Skip to main content

Reusable Two-Round MPC from LPN

  • Conference paper
  • First Online:
Public-Key Cryptography – PKC 2022 (PKC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13177))

Included in the following conference series:

Abstract

We present a new construction of maliciously-secure, two-round multiparty computation (MPC) in the CRS model, where the first message is reusable an unbounded number of times. The security of the protocol relies on the Learning Parity with Noise (LPN) assumption with inverse polynomial noise rate \(1/n^{1-\epsilon }\) for small enough constant \(\epsilon \), where n is the LPN dimension. Prior works on reusable two-round MPC required assumptions such as DDH or LWE that imply some flavor of homomorphic computation. We obtain our result in two steps:

  • In the first step, we construct a two-round MPC protocol in the silent pre-processing model (Boyle et al. Crypto 2019). Specifically, the parties engage in a computationally inexpensive setup procedure that generates some correlated random strings. Then, the parties commit to their inputs. Finally, each party sends a message depending on the function to be computed, and these messages can be decoded to obtain the output. Crucially, the complexity of the pre-processing phase and the input commitment phase do not grow with the size of the circuit to be computed. We call this multiparty silent NISC (msNISC), generalizing the notion of two-party silent NISC of Boyle et al. (CCS 2019). We provide a construction of msNISC from LPN in the random oracle model.

  • In the second step, we give a transformation that removes the pre-processing phase and use of random oracle from the previous protocol. This transformation additionally adds (unbounded) reusability of the first round message, giving the first construction of reusable two-round MPC from the LPN assumption. This step makes novel use of randomized encoding of circuits (Applebaum et al., FOCS 2004) and a variant of the “tree of MPC messages” technique of Ananth et al. and Bartusek et al. (TCC 2020).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    By communication efficiency, we mean that the communication cost of the protocols do not grow with the circuit size of the functionality to be computed.

  2. 2.

    It should also suffice to require only that the first-round message is sufficiently sub-linear in the size of circuits supported, though we achieve the stronger succinctness property described here.

  3. 3.

    See the full version [BGSZ21] for a description of the conforming protocol.

  4. 4.

    We do not include the first argument to the description of the action \(\phi _t = (i,f,g,h)\), since this will be constant (a single party) for each correlation that we generate. That is, we split the entire set of actions into one set per party, where each party’s set consists of all actions in which they are the speaker.

  5. 5.

    Here, by “size” of C, we mean the number of actions in the conforming protocol used to compute C.

References

  1. Applebaum, B., Harnik, D., Ishai, Y.: Semantic security under related-key attacks and applications. In: Chazelle, B. (ed.) ICS 2011, pp. 45–60. Tsinghua University Press, January 2011

    Google Scholar 

  2. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing polynomials and their applications (extended abstract). In: 20th Annual IEEE Conference on Computational Complexity (CCC 2005), pp. 260–274 (2005)

    Google Scholar 

  3. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography with constant input locality. J. Cryptol. 22(4), 429–469 (2009)

    Article  MathSciNet  Google Scholar 

  4. Ananth, P., Jain, A., Jin, Z., Malavolta, G.: Multi-key fully-homomorphic encryption in the plain model. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 28–57. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1_2

    Chapter  Google Scholar 

  5. Boyle, E.: Efficient two-round OT extension and silent non-interactive secure computation. In: ACM CCS 19, pp. 291–308. ACM Press (2019)

    Google Scholar 

  6. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation generators: silent OT extension and more. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 489–518. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_16

    Chapter  Google Scholar 

  7. Barak, B., et al.: On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_1

    Chapter  Google Scholar 

  8. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure computation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_19

    Chapter  Google Scholar 

  9. Benhamouda, F., Jain, A., Komargodski, I., Lin, H.: Multiparty reusable non-interactive secure computation from LWE. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 724–753. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_25

    Chapter  Google Scholar 

  10. Bartusek, J., Garg, S., Srinivasan, A., Zhang, Y.: Reusable two-round MPC from LPN. Cryptology ePrint Archive, Report 2021/316 (2021). https://ia.cr/2021/316

  11. Benhamouda, F., Lin, H.: k-round multiparty computation from k-round oblivious transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 500–532. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_17

    Chapter  Google Scholar 

  12. Benhamouda, F., Lin, H.: Multiparty reusable non-interactive secure computation. In: TCC (2020)

    Google Scholar 

  13. Döttling, N., Garg, S., Hajiabadi, M., Masny, D., Wichs, D.: Two-round oblivious transfer from CDH or LPN. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 768–797. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_26

    Chapter  Google Scholar 

  14. Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its applications. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 93–122. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_4

    Chapter  Google Scholar 

  15. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press, October 2013

    Google Scholar 

  16. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_4

    Chapter  Google Scholar 

  17. Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 640–658. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_35

    Chapter  Google Scholar 

  18. Garg, S., Ishai, Y., Srinivasan, A.: Two-round MPC: information-theoretic and black-box. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239, pp. 123–151. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6_5

    Chapter  Google Scholar 

  19. Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from bilinear maps. In: 58th FOCS, pp. 588–599. IEEE Computer Society Press (2017)

    Google Scholar 

  20. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_16

    Chapter  Google Scholar 

  21. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently (2003)

    Google Scholar 

  22. Jain, A., Krenn, S., Pietrzak, K., Tentes, A.: Commitments and efficient zero-knowledge proofs from learning parity with noise. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 663–680. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_40

    Chapter  Google Scholar 

  23. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_26

    Chapter  Google Scholar 

  24. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press, May 2005

    Google Scholar 

Download references

Acknowledgments

JB and SG were supported in part by DARPA under Agreement No. HR00112020026, AFOSR Award FA9550-19-1-0200, NSF CNS Award 1936826, and research grants by the Sloan Foundation, Visa Inc., and Center for Long-Term Cybersecurity (CLTC, UC Berkeley). Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Government or DARPA.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bartusek, J., Garg, S., Srinivasan, A., Zhang, Y. (2022). Reusable Two-Round MPC from LPN. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds) Public-Key Cryptography – PKC 2022. PKC 2022. Lecture Notes in Computer Science(), vol 13177. Springer, Cham. https://doi.org/10.1007/978-3-030-97121-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97121-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97120-5

  • Online ISBN: 978-3-030-97121-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics