Skip to main content

Multimodal Representations Learning and Adversarial Hypergraph Fusion for Early Alzheimer’s Disease Prediction

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13021))

Included in the following conference series:

Abstract

Multimodal neuroimage can provide complementary information about the dementia, but small size of complete multimodal data limits the ability in representation learning. Moreover, the data distribution inconsistency from different modalities may lead to ineffective fusion, which fails to sufficiently explore the intra-modal and inter-modal interactions and compromises the disease diagnosis performance. To solve these problems, we proposed a novel multimodal representation learning and adversarial hypergraph fusion (MRL-AHF) framework for Alzheimer’s disease diagnosis using complete trimodal images. First, adversarial strategy and pre-trained model are incorporated into the MRL to extract latent representations from multimodal data. Then two hypergraphs are constructed from the latent representations and the adversarial network based on graph convolution is employed to narrow the distribution difference of hyperedge features. Finally, the hyperedge-invariant features are fused for disease prediction by hyperedge convolution. Experiments on the public Alzheimer’s Disease Neuroimaging Initiative(ADNI) database demonstrate that our model achieves superior performance on Alzheimer’s disease detection compared with other related models and provides a possible way to understand the underlying mechanisms of disorder’s progression by analyzing the abnormal brain connections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alzheimer’s Association: 2019 Alzheimer’s disease facts and figures. Alzheimer’s Dementia. 15(3), 321–387 (2019)

    Google Scholar 

  2. Li, Y., Liu, J., Tang, Z., et al.: Deep spatial-temporal feature fusion from adaptive dynamic functional connectivity for MCI identification. IEEE Trans. Med. Imaging 39(9), 2818–2830 (2020)

    Article  Google Scholar 

  3. Wang, S., Shen, Y., Shi, C., et al.: Skeletal maturity recognition using a fully automated system with convolutional neural networks. IEEE Access 6, 29979–29993 (2018)

    Article  Google Scholar 

  4. Wang, S., Shen, Y., Zeng, D., et al.: Bone age assessment using convolutional neural networks. In: 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD), pp. 175–178 (2018)

    Google Scholar 

  5. Wang, S., Hu, Y., Shen, Y., et al.: Classification of diffusion tensor metrics for the diagnosis of a myelopathic cord using machine learning. Int. J. Neural Syst. 28(02), 1750036 (2018)

    Article  Google Scholar 

  6. Lei, B., Xia, Z., Jiang, F., et al.: Skin lesion segmentation via generative adversarial networks with dual discriminators. Med. Image Analy. 64, 101716 (2020)

    Google Scholar 

  7. Wang, S., Wang, X., Shen, Y., et al.: An ensemble-based densely-connected deep learning system for assessment of skeletal maturity. IEEE Trans. Syst. Man Cybern. Syst. (2020)

    Google Scholar 

  8. Zeng, D., Wang, S., Shen, Y., et al.: A GA-based feature selection and parameter optimization for support tucker machine. Procedia Comput. Sci. 111, 17–23 (2017)

    Article  Google Scholar 

  9. Wu, K., Shen, Y., Wang, S.: 3D convolutional neural network for regional precipitation nowcasting. J. Image Signal Process. 7(4), 200–212 (2018)

    Article  Google Scholar 

  10. Franzmeier, N., Dyrba, M.: Functional brain network architecture may route progression of Alzheimer’s disease pathology. Brain 140(12), 3077–3080 (2017)

    Article  Google Scholar 

  11. Pereira, J.B., Van Westen, D., Stomrud, E., et al.: Abnormal structural brain connectome in individuals with preclinical Alzheimer’s disease. Cereb. Cortex 28(10), 3638–3649 (2018)

    Article  Google Scholar 

  12. Schuff, N., Woerner, N., Boreta, L., et al.: MRI of hippocampal volume loss in early Alzheimer’s disease in relation to ApoE genotype and biomarkers. Brain 132(4), 1067–1077 (2009)

    Article  Google Scholar 

  13. Huang, J., Zhou, L., Wang, L., et al.: Attention-diffusion-bilinear neural network for brain network analysis. IEEE Trans. Med. Imaging 39(7), 2541–2552 (2020)

    Article  Google Scholar 

  14. Xing, X., Li, Q., Wei, H., et al.: Dynamic spectral graph convolution networks with assistant task training for early mci diagnosis. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 639–646 (2019)

    Google Scholar 

  15. Yu, S., et al.: Multi-scale enhanced graph convolutional network for early mild cognitive impairment detection. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 228–237. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_23

    Chapter  Google Scholar 

  16. Li, Y., Liu, J., Tang, Z., et al.: Graph convolution network with similarity awareness and adaptive calibration for disease-induced deterioration prediction. Medical Image Analysis. 69, 101947 (2021)

    Google Scholar 

  17. Yu, W., Lei, B., Michael, K., et al.: Tensorizing GAN with high-order pooling for Alzheimer’s disease assessment. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3063516

    Article  Google Scholar 

  18. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., et al.: Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  19. Mo, L.F., Wang, S.Q.: A variational approach to nonlinear two-point boundary value problems. Nonlinear Anal. Theory Methods Appl. 71(12), e834–e838 (2009)

    Article  MathSciNet  Google Scholar 

  20. Wang, S.Q.: A variational approach to nonlinear two-point boundary value problems. Comput. Math. Appl. 58(11–12), 2452–2455 (2009)

    Article  MathSciNet  Google Scholar 

  21. Wang, S.Q., He, J.H.: Variational iteration method for a nonlinear reaction-diffusion process. Int. J. Chem. Reactor Eng. 6(1) (2008)

    Google Scholar 

  22. Wang S.Q., Wang X., Hu Y., et al.: Diabetic retinopathy diagnosis using multichannel generative adversarial network with semisupervision. IEEE Trans. Autom. Sci. Eng. 18, 574–585 (2020)

    Google Scholar 

  23. Hu, S., Shen, Y., Wang, S., Lei, B.: Brain MR to PET synthesis via bidirectional generative adversarial network. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 698–707. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_67

    Chapter  Google Scholar 

  24. Hu, S., Shen, Y., Wang, S., Lei, B.: Brain MR to PET synthesis via bidirectional generative adversarial network. In: MartelMartel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 698–707. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_67

    Chapter  Google Scholar 

  25. Hu, S., Yu, W., Chen, Z., et al.: Medical image reconstruction using generative adversarial network for Alzheimer disease assessment with class-imbalance problem. In 2020 IEEE 6th International Conference on Computer and Communications (ICCC), pp. 1323–1327 (2020)

    Google Scholar 

  26. Dai, Q., Li, Q., Tang, J., et al.: Adversarial network embedding. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32(1) (2018)

    Google Scholar 

  27. Pan, S., Hu, R., Long, G., et al.: Adversarially regularized graph autoencoder for graph embedding. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, pp. 2609–2615 (2018)

    Google Scholar 

  28. Wen, J., Thibeau-Sutre, E., Diaz-Melo, M., et al.: Convolutional neural networks for classification of Alzheimer’s disease: overview and reproducible evaluation. Med. Image Anal. 63, 101694 (2020)

    Google Scholar 

  29. Wang, H., Shen, Y., Wang, S., et al.: Ensemble of 3D densely connected convolutional network for diagnosis of mild cognitive impairment and Alzheimer’s disease. Neurocomputing 333, 145–156 (2019)

    Article  Google Scholar 

  30. Wang, S., Shen, Y., Chen, W., et al.: Automatic recognition of mild cognitive impairment from MRI images using expedited convolutional neural networks. In: International Conference on Artificial Neural Networks, pp. 373–380 (2017)

    Google Scholar 

  31. Wang, S., Wang, H., Shen, Y., et al.: Automatic recognition of mild cognitive impairment and Alzheimers disease using ensemble based 3D densely connected convolutional networks. In: 2018 17th IEEE International Conference on Machine Learning and Applications, pp. 517–523 (2018)

    Google Scholar 

  32. Hu, S., Yuan, J., Wang, S., et al.: Cross-modality synthesis from MRI to PET using adversarial U-net with different normalization. In 2019 International Conference on Medical Imaging Physics and Engineering (ICMIPE), pp. 1–5 (2019)

    Google Scholar 

  33. Lei, B., Yang, M., Yang, P., et al.: Deep and joint learning of longitudinal data for Alzheimer’s disease prediction. Patt. Recogn. 102, 107247 (2020)

    Google Scholar 

  34. Wang, S., Wang, H., Cheung, A.C., et al.: Ensemble of 3D densely connected convolutional network for diagnosis of mild cognitive impairment and Alzheimer’s disease. Deep Learn. Appl. 1098, 53 (2020)

    Article  Google Scholar 

  35. Baltrušaitis, T., Ahuja, C., Morency, L.P.: Multimodal machine learning: a survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 41(2), 423–443 (2018)

    Article  Google Scholar 

  36. Makhzani, A., Shlens, J., Jaitly, N., et al.: Adversarial autoencoders. arXiv preprint arXiv:1511.05644. (2015)

  37. Li, Y., Liu, J., Gao, X., et al.: Multimodal hyper-connectivity of functional networks using functionally-weighted LASSO for MCI classification. Med. Image Anal. 52, 80–96 (2019)

    Article  Google Scholar 

  38. Feng, Y., You, H., Zhang, Z., et al.: Hypergraph neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 3558–3565 (2019)

    Google Scholar 

  39. Kulesza, A., Taskar, B.: Fixed-size determinantal point processes. In: Proceedings of the 28th International Conference on Machine learning, pp. 1193–1200 (2011)

    Google Scholar 

  40. Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    Article  Google Scholar 

  41. Atwood, J., Towsley, D.: Diffusion-convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1993–2001 (2016)

    Google Scholar 

  42. Zhu, Q., Yuan, N., Huang, J., et al.: Multi-modal AD classification via self-paced latent correlation analysis. Neurocomputing 255, 143–154 (2019)

    Article  Google Scholar 

  43. Montembeault, M., Rouleau, I., Provost, J.S., et al.: Altered gray matter structural covariance networks in early stages of Alzheimer’s disease. Cereb. Cortex 26(6), 2650–2662 (2016)

    Article  Google Scholar 

  44. Sun, Y., Dai, Z., Li, Y., et al.: Subjective cognitive decline: mapping functional and structural brain changes–a combined resting-state functional and structural MR imaging study. Radiology 281(1), 185–192 (2016)

    Article  Google Scholar 

  45. Jin, D., Wang, P., Zalesky, A., et al.: Grab- AD: generalizability and reproducibility of altered brain activity and diagnostic classification in Alzheimer’s Disease. Hum. Brain Mapp. 41(12), 3379–3391 (2020)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundations of China under Grant 61872351, the International Science and Technology Cooperation Projects of Guangdong under Grant 2019A050510030, the Distinguished Young Scholars Fund of Guangdong under Grant 2021B1515020019, the Excellent Young Scholars of Shenzhen under Grant RCYX20200714114641211 and Shenzhen Key Basic Research Project under Grant JCYJ20200109115641762.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqiang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zuo, Q., Lei, B., Shen, Y., Liu, Y., Feng, Z., Wang, S. (2021). Multimodal Representations Learning and Adversarial Hypergraph Fusion for Early Alzheimer’s Disease Prediction. In: Ma, H., et al. Pattern Recognition and Computer Vision. PRCV 2021. Lecture Notes in Computer Science(), vol 13021. Springer, Cham. https://doi.org/10.1007/978-3-030-88010-1_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88010-1_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88009-5

  • Online ISBN: 978-3-030-88010-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics