Skip to main content

Multi-modal Hypergraph Diffusion Network with Dual Prior for Alzheimer Classification

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

The automatic early diagnosis of prodromal stages of Alzheimer’s disease is of great relevance for patient treatment to improve quality of life. We address this problem as a multi-modal classification task. Multi-modal data provides richer and complementary information. However, existing techniques only consider lower order relations between the data and single/multi-modal imaging data. In this work, we introduce a novel semi-supervised hypergraph learning framework for Alzheimer’s disease diagnosis. Our framework allows for higher-order relations among multi-modal imaging and non-imaging data whilst requiring a tiny labelled set. Firstly, we introduce a dual embedding strategy for constructing a robust hypergraph that preserves the data semantics. We achieve this by enforcing perturbation invariance at the image and graph levels using a contrastive based mechanism. Secondly, we present a dynamically adjusted hypergraph diffusion model, via a semi-explicit flow, to improve the predictive uncertainty. We demonstrate, through our experiments, that our framework is able to outperform current techniques for Alzheimer’s disease diagnosis.

C.-B. Schönlieb—The Alzheimer’s Disease Neuroimaging Initiative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Data used were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).

References

  1. Abdar, M., et al.: A review of uncertainty quantification in deep learning: techniques, applications and challenges. Inf. Fusion 76, 243–297 (2021)

    Article  Google Scholar 

  2. Agarwal, S., Branson, K., Belongie, S.: Higher order learning with graphs. In: Proceedings of the 23rd International Conference on Machine Learning (2006)

    Google Scholar 

  3. Arazo, E., Ortego, D., Albert, P., O’Connor, N.E., McGuinness, K.: Pseudo-labeling and confirmation bias in deep semi-supervised learning. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2020)

    Google Scholar 

  4. Alzheimer’s Association: What is Alzheimer’s disease? (2022)

    Google Scholar 

  5. Aviles-Rivero, A.I., et al.: GraphXNET - chest X-Ray classification under extreme minimal supervision. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 504–512. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_56

    Chapter  Google Scholar 

  6. Berge, C.: Hypergraphs: Combinatorics of Finite Sets, vol. 45. Elsevier, Amsterdam (1984)

    Google Scholar 

  7. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  8. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: practical automated data augmentation with a reduced search space. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 702–703 (2020)

    Google Scholar 

  9. De Strooper, B., Karran, E.: The cellular phase of Alzheimer’s disease. Cell 164(4), 603–615 (2016)

    Article  Google Scholar 

  10. Feld, T., Aujol, J.F., Gilboa, G., Papadakis, N.: Rayleigh quotient minimization for absolutely one-homogeneous functionals. Inverse Prob. 35(6), 064003 (2019)

    Article  MathSciNet  Google Scholar 

  11. Feng, Y., You, H., Zhang, Z., Ji, R., Gao, Y.: Hypergraph neural networks. In: AAAI Conference on Artificial Intelligence, vol. 33, pp. 3558–3565 (2019)

    Google Scholar 

  12. Goenka, N., Tiwari, S.: Deep learning for Alzheimer prediction using brain biomarkers. Artif. Intell. Rev. 54(7), 4827–4871 (2021)

    Article  Google Scholar 

  13. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 2, pp. 1735–1742. IEEE (2006)

    Google Scholar 

  14. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  15. Hein, M., Setzer, S., Jost, L., Rangapuram, S.S.: The total variation on hypergraphs-learning on hypergraphs revisited. In: Advances in Neural Information Processing Systems, vol. 26 (2013)

    Google Scholar 

  16. Jiang, J., Wei, Y., Feng, Y., Cao, J., Gao, Y.: Dynamic hypergraph neural networks. In: IJCAI, pp. 2635–2641 (2019)

    Google Scholar 

  17. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: Advances in Neural Information Processing Systems (2017)

    Google Scholar 

  18. Pan, J., Lei, B., Shen, Y., Liu, Y., Feng, Z., Wang, S.: Characterization multimodal connectivity of brain network by hypergraph GAN for Alzheimer’s disease analysis. In: Ma, H., et al. (eds.) PRCV 2021. LNCS, vol. 13021, pp. 467–478. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88010-1_39

    Chapter  Google Scholar 

  19. Parisot, S., et al.: Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer’s disease. Med. Image Anal. 48, 117–130 (2018)

    Article  Google Scholar 

  20. Pölsterl, S., Aigner, C., Wachinger, C.: Scalable, axiomatic explanations of deep Alzheimer’s diagnosis from heterogeneous data. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (2021)

    Google Scholar 

  21. Qiu, J., et al.: GCC: graph contrastive coding for graph neural network pre-training. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1150–1160 (2020)

    Google Scholar 

  22. Saito, S., Mandic, D., Suzuki, H.: Hypergraph p-Laplacian: a differential geometry view. In: AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  23. Shao, W., Peng, Y., Zu, C., Wang, M., Zhang, D., Initiative, A.D.N., et al.: Hypergraph based multi-task feature selection for multimodal classification of Alzheimer’s disease. Comput. Med. Imaging Graph. 80, 101663 (2020)

    Article  Google Scholar 

  24. Shao, W., Xiang, S., Zhang, Z., Huang, K., Zhang, J.: Hyper-graph based sparse canonical correlation analysis for the diagnosis of Alzheimer’s disease from multi-dimensional genomic data. Methods 189, 86–94 (2021)

    Article  Google Scholar 

  25. Shin, H.-C., et al.: GANDALF: generative adversarial networks with discriminator-adaptive loss fine-tuning for Alzheimer’s disease diagnosis from MRI. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 688–697. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_66

    Chapter  Google Scholar 

  26. Yadati, N., Nimishakavi, M., Yadav, P., Nitin, V., Louis, A., Talukdar, P.: HyperGCN: a new method for training graph convolutional networks on hypergraphs. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  27. Yang, F., Meng, R., Cho, H., Wu, G., Kim, W.H.: Disentangled sequential graph autoencoder for preclinical Alzheimer’s disease characterizations from ADNI study. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 362–372. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_34

    Chapter  Google Scholar 

  28. You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., Shen, Y.: Graph contrastive learning with augmentations. Adv. Neural. Inf. Process. Syst. 33, 5812–5823 (2020)

    Google Scholar 

  29. Zhou, D., Huang, J., Schölkopf, B.: Learning with hypergraphs: clustering, classification, and embedding. In: Advances in Neural Information Processing Systems (2006)

    Google Scholar 

  30. Zuo, Q., Lei, B., Shen, Y., Liu, Y., Feng, Z., Wang, S.: Multimodal representations learning and adversarial hypergraph fusion for early Alzheimer’s disease prediction. In: Ma, H., et al. (eds.) PRCV 2021. LNCS, vol. 13021, pp. 479–490. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88010-1_40

    Chapter  Google Scholar 

Download references

Acknowledgements

AIAR acknowledges support from CMIH and CCIMI, University of Cambridge. CR acknowledges support from the CCIMI and the EPSRC grant EP/W524141/1 ref. 2602161. ZK acknowledges support from the BBSRC (H012508, BB/P021255/1), Wellcome Trust (205067/Z/16/Z, 221633/Z/20/Z) and Royal Society (INF/R2/202107). CBS acknowledges the Philip Leverhulme Prize, the EPSRC fellowship EP/V029428/1, EPSRC grants EP/T003553/1, EP/N014588/1, Wellcome Trust 215733/Z/19/Z and 221633/Z/20/Z, Horizon 2020 No. 777826 NoMADS and the CCIMI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelica I. Aviles-Rivero .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 229 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aviles-Rivero, A.I., Runkel, C., Papadakis, N., Kourtzi, Z., Schönlieb, CB. (2022). Multi-modal Hypergraph Diffusion Network with Dual Prior for Alzheimer Classification. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13433. Springer, Cham. https://doi.org/10.1007/978-3-031-16437-8_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16437-8_69

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16436-1

  • Online ISBN: 978-3-031-16437-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics