Skip to main content

Disentangled Sequential Graph Autoencoder for Preclinical Alzheimer’s Disease Characterizations from ADNI Study

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12902))

Abstract

Given a population longitudinal neuroimaging measurements defined on a brain network, exploiting temporal dependencies within the sequence of data and corresponding latent variables defined on the graph (i.e., network encoding relationships between regions of interest (ROI)) can highly benefit characterizing the brain. Here, it is important to distinguish time-variant (e.g., longitudinal measures) and time-invariant (e.g., gender) components to analyze them individually. For this, we propose an innovative and ground-breaking Disentangled Sequential Graph Autoencoder which leverages the Sequential Variational Autoencoder (SVAE), graph convolution and semi-supervising framework together to learn a latent space composed of time-variant and time-invariant latent variables to characterize disentangled representation of the measurements over the entire ROIs. Incorporating target information in the decoder with a supervised loss let us achieve more effective representation learning towards improved classification. We validate our proposed method on the longitudinal cortical thickness data from Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. Our method outperforms baselines with traditional techniques demonstrating benefits for effective longitudinal data representation for predicting labels and longitudinal data generation.

F. Yang and R. Meng are joint first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baur, C., Wiestler, B., Albarqouni, S., Navab, N.: Deep autoencoding models for unsupervised anomaly segmentation in brain MR images. In: Crimi, A., et al. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 161–169. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_16

    Chapter  Google Scholar 

  2. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  3. Burgess, C.P., et al.: Understanding disentangling in beta-VAE. arXiv preprint arXiv:1804.03599 (2018)

  4. Chen, J., Ma, T., Xiao, C.: Fastgcn: fast learning with graph convolutional networks via importance sampling. arXiv preprint arXiv:1801.10247 (2018)

  5. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: EMNLP, pp. 1724–1734. ACL (2014)

    Google Scholar 

  6. Cho, Y., Seong, J.K., Jeong, Y., Shin, S.Y.: ADNI: individual subject classification for Alzheimer’s disease based on incremental learning using a spatial frequency representation of cortical thickness data. Neuroimage 59(3), 2217–2230 (2012)

    Article  Google Scholar 

  7. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. Adv. Neural Inf. Process. Syst. 29, 3844–3852 (2016)

    Google Scholar 

  8. Destrieux, C., Fischl, B., Dale, A., Halgren, E.: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 53(1), 1–15 (2010)

    Article  Google Scholar 

  9. Hammond, D.K., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via spectral graph theory. Appl. Comput. Harm. Anal. 30(2), 129–150 (2011)

    Article  MathSciNet  Google Scholar 

  10. Higgins, I., et al.: beta-VAE: Learning basic visual concepts with a constrained variational framework (2016)

    Google Scholar 

  11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  12. Hsu, W.N., Zhang, Y., Glass, J.: Unsupervised learning of disentangled and interpretable representations from sequential data. In: NeurIPS, pp. 1878–1889 (2017)

    Google Scholar 

  13. Kim, H., Mnih, A.: Disentangling by factorising. In: International Conference on Machine Learning, pp. 2649–2658. PMLR (2018)

    Google Scholar 

  14. Kim, W.H., Racine, A.M., Adluru, N., et al.: Cerebrospinal fluid biomarkers of neurofibrillary tangles and synaptic dysfunction are associated with longitudinal decline in white matter connectivity: a multi-resolution graph analysis. NeuroImage Clin. 21, 101586 (2019)

    Google Scholar 

  15. Kingma, D.P., Mohamed, S., Rezende, D.J., Welling, M.: Semi-supervised learning with deep generative models. In: Advances in Neural Information Processing Syst. pp. 3581–3589 (2014)

    Google Scholar 

  16. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. CoRR abs/1312.6114 (2014)

    Google Scholar 

  17. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24–26, 2017, Conference Track Proceedings. OpenReview.net (2017)

    Google Scholar 

  18. Li, Q., Han, Z., Wu, X.M.: Deeper insights into graph convolutional networks for semi-supervised learning. In: AAAI, vol. 32 (2018)

    Google Scholar 

  19. Li, Y., Mandt, S.: Disentangled sequential autoencoder. arXiv preprint arXiv:1803.02991 (2018)

  20. Ma, X., Wu, G., Hwang, S.J., Kim, W.H.: Learning multi-resolution graph edge embedding for discovering brain network dysfunction in neurological disorders. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 253–266. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0_20

    Chapter  Google Scholar 

  21. Marinescu, R.V., Eshaghi, A., Alexander, D.C., Golland, P.: Brainpainter: A software for the visualisation of brain structures, biomarkers and associated pathological processes. In: Multimodal Brain Image Analysis and Mathematical Foundations of Computational Anatomy, pp. 112–120. Springer (2019), https://doi.org/10.1007/978-3-030-33226-6

  22. McKhann, G.M., et al.: The diagnosis of dementia due to Alzheimer’s disease: recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Sementia 7(3), 263–269 (2011)

    Article  Google Scholar 

  23. Meng, R., Bouchard, K.: Bayesian inference in high-dimensional time-series with the orthogonal stochastic linear mixing model. arXiv preprint arXiv:2106.13379 (2021)

  24. Siddharth, N., et al.: Learning disentangled representations with semi-supervised deep generative models. In: Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017)

    Google Scholar 

  25. Ouyang, J., Adeli, E., Pohl, K.M., Zhao, Q., Zaharchuk, G.: Representation Disentanglement for Multi-modal MR Analysis. arXiv e-prints arXiv:2102.11456 (Feb 2021)

  26. Saerens, M., Fouss, F., Yen, L., Dupont, P.: The principal components analysis of a graph, and its relationships to spectral clustering. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 371–383. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30115-8_35

    Chapter  Google Scholar 

  27. Thompson, P.M., Hayashi, K.M., Sowell, E.R., Gogtay, N., Giedd, J.N., Rapoport, J.L., De Zubicaray, G.I., Janke, A.L., Rose, S.E., Semple, J., et al.: Mapping cortical change in Alzheimer’s disease, brain development, and schizophrenia. Neuroimage 23, S2–S18 (2004)

    Article  Google Scholar 

  28. Wolz, R., et al.: Multi-method analysis of MRI images in early diagnostics of Alzheimer’s disease. PLoS ONE 6(10), e25446 (2011)

    Google Scholar 

  29. Xu, B., Shen, H., Cao, Q., Qiu, Y., Cheng, X.: Graph wavelet neural network. In: International Conference on Learning Representations (2019)

    Google Scholar 

  30. Zhao, Q., Adeli, E., Honnorat, N., Leng, T., Pohl, K.M.: Variational autoencoder for regression: application to brain aging analysis. In: Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.-T., Khan, A. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 823–831. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_91

    Chapter  Google Scholar 

  31. Zhu, Y., Min, M.R., Kadav, A., Graf, H.P.: S3VAE: self-supervised sequential VAE for representation disentanglement and data generation. In: CVPR, pp. 6538–6547 (2020)

    Google Scholar 

Download references

Acknowledgement

This work was supported by GAANN Doctoral Fellowships in Computer Science and Engineering at UTA sponsored by the U.S. Department of Education, NSF IIS CRII 1948510, NIH RF1 AG059312, NIH R03 AG070701, and IITP-2019-0-01906 funded by MSIT (AI Graduate School Program at POSTECH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won Hwa Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, F., Meng, R., Cho, H., Wu, G., Kim, W.H. (2021). Disentangled Sequential Graph Autoencoder for Preclinical Alzheimer’s Disease Characterizations from ADNI Study. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12902. Springer, Cham. https://doi.org/10.1007/978-3-030-87196-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87196-3_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87195-6

  • Online ISBN: 978-3-030-87196-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics