Skip to main content

Research Approaches in Mechanosensory-Cued Hatching

  • Chapter
  • First Online:
Biotremology: Physiology, Ecology, and Evolution

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 8))

Abstract

Mechanosensory-cued hatching (MCH) is widespread, diverse, and important for survival in many animals. Disturbance by predators elicits escape-hatching. Agitation by hosts stimulates parasite hatching. Sibling movements and parental vibrations synchronize hatching. Abiotic vibrations inform embryos of habitat conditions. Tests for MCH often use manual disturbance or mechanical vibrations from lab mixers; controlled vibration playbacks to embryos are rare. Our research with terrestrial embryos of red-eyed treefrogs illustrates how challenges and requirements of playbacks differ with embryos vs. post-hatching animals. Most vibrations salient to embryos are generated by direct forcing of eggs or egg masses, not transmitted via other substrates; thus they are shaped by egg and clutch mechanics. Most are highly variable incidental cues, not stereotyped signals, yet embryos distinguish among vibration sources. The necessary robustness of decision rules for incidental cues means even imperfect playbacks may be sufficient for initial studies of embryo behavior. Improvements in playback quality must address constraints of embryo development and behavior, as well as mechanics. We describe a series of playback systems we designed for red-eyed treefrog embryos, their merits and limitations, and what experiments with each have revealed about escape-hatching behavior. We discuss the iterative development of a new system for rearing eggs in trays and coupling them to shakers for motion, tactile, and bimodal mechanosensory playbacks, and the advances in understanding behavioral ontogeny this system has enabled. Mechanosensory-cued hatching offers excellent, untapped opportunities for playback experiments to advance our understanding of embryo behavior and how animals use incidental cues to inform behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bacher S, Casas J, Wackers F, Dorn S (1997) Substrate vibrations elicit defensive behaviour in leafminer pupae. J Insect Physiol 43:945–952

    Article  CAS  PubMed  Google Scholar 

  • Brown RM, Iskandar DT (2000) Nest site selection, larval hatching, and advertisement calls of Rana arathooni from southwestern Sulawesi (Celebes) island, Indonesia. J Herpetol 34:404–413

    Article  Google Scholar 

  • Brownell PH, Van Hemmen JL (2001) Vibration sensitivity and prey-localizing behaviour of sand scorpions. Am Zool 41:1229–1240

    Google Scholar 

  • Caldwell MS (2010) The use of vibrational information by red-eyed treefrogs for communication and antipredator defense. PhD Dissertation, Boston University, Boston

    Google Scholar 

  • Caldwell MS (2014) Interactions between airborne sound and substrate vibration in animal communication. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, pp 64–92

    Google Scholar 

  • Caldwell MS, McDaniel JG, Warkentin KM (2009) Frequency information in the vibration-cued escape hatching of red-eyed treefrogs. J Exp Biol 212:566–575

    Article  PubMed  Google Scholar 

  • Caldwell MS, McDaniel JG, Warkentin KM (2010a) Is it safe? Red-eyed treefrog embryos assessing predation risk use two features of rain vibrations to avoid false alarms. Anim Behav 79:255–260

    Article  Google Scholar 

  • Caldwell MS, Johnston GR, McDaniel JG, Warkentin KM (2010b) Vibrational signaling in the agonistic interactions of red-eyed treefrogs. Curr Biol 20:1012–1017

    Article  CAS  PubMed  Google Scholar 

  • Carlsen R, Lickliter R (1999) Augmented prenatal tactile and vestibular stimulation alters postnatal auditory and visual responsiveness in bobwhite quail chicks. Dev Psychobiol 35:215–225

    Article  CAS  PubMed  Google Scholar 

  • Castellanos I, Barbosa P (2006) Evaluation of predation risk by a caterpillar using substrate-borne vibrations. Anim Behav 72:461–469

    Article  Google Scholar 

  • Cocroft RB, Hamel J, Su Q, Gibson JS (2014a) Vibrational playback experiments: challenges and solutions. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, pp 249–276

    Google Scholar 

  • Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) (2014b) Studying vibrational communication. Springer, Berlin

    Google Scholar 

  • Cohen KL, Seid MA, Warkentin KM (2016) How embryos escape from danger: the mechanism of rapid, plastic hatching in red-eyed treefrogs. J Exp Biol 219:1875–1883

    Article  PubMed  Google Scholar 

  • Cohen KL, Piacentino ML, Warkentin KM (2019) Two types of hatching gland cells facilitate escape-hatching at different developmental stages in red-eyed treefrogs, Agalychnis callidryas (Anura: Phyllomedusidae). Biol J Linn Soc 126:751–767

    Article  Google Scholar 

  • Doody JS (2018) Ambystoma talpoideum (mole salamander). Environmentally cued hatching. Herpetol Rev 49:722–723

    Google Scholar 

  • Doody JS, Paull P (2013) Hitting the ground running: environmentally cued hatching in a lizard. Copeia 2013:159–164

    Article  Google Scholar 

  • Doody JS, Stewart B, Camacho C, Christian K (2012) Good vibrations? Sibling embryos expedite hatching in a turtle. Anim Behav 83:645–651

    Article  Google Scholar 

  • Endo J, Numata H (2017) Effects of embryonic responses to clutch mates on egg hatching patterns of Pentatomidae (Heteroptera). Physiol Entomol 42:412–417

    Article  CAS  Google Scholar 

  • Endo J, Takanashi T, Mukai H, Numata H (2019) Egg-cracking vibration as a cue for stink bug siblings to synchronize hatching. Curr Biol 29:143–148

    Article  CAS  PubMed  Google Scholar 

  • Fouilloux C, Jung J, Ospina-L AM, Snyder R, Warkentin KM (2019) Do developmental changes in fitness trade-offs predict how embryos use mechanosensory cues for escape-hatching decisions? https://doi.org/10.6084/m9.figshare.9758372.v2

  • Glennon V, Chisholm LA, Whittington ID (2006) Three unrelated species, 3 sites, same host – monogenean parasites of the southern fiddler ray, Trygonorrhina fasciata, in South Australia: egg hatching strategies and larval behaviour. Parasitology 133:55–66

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Mestre I, Warkentin KM (2007) To hatch and hatch not: similar selective trade-offs but different responses to egg predators in two closely related, syntopic treefrogs. Oecologia 153:197–206

    Article  PubMed  Google Scholar 

  • Gomez-Mestre I, Warkentin KM (2013) Risk-induced hatching timing shows low heritability and evolves independently of spontaneous hatching in red-eyed treefrogs. J Evol Biol 26:1079–1089

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Mestre I, Wiens JJ, Warkentin KM (2008) Evolution of adaptive plasticity: risk-sensitive hatching in neotropical leaf-breeding treefrogs. Ecol Monogr 78:205–224

    Article  Google Scholar 

  • Gottleib G (1973) Introduction to behavioral embryology. In: Gottleib G (ed) Behavioral embryology. Academic Press, New York, pp 3–45

    Chapter  Google Scholar 

  • Goyes Vallejos J, Grafe TU, Wells KD (2018) Prolonged parental behaviour by males of Limnonectes palavanensis (Boulenger 1894), a frog with possible sex-role reversal. J Nat Hist 52:2473–2485

    Article  Google Scholar 

  • Griem JN, Martin KLM (2000) Wave action: the environmental trigger for hatching in the California grunion Leuresthes tenuis (Teleostei: Atherinopsidae). Mar Biol 137:177–181

    Article  Google Scholar 

  • Guedes RNC, Matheson SM, Frei B, Smith ML, Yack JE (2012) Vibration detection and discrimination in the masked birch caterpillar (Drepana arcuata). J Comp Physiol A 198:325–335

    Article  CAS  Google Scholar 

  • Güell BA, Warkentin KM (2018) When and where to hatch? Red-eyed treefrog embryos use light cues. PeerJ 6:e6018

    Article  PubMed  PubMed Central  Google Scholar 

  • Guevara Molina EC, Ribeiro Gomes F, Warkentin KM (2020) The VTMax of embryos: interacting effects of warming and dehydration on hatching behavior in red-eyed treefrogs, Agalychnis callidryas (Anura: Phyllomedusidae). Integr Comp Biol 60:E333–E333

    Google Scholar 

  • Hill PSM (2008) Vibrational communication in animals. Harvard University Press, Cambridge MA

    Book  Google Scholar 

  • Jung J (2021) Developmental changes in vibration sensing and vibration-cued hatching decisions in red-eyed treefrogs. PhD Dissertation, Boston University, Boston

    Google Scholar 

  • Jung J, McDaniel JG, Warkentin KM (2017) Ontogeny of vibration-cued escape hatching in red-eyed treefrogs: two reasons older embryos hatch more. Integr Comp Biol 57:E82–E82

    Google Scholar 

  • Jung J, Guell BA, Warkentin KM (2018) Inner ear development across onset and improvement of escape-hatching ability in red-eyed treefrogs: a confocal and μCT analysis. Integr Comp Biol 58:E348–E348

    Google Scholar 

  • Jung J, Kim SJ, Pérez Arias SM, McDaniel JG, Warkentin KM (2019) How do red-eyed treefrog embryos sense motion in predator attacks? Assessing the role of vestibular mechanoreception. J Exp Biol 222:jeb206052

    Article  PubMed  Google Scholar 

  • Jung J, Serrano-Rojas SJ, Warkentin KM (2020) Multimodal mechanosensing enables treefrog embryos to escape egg-predators. J Exp Biol 223:jeb236141

    Article  PubMed  Google Scholar 

  • Jung J, McDaniel JG, Warkentin KM (2021) Escape-hatching decisions show adaptive ontogenetic changes in how embryos manage ambiguity in predation risk cues. Behav Ecol Sociobiol 75:141

    Article  Google Scholar 

  • Marquez R, Beltran JF, Llusia D, Penna M, Narins PM (2016) Synthetic rainfall vibrations evoke toad emergence. Curr Biol 26:R1270–R1271

    Article  CAS  PubMed  Google Scholar 

  • Martin K, Bailey K, Moravek C, Carlson K (2011) Taking the plunge: California grunion embryos emerge rapidly with environmentally cued hatching (ECH). Integr Comp Biol 51:26–37

    Article  PubMed  Google Scholar 

  • Moskowitz NA, Vasquez AM, Warkentin KM (2016) Embryo decisions and developmental changes in metabolism across the plastic hatching period of red-eyed treefrogs. Integr Comp Biol 56:E337–E337

    Google Scholar 

  • Mukai H, Hironaka M, Tojo S, Nomakuchi S (2012) Maternal vibration induces synchronous hatching in a subsocial burrower bug. Anim Behav 84:1443–1448

    Article  Google Scholar 

  • Mukai H, Hironaka M, Tojo S, Nomakuchi S (2014) Maternal vibration: an important cue for embryo hatching in a subsocial shield bug. PLoS One 9:e87932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mukai H, Hironaka M, Tojo S, Nomakuchi S (2018) Maternal hatching synchronization in a subsocial burrower bug mitigates the risk of future sibling cannibalism. Ecol Evol 8:3376–3381

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishide Y, Tanaka S (2016) Desert locust, Shistocerca gregaria, eggs hatch in synchrony in a mass but not when separated. Behav Ecol Sociobiol 70:1507–1515

    Article  Google Scholar 

  • Nishide Y, Suzuki T, Tanaka S (2017) Synchrony in the hatching of eggs in the desert locust Schistocerca gregaria (Orthoptera: Acrididae): egg condition influences hatching time in the laboratory and under simulated field temperatures. Appl Entomol Zool 52:599–604

    Article  Google Scholar 

  • Noguera JC, Velando A (2019) Bird embryos perceive vibratory cues of predation risk from clutch mates. Nat Ecol Evol 3:1225–1232

    Article  PubMed  Google Scholar 

  • Oberst S, Bann G, Lai JCS, Evans TA (2017) Cryptic termites avoid predatory ants by eavesdropping on vibrational cues from their footsteps. Ecol Lett 20:212–221

    Article  PubMed  Google Scholar 

  • Pfannenstiel RS, Hunt RE, Yeargan KV (1995) Orientation of a hemipteran predator to vibrations produced by feeding caterpillars. J Insect Behav 8:1–9

    Article  Google Scholar 

  • Roberts DM (2001) Egg hatching of mosquitoes Aedes caspius and Ae. vittatus stimulated by water vibrations. Med Vet Entomol 15:215–218

    Article  CAS  PubMed  Google Scholar 

  • Roberts DM (2018) Predator feeding vibrations encourage mosquito larvae to shorten their development and so become smaller adults. Ecol Entomol 43:534–537

    Article  Google Scholar 

  • Romagny S, Darmaillacq AS, Guibe M, Bellanger C, Dickel L (2012) Feel, smell and see in an egg: emergence of perception and learning in an immature invertebrate, the cuttlefish embryo. J Exp Biol 215:4125–4130

    Article  PubMed  Google Scholar 

  • Sakamoto H, Tanaka S, Hata T (2019) Identification of vibrational signals emitted by embryos of the migratory locust Locusta migratoria (Orthoptera: Acrididae) that induce synchronous hatching. Eur J Entomol 116:258–268

    Article  Google Scholar 

  • Salica MJ, Vonesh JR, Warkentin KM (2012) Egg clutch dehydration induces early hatching in red-eyed treefrogs. Integr Comp Biol 52:E323–E323

    Google Scholar 

  • Shimojo S, Shams L (2001) Sensory modalities are not separate modalities: plasticity and interactions. Curr Opin Neurobiol 11:505–509

    Article  CAS  PubMed  Google Scholar 

  • Smyder EA, Martin KLM (2002) Temperature effects on egg survival and hatching during the extended incubation period of California grunion, Leuresthes tenuis. Copeia 2002:313–320

    Article  Google Scholar 

  • Snyder RK, Ospina-L AM, Warkentin KM, Snyder R (2018) When does flooding induce hatching? Behavioral decisions of red-eyed treefrog embryos under moderate hypoxia. Integr Comp Biol 58:E422–E422

    Google Scholar 

  • Tippett CM, Warkentin KM (2017) How not to die if its too dry: a comparison of spontaneous and dehydration-induced hatching in red-eyed treefrogs. Integr Comp Biol 57:E168–E168

    Google Scholar 

  • Touchon JC, McCoy MW, Vonesh JR, Warkentin KM (2013) Effects of plastic hatching timing carry over through metamorphosis in red-eyed treefrogs. Ecology 94:850–860

    Article  Google Scholar 

  • Vasquez AM, Moskowitz NA, Warkentin KM (2016) Embryo decisions, metabolism, and development when arboreal eggs are flooded. Integr Comp Biol 56:E385–E385

    Google Scholar 

  • Virant-Doberlet M, Kuhelj A, Polajnar J, Sturm R (2019) Predator-prey interactions and eavesdropping in vibrational communication networks. Front Ecol Evol 7:203

    Article  Google Scholar 

  • Wang Y, Lutfi Z, Dong LM, Suman DS, Sanad M, Gaugler R (2012) Host cues induce egg hatching and pre-parasitic foraging behaviour in the mosquito parasitic nematode, Strelkovimermis spiculatus. Int J Parasitol 42:881–886

    Article  PubMed  Google Scholar 

  • Warkentin KM (1995) Adaptive plasticity in hatching age: a response to predation risk trade-offs. Proc Natl Acad Sci U S A 92:3507–3510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warkentin KM (1999) The development of behavioral defenses: a mechanistic analysis of vulnerability in red-eyed tree frog hatchlings. Behav Ecol 10:251–262

    Article  Google Scholar 

  • Warkentin KM (2000) Wasp predation and wasp-induced hatching of red-eyed treefrog eggs. Anim Behav 60:503–510

    Article  CAS  PubMed  Google Scholar 

  • Warkentin KM (2002) Hatching timing, oxygen availability, and external gill regression in the tree frog, Agalychnis callidryas. Physiol Biochem Zool 75:155–164

    Article  PubMed  Google Scholar 

  • Warkentin KM (2005) How do embryos assess risk? Vibrational cues in predator-induced hatching of red-eyed treefrogs. Anim Behav 70:59–71

    Article  Google Scholar 

  • Warkentin KM (2011a) Plasticity of hatching in amphibians: evolution, trade-offs, cues and mechanisms. Integr Comp Biol 51:111–127

    Article  PubMed  Google Scholar 

  • Warkentin KM (2011b) Environmentally cued hatching across taxa: embryos respond to risk and opportunity. Integr Comp Biol 51:14–25

    Article  PubMed  Google Scholar 

  • Warkentin KM (2017) Development of red-eyed treefrog embryos: a staging table for integrative research on environmentally cued hatching. Integr Comp Biol 57:E175

    Google Scholar 

  • Warkentin KM, Caldwell MS (2009) Assessing risk: embryos, information, and escape hatching. In: Dukas R, Ratcliffe JM (eds) Cognitive ecology II. University of Chicago Press, Chicago, pp 177–200

    Chapter  Google Scholar 

  • Warkentin KM, Currie CC, Rehner SA (2001) Egg-killing fungus induces early hatching of red-eyed treefrog eggs. Ecology 82:2860–2869

    Article  Google Scholar 

  • Warkentin KM, Gomez-Mestre I, McDaniel JG (2005) Development, surface exposure, and embryo behavior affect oxygen levels in eggs of the red-eyed treefrog, Agalychnis callidryas. Physiol Biochem Zool 78:956–966

    Article  PubMed  Google Scholar 

  • Warkentin KM, Caldwell MS, McDaniel JG (2006) Temporal pattern cues in vibrational risk assessment by red-eyed treefrog embryos, Agalychnis callidryas. J Exp Biol 209:1376–1384

    Article  PubMed  Google Scholar 

  • Warkentin KM, Caldwell MS, Siok TD, D’Amato AT, McDaniel JG (2007) Flexible information sampling in vibrational assessment of predation risk by red-eyed treefrog embryos. J Exp Biol 210:614–619

    Article  PubMed  Google Scholar 

  • Warkentin KM, Cuccaro Diaz J, Güell BA, Jung J, Kim SJ, Cohen KL (2017) Developmental onset of escape-hatching responses in red-eyed treefrogs depends on cue type. Anim Behav 129:103–112

    Article  Google Scholar 

  • Warkentin KM, Jung J, Rueda Solano LA, McDaniel JG (2019) Ontogeny of escape-hatching decisions: vibrational cue use changes as predicted from costs of sampling and false alarms. Behav Ecol Sociobiol 73:51

    Article  Google Scholar 

  • Whittington ID, Kearn GC (1988) Rapid hatching of mechanically-disturbed eggs of the monogenean gill parasite Diclidophora luscae, with observations on sedimentation of egg bundles. Int J Parasitol 18:847–852

    Article  Google Scholar 

  • Whittington ID, Kearn GC (2011) Hatching strategies in monogenean (platyhelminth) parasites that facilitate host infection. Integr Comp Biol 51:91–99

    Article  PubMed  Google Scholar 

  • Wiedenmayer CP (2009) Plasticity of defensive behavior and fear in early development. Neurosci Biobehav Rev 33:432–441

    Article  PubMed  Google Scholar 

  • Wiley RH (2003) Is there an ideal behavioural experiment? Anim Behav 66:585–588

    Article  Google Scholar 

  • Willink B, Palmer MS, Landberg T, Vonesh JR, Warkentin KM (2014) Environmental context shapes immediate and cumulative costs of risk-induced early hatching. Evol Ecol 28:103–116

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen M. Warkentin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Warkentin, K.M., Jung, J., McDaniel, J.G. (2022). Research Approaches in Mechanosensory-Cued Hatching. In: Hill, P.S.M., Mazzoni, V., Stritih-Peljhan, N., Virant-Doberlet, M., Wessel, A. (eds) Biotremology: Physiology, Ecology, and Evolution. Animal Signals and Communication, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-030-97419-0_7

Download citation

Publish with us

Policies and ethics