymers 12(8):1692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leemon NF, Ashaari A, Uyup MKA, Bakar ES, Tahir PM, Saliman MAR, Ghani MA, Lee SH (2015) Characterisation of phenolic resin and nanoclay admixture and its effect on impreg wood. Wood Sci Technol 49:1209–1224

    Article  CAS  Google Scholar 

  • Lengowski EC, Bonfatti Júnior EA, Nishidate Kumode MM, Carneiro ME, Satyanarayana KG. (2019) Nanocellulose-reinforced adhesives for wood-based panels. In: Inamuddin, Thomas S, Kumar Mishra R, Asiri AM (eds), Sustainable polymer composites and nanocomposites, No. 167, Springer, Berlin, pp. 1001–1025

    Google Scholar 

  • Lengowski EC, Bonfatti Júnior EA, Dallo R, Nisgoski S, Mattos JL, Prata JG (2021) Nanocellulose-reinforced phenol-formaldehyde resin for plywood panel production. Maderas Cienc Tecnol 23:1–10

    Google Scholar 

  • Li Z, Wang J, Li C, Gu Z, Cheng L, Hong Y (2015) Effects of montmorillonite addition on the performance of starch-based wood adhesive. Carbohydr Polym 115:394–400

    Article  CAS  PubMed  Google Scholar 

  • Li X, Chen M, Zhang J, Gao Q, Zhang S, Li J (2017) Physico-chemical properties of soybean meal-based adhesives reinforced by ethylene glycol diglycidyl ether and modified nanocrystalline cellulose. Polymers 9:463

    Article  PubMed  PubMed Central  Google Scholar 

  • Li K, Jin S, Li X, Li J, Shi SQ, Li J (2021) Bioinspired interface engineering of soybean meal-based adhesive incorporated with biomineralized cellulose nanofibrils and a functional aminoclay. Chem Eng J 421:129820

    Article  CAS  Google Scholar 

  • Liu Z, Erhan SZ, Xu J (2005) Preparation, characterization and mechanical properties of epoxidized soybean oil/clay nanocomposites. Polymer 46:10119–10127

    Article  CAS  Google Scholar 

  • Liu Z, Zhang Y, Wang X, Rodrigue D (2015) Reinforcement of lignin-based phenol-formaldehyde adhesive with nano-crystalline cellulose (NCC): curing behavior and bonding property of plywood. Mater Sci Appl 6:567

    CAS  Google Scholar 

  • Lu WH, Zhao GJ (2008) Structure and characterization of Chinese fir (Cunninghamia lanceolata) wood/MMT intercalation nanocomposite (WMNC). Front For China 3:121–126

    Article  Google Scholar 

  • Lubis MAR, Hong MK, Park BD (2018) Hydrolytic removal of cured urea-formaldehyde resins in medium-density fiberboard for recycling. J Wood Chem. Technol 38:1–14

    Article  CAS  Google Scholar 

  • Lubis MA, Yadav SM, Park BD (2021) Modification of oxidized starch polymer with nanoclay for enhanced adhesion and free formaldehyde emission of plywood. J Polym Environ 29:2993–3003

    Article  CAS  Google Scholar 

  • Lubke H, Ihnát V, Kuňa V, Balberčák J (2020) A multi-stage cascade use of wood composite boards. Wood Res 65:843–854

    Article  CAS  Google Scholar 

  • Luo X, Shuai L (2020) Lignin-based adhesives. In: Green adhesives. Wiley, pp 25–56

    Google Scholar 

  • Luo J, Zhou Y, Gao Q, Li J, Yan N (2020) From wastes to functions: a new soybean meal and bark-based adhesive. ACS Sustain Chem Eng 8(29):10767–10773

    CAS  Google Scholar 

  • Mahrdt E, Pinkl S, Schmidberger C, van Herwijnen HW, Veigel S, Gindl-Altmutter W (2016) Effect of addition of microfibrillated cellulose to urea-formaldehyde on selected adhesive characteristics and distribution in particle board. Cellulose 23:571–580

    Article  CAS  Google Scholar 

  • Mantanis GI, Athanassiadou ET, Barbu MC, Wijnendaele K (2018) Adhesive systems used in the European particleboard, MDF and OSB industries. Wood Mater Sci Eng 13:104–116

    Article  CAS  Google Scholar 

  • Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites:review of some properties and challenges. J Polym Sci Part B 52:791–806

    Article  CAS  Google Scholar 

  • Migneault S, Koubaa A, Riedl B, Nadji H, Deng J, Zhang T (2011) Potential of pulp and paper sludge as a formaldehyde scavenger agent in MDF resins. Holzforschung 65:403–409

    Article  CAS  Google Scholar 

  • Mirski R, Banaszak A, Bekhta P (2021) Selected properties of formaldehyde-free polymer-straw boards made from different types of thermoplastics and different kinds of straw. Materials 14:1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyashiro D, Hamano R, Umemura K (2020) A review of applications using mixed materials of cellulose, nanocellulose and carbon nanotubes. Nanomaterials 10(2):186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammadinejad R, Karimi S, Iravani S, Varma RS (2016) Plant-derived nanostructures: types and applications. Green Chem 18:20–52

    Article  Google Scholar 

  • Mondal S (2017) Preparation, properties and applications of nanocellulosic materials. Carbohydr Polym 163:301–316

    Article  CAS  PubMed  Google Scholar 

  • Moon RJ, Schueneman GT, Simonsen J (2016) Overview of cellulose nanomaterials, their capabilities and applications. JOM 68:2383–2394

    Article  CAS  Google Scholar 

  • Nair SV, Goettler LA, Lysek BA (2002) Toughness of nanoscale and multiscale polyamide-6, 6 composites. Polym Eng Sci 42(9):1872–1882

    Article  CAS  Google Scholar 

  • Ndiwe B, Pizzi A, Tibi B, Danwe R, Konai N, Amirou S (2019) African tree bark exudate extracts as biohardeners of fullybiosourced thermoset tannin adhesives for wood panels. Ind Crop Prod 132:253–268

    Article  CAS  Google Scholar 

  • Nelson K, Retsina T, Iakovlev M, van Heiningen A, Deng Y, Shatkin JA, Mulyadi A (2016) In: Madsen L, Svedberg E (eds) Materials research for manufacturing. Springer, Cham, pp 267–302

    Chapter  Google Scholar 

  • Ngo TD, Singh RP, Ton-That MT, Hoa SV (2009) The potential bio-based polymer and their nanocomposites for composites structure. In: 17th International Conference on Composite Materials (ICCM-17), Edinburgh International Convention Centre (EICC), Edinburgh

    Google Scholar 

  • Ninikas K, Mitani A, Koutsianitis D, Ntalos G, Taghiyari HR, Papadopoulos AN (2021) Thermal and mechanical properties of green insulation composites made from Cannabis and Bark residues. J Compos Sci 5:132

    Article  CAS  Google Scholar 

  • Nordström E, Demircan D, Fogelström L, Khabbaz F, Malmström E (2017) Green binders for wood adhesives. In: Applied adhesive bonding in science and technology. Intechopen Books, London, pp. 47–71.

    Google Scholar 

  • O’donnell A, Dweib MA, Wool RP (2004) Natural fiber composites with plant oil-based resin. Compos Sci Technol 64:1135–1145

    Article  Google Scholar 

  • Oh M, Ma Q, Simsek S, Bajwa D, Jiang L (2019) Comparative study of zein-and gluten-based wood adhesives containing cellulose nanofibers and crosslinking agent for improved bond strength. Int J Adhes Adhes 92:44–57

    Article  CAS  Google Scholar 

  • Oksman K, Bismarck A (2014) Handbook of green materials: processing technologies, properties and applications (in 4 volumes), vol 5. World Scientific, Hackensack

    Google Scholar 

  • Oktay S, Kızılcan N, Bengü B (2021) Development of bio-based cornstarch-Mimosa tannin-sugar adhesive for interior particleboard production. Ind Crop Prod 170:113689

    Article  CAS  Google Scholar 

  • Papadopoulos AN, Bikiaris DN, Mitropoulos AC, Kyzas GZ (2019) Nanomaterials and chemical modifications for enhanced key wood properties: a review. Nanomaterials 9(4):607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park BD, Kim J (2008) Dynamic mechanical analysis of urea-formaldehyde resin adhesives with different formaldehyde-to-urea molar ratios. J Appl Phys 108:2045–2051

    CAS  Google Scholar 

  • Pędzik M, Janiszewska D, Rogoziński T (2021) Alternative lignocellulosic raw materials in particleboard production: a review. Ind Crop Prod 174:114162

    Article  Google Scholar 

  • Pędzik M, Auriga R, Kristak L, Antov P, Rogoziński T (2022) Physical and mechanical properties of particleboard produced with addition of walnut (Juglans regia L.) wood residues. Materials 15(4):1280

    Article  PubMed  PubMed Central  Google Scholar 

  • Phanthong P, Reubroycharoen P, Hao X, Xu G, Abudula A, Guan G (2018) Nanocellulose: extraction and application. Carbon Resour Convers 1:32–43

    Article  Google Scholar 

  • Pichelin F, Nakatani M, Pizzi A, Wieland S, Despres A, Rigolet S (2006) Thick wood panels bonded industrially with formaldehyde free tannin adhesives. For Prod J 56(5):31–36

    CAS  Google Scholar 

  • Pinkl S, Veigel S, Colson J, Gindl-Altmutter W (2017) Nanopaper properties and adhesive performance of microfibrillated cellulose from different (ligno-)cellulosic raw materials. Polymers 9:326

    Article  PubMed  PubMed Central  Google Scholar 

  • Pizzi A (2016) Wood products and green chemistry. Ann For Sci 73(1):185–203

    Article  Google Scholar 

  • Pizzi A, Papadopoulos A, Policardi F (2020) Wood composites and their polymer binders. Polymers 12:1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Podlena M, Böhm M, Saloni D, Velarde G, Salas C (2021) Tuning the adhesive properties of soy protein wood adhesives with different coadjutant polymers, nanocellulose and lignin. Polymers 13:1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poorabdollah M, Beheshty MH, Vafayan M (2011) Kinetic modeling of nanoclay-reinforced unsaturated polyester resin. Polym Comp 32:1265–1273

    Article  CAS  Google Scholar 

  • Puttasukkha J, Khongtong S, Chaowana P (2015) Curing behavior and bonding performance of urea formaldehyde resin admixed with formaldehyde scavenger. Wood Res 60(4):645–654

    CAS  Google Scholar 

  • Rangavar H, Taghiyari HR, Mehr M (2013) Effects of nanocopper on physical and mechanical properties of medium-density fiberboard. J Trop For Sci 25(2):184–192

    Google Scholar 

  • Réh R, Krišťák Ľ, Sedliačik J, Bekhta P, Božiková M, Kunecová D, Vozárová V, Tudor EM, Antov P, Savov V (2021) Utilization of Birch Bark as an eco-friendly filler in urea-formaldehyde adhesives for plywood manufacturing. Polymers 3(4):511

    Article  Google Scholar 

  • Roffael E (2011) On the responsiveness of hardened UF-resins of different molar ratio towards ammonia fumigation. Eur J Wood Wood Prod 69(4):675–676

    Article  CAS  Google Scholar 

  • Sahoo S, Kalita H, Mohanty S, Nayak SK (2017) Synthesis and characterization of vegetable oil based polyurethane derived from low viscous bio aliphatic isocyanate: Adhesion strength to wood-wood substrate bonding. Macromol Res 25:772–778

    Article  CAS  Google Scholar 

  • Santos J, Pereira J, Ferra J, Magalhães FD, Martins JM, Carvalho LH (2021) New cardoon (Cynara cardunculus L.) particleboards using cardoon leaf extract and citric acid as bio-adhesive. Mater Circ Econ 3(1):1–7

    Article  Google Scholar 

  • Santos J, Pereira J, Escobar-Avello D, Ferreira I, Vieira C, Magalhães FD, Martins JM, Carvalho LH (2022) Grape Canes (Vitis vinifera L.) applications on packaging and particleboard industry: new bioadhesive based on grape extracts and citric acid. Polymers 14(6):1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saražin J, Pizzi A, Amirou S, Schmiedl D, Šernek M (2021) Organosolv lignin for non-isocyanate based polyurethanes (NIPU) as wood adhesive. J Renew Mater 9:881–907

    Article  Google Scholar 

  • Sarika PR, Nancarrow P, Khansaheb A, Ibrahim T (2020) Bio-based alternatives to phenol and formaldehyde for the production of resins. Polymers 12:2237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saud AS, Maniam GP, Rahim MHA (2021) Introduction of eco-friendly adhesives: source, types, chemistry and characterization. In: Jawaid M, Khan TA, Nasir M, Asim M (eds) Eco-friendly adhesives for wood and natural fiber composites; composites science and technology. Springer, Singapore

    Google Scholar 

  • Savov V, Valchev I, Antov P (2019) Processing factors for production of eco-friendly medium density fibreboards based on lignosul-fonate adhesives. In: Proceedings of the 2nd International Congress of Biorefinery of Lignocellulosic Materials (IWBLCM 2019), Córdoba, Spain, 4–7 June 2019, pp. 165–169

    Google Scholar 

  • Savov V, Antov P, Trichkov N (2021) Properties of high-density fiberboards bonded with urea-formaldehyde and phenol-formaldehyde resins. Innov Wood Ind Eng Des 2(20):17–26

    Google Scholar 

  • Sedliačiková M, Stroková Z, Klementová J, Šatanová A, Moresová M (2020) Impacts of behavioral aspects on financial decision-making of owners of woodworking and furniture manufacturing and trading enterprises. Acta Fac Xylologiae Zvolen 62:165–176

    Google Scholar 

  • Segovia F, Blanchet P, Essoua GGE (2021) Potential of the crude glycerol and citric acid mixture as a binder in medium-density fiberboard manufacturing. Eur J Wood Wood Prod 79(5):1141–1151

    Article  CAS  Google Scholar 

  • Selakjani PP, Dorieh A, Pizzi A, Shahavi MH, Hasankhah A, Shekarsaraee S, Ashouri M, Movahed SG, Abatari MN (2021) Reducing free formaldehyde emission, improvement of thickness swelling and increasing storage stability of novel medium density fiberboard by urea-formaldehyde adhesive modified by phenol derivatives. Int J Adhes Adhes 111:102962

    Article  CAS  Google Scholar 

  • Seydibeyoglu MO, Oksman K (2008) Novel nanocomposites based on polyurethane and micro fibrillated cellulose. Compos Sci Technol 68:908–914

    Article  Google Scholar 

  • Singh SK, Ostendorf K, Euring M, Zhang K (2022) Environmentally sustainable, high-performance lignin-derived universal adhesive. Green Chem 24:2624–2635

    Article  CAS  Google Scholar 

  • Singha AS, Thakur VK (2008) Effect of fibre loading on urea-formaldehyde matrix based green composites. Iran Polym J 17:861–873

    CAS  Google Scholar 

  • So S, Rudin A (1990) Effects of resin and curing parameters on the degree of cure of resole phenolic resins and woodflour composites. J Appl Polym Sci 40:2135–2149

    Article  CAS  Google Scholar 

  • Solt P, Konnerth J, Gindl-Altmutter W, Kantner W, Moser J, Mitter R, van Herwijnen HWG (2019) Technological performance of formaldehyde-free adhesive alternatives for particleboard industry. Int J Adhes Adhes 94:99–131

    Article  CAS  Google Scholar 

  • Song Y, Wang Z, Yan N et al (2016) Demethylation of wheat straw alkali lignin for application in phenol formaldehyde adhesives. Polymers (Basel) 8:209

    Article  PubMed  Google Scholar 

  • Stewart D (2008) Lignin as a base material for materials applications: chemistry, application and economics. Ind Crops Prod 27:202–207

    Article  CAS  Google Scholar 

  • Sun J, Li L, Cheng H, Huang W (2018) Preparation, characterization and properties of an organic siloxane-modified cassava starch-based wood adhesive. J Adhes 94:78–293

    Article  Google Scholar 

  • Sutiawan J, Hermawan D, Massijaya MY, Kusumah SS, Lubis MAR, Marlina R, Purnomo D, Sulastiningsih IM (2021) Influence of different hot-pressing conditions on the performance of eco-friendly jabon plywood bonded with citric acid adhesive. Wood Mater Sci Eng. https://doi.org/10.1080/17480272.2021.1884898

  • Taghiyari HR, Rangavar H, Farajpour Bibalan O (2011) Nano-silver in particleboard. BioResources 6(4):4067–4075

    CAS  Google Scholar 

  • Taghiyari HR, Mohammad-Panah B, Morrell JJ (2016) Effects of wollastonite on the properties of medium-density fiberboard (MDF) made from wood fibers and camel-thorn. Maderas Ciencia y tecnologia 18(1):157–166

    CAS  Google Scholar 

  • Taghiyari HR, Arbabi Ghamsari F, Salimifard E (2018) Effects of adding nano-wollastonite, date palm prunings and two types of resins on the physical and mechanical properties of medium-density fiberboard (MDF). Bois et Forets des Tropiques 335(1):49–57

    Article  Google Scholar 

  • Taghiyari HR, Hosseini SB, Ghahri S, Ghofrani M, Papadopoulos AN (2020a) Formaldehyde emission in micron-sized wollastonite-treated plywood bonded with soy flour and urea-formaldehyde resin. Appl Sci 10:6709

    Article  CAS  Google Scholar 

  • Taghiyari HR, Tajvidi M, Taghiyari R, Mantanis GI, Esmailpour A, Hosseinpourpia R (2020b) Nanotechnology for wood quality improvement and protection. In: Husen A, Jawaid M (eds) Nanomaterials for agriculture and forestry applications. Elsevier, Amsterdam, pp 469–489

    Chapter  Google Scholar 

  • Taghiyari HR, Soltani A, Esmailpour A, Hassani V, Gholipour H, Papadopoulos AN (2020c) Improving thermal conductivity coefficient in oriented strand lumber (OSL) using sepiolite. Nanomaterials 10:599. https://doi.org/10.3390/nano10040599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taghiyari HR, Esmailpour A, Majidi R, Morrell JJ, Mallaki M, Militz H, Papadopoulos AN (2020d) Potential use of wollastonite as a filler in UF resin based medium-density fiberboard (MDF). Polymers 12:1435. https://doi.org/10.3390/polym12071435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taghiyari HR, Militz H, Antov P, Papadopoulos AN (2021) Effects of wollastonite on fire properties of particleboard made from wood and chicken feather fibers. Coatings 11(5):518

    Article  CAS  Google Scholar 

  • Taghiyari HR, Majidi R, Mohseni Armaki SM, Haghighatparast M (2022) Graphene as reinforcing filler in polyvinyl acetate resin. Int J Adhes Adhes 113. https://doi.org/10.1016/j.ijadhadh.2021.103075

  • Tajvidi M, Gardner DJ, Bousfield DW (2016) Cellulose nanomaterials as binders: laminate and particulate systems. J Renew Mater 4:365–376

    Article  CAS  Google Scholar 

  • Tasooji M, Tabarsa T, Khazaeian A, Wool RP (2010) Acrylated epoxidised soy oil as an alternative to urea-formaldehyde in making wheat straw particleboard. J Adhes Sci Technol 24:1717–1727

    Article  CAS  Google Scholar 

  • Tayeb AH, Amini E, Ghasemi S, Tajvidi M (2018) Cellulose nanomaterials—binding properties and applications: a review. Molecules 23(10):2684

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian D, Hu J, Bao J, Chandra RP, Saddler JN, Lu C (2017) Lignin valorization: Lignin nanoparticles as high-value bio-additive for multifunctional nanocomposites. Biotechnol Biofuels Bioprod 10:192

    Google Scholar 

  • Tisserat B, Eller F, Mankowski M (2019) Properties of composite wood panels fabricated from Eastern red cedar employing various bio-based green adhesives. BioResources 14:6666–6685

    CAS  Google Scholar 

  • Toledano A, García A, Mondragon I, Labidi J (2010) Lignin separation and fractionation by ultrafiltration. Sep Purif Technol 71:38–43

    Article  CAS  Google Scholar 

  • Tomak ED, Gonultas O (2018) The wood preservative potentials of Valonia, chestnut, tara and sulphited oak tannins. J Wood Chem Technol 38:183–197

    Article  CAS  Google Scholar 

  • Tomani P (2010) The lignoboost process. Cellul Chem Technol 44:53–58

    CAS  Google Scholar 

  • Trache D, Hussin MH, Brosse N (2020) Editorial: recent trends in preparation, characterization and applications of nanocellulose. Front Chem 8:594379

    Article  PubMed  PubMed Central  Google Scholar 

  • Tudor EM, Kristak L, Barbu MC, Gergeľ T, Němec M, Kain G, Réh R (2021) Acoustic properties of larch bark panels. Forests 12(7):887

    Article  Google Scholar 

  • Umemura K, Inoue A, Kawai S (2003) Development of new natural polymer-based wood adhesive I: dry bond strength and water resistance of Konjac glucomannan, chitosan and their composites. J Wood Sci 49:221–226

    Article  CAS  Google Scholar 

  • US Consumer Product Safety Commission (2013) An update on formaldehyde (Publication 725). Bethesda, US Consumer Product Safety Commission

    Google Scholar 

  • Vahabi H, Brosse N, Latif NHA et al (2021) Nanolignin in materials science and technology— does flame retardancy matter? 1st edn. Elsevier Ltd

    Google Scholar 

  • Valenzuela J, von Leyser E, Pizzi A, Westermeyer C, Gorrini B (2012) Industrial production of pine tannin-bonded particleboard and MDF. Eur J Wood Prod 70:735–740

    Article  CAS  Google Scholar 

  • Veigel S, Rathke J, Weigl M, Gindl-Altmutter W (2012) Particle board and oriented strand board prepared with nanocellulose-reinforced adhesive. J Nanomater 2012:158503

    Article  Google Scholar 

  • Vineeth SK, Gadhave RV, Gadekar PT (2019a) Nanocellulose applications in wood adhesives - review. Open J Polym Chem 9:63–75

    Article  CAS  Google Scholar 

  • Vineeth SK, Gadhave RV, Gadekar PT (2019b) Chemical modification of nanocellulose in wood adhesive: review. Open J Polym Chem 9:86–99

    Article  Google Scholar 

  • Vishnuvarthanan M, Shahidah A, Fathima M, Gobika NR, Priyadharshini B, Rasika B (2021) Effect of alumina silicate (MMT K10) nanoclay on adhesion and barrier properties of cornstarch-based bioadhesive. Silicon 13:4315–4322

    Article  CAS  Google Scholar 

  • Wang Z, Gu Z, Hong Y, Cheng L, Li Z (2011) Bonding strength and water resistance of starch-based wood adhesive improved by silica nanoparticles. Carbohydr Polym 86:72–76

    Article  CAS  Google Scholar 

  • Wedaïna AG, Pizzi A, Nzie W, Dawne R, Konai N, Amirou S, Segovia C, Kueny R (2021) Performance of unidirectional biocomposite developed with Piptadeniastrum Africanum tannin resin and Urena Lobata fibers as reinforcement. J Renew Mater 9:477–493

    Article  Google Scholar 

  • Wibowo ES, Lubis MAR, Park BD, Kim JS, Causin V (2020) Converting crystalline thermosetting urea-formaldehyde resins to amorphous polymer using modified nanoclay. J Ind Eng Chem 87:78–89

    Article  CAS  Google Scholar 

  • Xi X, Wu Z, Pizzi A, Gerardin C, Lei H, Du G (2020) Furfuryl alcohol-aldehyde plywood adhesive resins. J Adhes 96(9):814–838

    Article  CAS  Google Scholar 

  • Yang W, Rallini M, Natali M et al (2019) Preparation and properties of adhesives based on phenolic resin containing lignin micro and nanoparticles: a comparative study. Mater Des 161:55–63

    Article  CAS  Google Scholar 

  • Yildirim M, Candan Z (2021) Performance properties of particleboard panels modified with nanocellulose/boric acid. BioResources 16:1875–1890

    Article  CAS  Google Scholar 

  • Younesi-Kordkheili H, Pizzi A (2022) Preparation and properties of a modified corn flour-lignin-glyoxal as a green wood adhesive. Int Wood Prod J. https://doi.org/10.1080/20426445.2022.2048338

  • Yue X, Huang L, Huang L, Luo X (2021) A sustainable strategy for medium-density fiberboards preparation from waste hybrid pennisetum straws. Waste Biomass Valor 12(9):5161–5173

    Article  CAS  Google Scholar 

  • Zhang S, Xia C (2016) Soy protein isolate-based films reinforced by surface modified cellulose nanocrystal. Ind Crop Prod 80:207–213

    Article  Google Scholar 

  • Zhang B, Zhang F, Wu L, Gao Z, Zhang L (2020) Assessment of soybean protein-based adhesive formulations, prepared by different liquefaction technologies for particleboard applications. Wood Sci Technol 55:33–48

    Article  Google Scholar 

  • Zhang K, Liu Y, Guo Z, Wang J, Liu Y, Zhao J, Huo P (2022) Co-modification of corn straw lignin and its enhancement on glue-free fiberboard based on freezing activated wood fibers. Ind Crop Prod 177:114452

    Article  CAS  Google Scholar 

  • Zhou X, Du G (2019) Applications of tannin resin adhesives in the wood industry. In: Tannins - structural properties, biological properties and current knowledge. IntechOpen, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petar Antov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Antov, P., Lee, S., Lubis, M.A.R., Yadav, S.M. (2023). Potential of Nanomaterials in Bio-Based Wood Adhesives: An Overview. In: Taghiyari, H.R., Morrell, J.J., Husen, A. (eds) Emerging Nanomaterials. Springer, Cham. https://doi.org/10.1007/978-3-031-17378-3_2

Download citation

Publish with us

Policies and ethics