Skip to main content

Metal- and Metalloid-Based Nanofertilizers and Nanopesticides for Advanced Agriculture

  • Chapter
  • First Online:
Inorganic Nanopesticides and Nanofertilizers

Abstract

Globally, huge crop yield losses are observed due to soil degradation accompanied by insufficient nutrient content needed for healthy plant development and growth. Therefore, soil or foliar applications of essential metal micronutrients to plants in formulations providing their sustained and controlled release for a longer period are desirable. On the other hand, zeolites, nanoclays, or montmorillonite with unique pore structures of molecular dimensions can serve as an excellent carrier for enriching soils with macroelements when used as slow-release fertilizers. Even nutripriming using solutions containing nanoparticles of essential metals results in a significant improvement in plant growth and, like fertilization, can contribute to the biofortification of crops with essential metals. However, massive yield losses are also caused by harmful pests, and therefore metal- and metalloid-based NPs with a strong ability to generate oxidative stress are frequently used in plant protection as insecticides or as effective agents against a wide range of phytopathogens. In contrast to many synthetic pesticides, the use of such inorganic nanoparticles does not induce the development of resistance in treated insects and harmful phytopathogens and, in addition, also has a beneficial effect on plants attacked with insects or infected with phytopathogens. This chapter provides a comprehensive overview of the findings on metal- and metalloid-based nanoparticles/nanocomposites used as nanopriming agents, nanofertilizers, nanoinsecticides, and nanosized agents against viral, bacterial, and fungal phytopathogens, including the corresponding mechanism of action. In addition, slow-release fertilizers using zeolites, nanoclays, or montmorillonite as carriers of macronutrients are discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasifar, A., Shahrabadi, F., & ValizadehKaji, B. (2020). Effects of green synthesized zinc and copper nano-fertilizers on the morphological and biochemical attributes of basil plant. Journal of Plant Nutrition, 43(8), 1104–1118.

    Article  CAS  Google Scholar 

  • Abdallah, Y., Ogunyemi, S. O., Abdelazez, A., Zhang, M. C., Hong, X. X., Ibrahim, E., Hossain, A., Fouad, H., Li, B., & Chen, J. P. (2019). The green synthesis of MgO nano-flowers using Rosmarinus officinalis L. (rosemary) and the antibacterial activities against Xanthomonas oryzae pv. oryzae. BioMed Research International, 2019, 5620989.

    Google Scholar 

  • Abdelkhalek, A., & Al-Askar, A. A. (2020). Green synthesized ZnO nanoparticles mediated by Mentha spicata extract induce plant systemic resistance against tobacco mosaic virus. Applied Sciences, 10(15), 5054.

    Google Scholar 

  • Abd-Elsalam, K. A., & Prasad, R. (2018). Nanobiotechnology applications in plant protection. Springer Nature.

    Book  Google Scholar 

  • Abid, S., Sial, N., Ramzan, M., Abid, U., Sajawal, M., Nadeem, K., Jayed, M., & Khalid, S. (2020). Effect of biologically synthesized silver nanoparticles from Murraya koenigii (curry leaf) on Callosobruchus maculates (cowpea weevil). Bioscience Research, 17(4), 2536–2540.

    Google Scholar 

  • Abou-Zeid, H. M., Ismail, G. S. M., & Abdel-Latif, S. A. (2021). Influence of seed priming with ZnO nanoparticles on the salt-induced damages in wheat (Triticum aestivum L.) plants. Journal of Plant Nutrition, 44(5), 629–643.

    Article  CAS  Google Scholar 

  • Abu-Elsaad, N. I., & Hameed, R. E. A. (2019). Copper ferrite nanoparticles as nutritive supplement for cucumber plants grown under hydroponic system. Journal of Plant Nutrition, 42(14), 1645–1659.

    Article  CAS  Google Scholar 

  • Abul-Soud, M., & Abd-Elrahman, S. H. (2016). Foliar selenium application to improve the tolerance of eggplant grown under salt stress conditions. International Journal of Plant & Soil Science, 9, 1–10.

    Article  Google Scholar 

  • Acharya, P., Jayaprakasha, G. K., Crosby, K. M., Jifon, J. L., & Patil, B. S. (2019). Green-synthesized nanoparticles enhanced seedling growth, yield, and quality of onion (Allium cepa L.). ACS Sustainable Chemistry & Engineering, 7(17), 14580–14590.

    Article  CAS  Google Scholar 

  • Acharya, P., Jayaprakasha, G. K., Crosby, K. M., Jifon, J. L., & Patil, B. S. (2020). Nanoparticle-mediated seed priming improves germination, growth, yield, and quality of watermelons (Citrullus lanatus) at multi-locations in Texas. Scientific Reports, 10(1), 5037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adhikari, P., Oh, Y., & Panthee, D. (2017). Current status of early blight resistance in tomato: An update. International Journal of Molecular Sciences, 18(10), 2019–2041.

    Article  PubMed Central  CAS  Google Scholar 

  • Adhikary, S., Mandal, N., Rakshit, R., Das, A., Kumar, V., Kumari, N., Choudhary, S. K., & Homa, F. (2020). Field evaluation of zincated nanoclay polymer composite (ZNCPC): Impact on DTPA-extractable Zn, sequential Zn fractions and apparent Zn recovery under rice rhizosphere. Soil and Tillage Research, 201, 104607.

    Article  Google Scholar 

  • Adisa, I. O., Pullagurala, V. L. R., Peralta-Videa, J. R., Dimkpa, C. O., Elmer, W. H., Gardea-Torresdey, J. L., & White, J. C. (2019). Recent advances in nano-enabled fertilizers and pesticides: A critical review of mechanisms of action. Environmental Science. Nano, 6(7), 2002–2030.

    Article  CAS  Google Scholar 

  • Afzal, S., Sharma, D., & Singh, N. K. (2021). Eco-friendly synthesis of phytochemical-capped iron oxide nanoparticles as nano-priming agent for boosting seed germination in rice (Oryza sativa L.). Environmental Science and Pollution Research, 28, 40275–40287.

    Google Scholar 

  • Agrios, G. (2005). Plant pathology. Academic Press.

    Google Scholar 

  • Ahmed, K. S., Mikhail, W. Z. A., Sobhy, H. M., Radwan, E. M. M., El Din, T. S., & Youssef, A. M. (2019). Effect of lambda-cyhalothrin as nanopesticide on cotton leaf-worm, Spodoptera littoralis (Boisd.). Egyptian Journal of Chemistry, 62(7), 1663-1675 2019.

    Google Scholar 

  • Ahmed, T., Noman, M., Shahid, M., Shahid, M. S., & Li, B. (2021). Antibacterial potential of green magnesium oxide nanoparticles against rice pathogen Acidovorax oryzae. Materials Letters, 282, 128839.

    Article  CAS  Google Scholar 

  • Ahmed, T., Shahid, M., Noman, M., Niazi, M. B. K., Mahmood, F., Manzoor, I., Zhang, Y., Li, B., Yang, Y., Yan, C. Q., & Chen, J. P. (2020). Silver nanoparticles synthesized by using Bacillus cereus SZT1 ameliorated the damage of bacterial leaf blight pathogen in rice. Pathogens, 9(3), 160.

    Article  CAS  PubMed Central  Google Scholar 

  • Ahsan, T. (2020). Biofabrication of silver nanoparticles from Pseudomonas fluorescens to control tobacco mosaic virus. Egyptian Journal of Biological Pest Control, 30(1), 66.

    Article  Google Scholar 

  • Ahuja, D., Rainu, A. S., Singh, M., & Kaushik, A. (2020). Encapsulation of NPK fertilizer for slow release using sodium carboxymethyl cellulose-g-poly (AA-co-AM-co-AMPS)/ montmorillonite clay-based nanocomposite hydrogels for sustainable agricultural applications. Trends in Carbohydrate Research, 12(1), 15–23.

    CAS  Google Scholar 

  • Akbari, H., Modarres-Sanavy, S. A. M., & Heidarzadeh, A. (2020). Fertilizer systems deployment and zeolite application on nutrients status and nitrogen use efficiency. Journal of Plant Nutrition, 44(2), 196–212.

    Article  CAS  Google Scholar 

  • Al Shammari, H. I., AL-Khazraji, H. I., & Falih, S. K. (2018). The effectivity of silver nanoparticles prepared by jujube Ziziphus sp. extract against whitefly Bemisia tabaci nymphs. Research Journal of Pharmaceutical Biological and Chemical Science, 9(6), 551–558.

    Google Scholar 

  • Alam, T., Khan, R. A. A., Ali, A., Sher, H., Ullah, Z., & Ali, M. (2019). Biogenic synthesis of iron oxide nanoparticles via Skimmia laureola and their antibacterial efficacy against bacterial wilt pathogen Ralstonia solanacearum. Materials Science & Engineering. C, Materials for Biological Applications, 98, 101–108.

    Article  CAS  Google Scholar 

  • Alghuthaymi, M., Rajkuberan, C., Rajiv, P., Kalia, A., Bhardwaj, K., Bhardwaj, P., Abd-Elsalam, K. A., Valis, M., & Kuca, K. (2021). Nanohybrid antifungals for control of plant diseases: Current status and future perspectives. Journal of Fungi, 7(1), 48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali, M., Kim, B., Elfield, K. D. B., Norman, D., Brennan, M., & Ali, G. S. (2015). Inhibition of Phytophthora parasitica and P-capsici by silver nanoparticles synthesized using aqueous extract of Artemisia absinthium. Phytopathology, 105(9), 1183–1190.

    Article  CAS  PubMed  Google Scholar 

  • Ali, M. A., Ahmed, T., Wu, W. G., Hossain, A., Hafeez, R., Masum, M. I., Wang, Y. L., An, Q. L., Sun, G. C., & Li, B. (2020). Advancements in plant and microbe-based synthesis of metallic nanoparticles and their antimicrobial activity against plant pathogens. Nanomaterials, 10(6), 1146.

    Article  CAS  PubMed Central  Google Scholar 

  • Almadiy, A. A., Nenaah, G. E., & Shawer, D. M. (2018). Facile synthesis of silver nanoparticles using harmala alkaloids and their insecticidal and growth inhibitory activities against the khapra beetle. Journal of Pest Science, 91(2), 727–737.

    Article  Google Scholar 

  • Alonso-Diaz, A., Floriach-Clark, J., Fuentes, J., Capellades, M., Coll, N. S., & Laromaine, A. (2019). Enhancing localized pesticide action through plant foliage by silver-cellulose hybrid patches. ACS Biomaterials Science & Engineering, 5(2), 413–419.

    Article  CAS  Google Scholar 

  • Alvarez, S. P., Lopez, N. E. L., Lozano, J. M., Negrete, E. A. R., & Cervantes, M. E. S. (2016). Plant fungal disease management using nanobiotechnology as a tool. In R. Prasad (Ed.), Advances and applications through fungal Nanobiotechnology (pp. 169–192). Springer International Publishing.

    Chapter  Google Scholar 

  • Amaro, F., Morón, Á., Díaz, S., González, A. M., & Gutiérrez, J. C. (2021). Metallic nanoparticles – Friends or foes in the battle against antibiotic-resistant bacteria? Microorganisms, 9(2), 364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ameen, F., Alsamhary, K., Alabdullatif, J. A., & Al Nadhari, S. (2021). A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi. Ecotoxicology and Environmental Safety, 213, 112027.

    Article  CAS  PubMed  Google Scholar 

  • Aminedi, R., Wadhwa, G., Das, N., & Pal, B. (2013). Shape-dependent bactericidal activity of TiO2 for the killing of gram-negative bacteria Agrobacterium tumefaciens under UV torch irradiation. Environmental Science and Pollution Research, 20(9), 6521–6530.

    Article  CAS  PubMed  Google Scholar 

  • Ammar, H. A., & Abd-ElAzeem, E. M. (2021). Novel treatment of gelatin-copper bio-nanoparticles as a management method against the spiny bollworm, Earias insulana (Boisd.) (Lepidoptera: Noctuidae) in comparison studies with the uncoated nanoparticles. Inorganic and Nano-Metal Chemistry, 51(3), 309–321.

    Google Scholar 

  • Ammar, H. A., Rabie, G. H., & Mohamed, E. (2019). Novel fabrication of gelatin-encapsulated copper nanoparticles using Aspergillus versicolor and their application in controlling of rotting plant pathogens. Bioprocess and Biosystems Engineering, 42(12), 1947–1961.

    Article  CAS  PubMed  Google Scholar 

  • An, J., Hu, P. G., Li, F. J., Wu, H. H., Shen, Y., White, J. C., Tian, X. L., Li, Z. H., & Giraldo, J. P. (2020). Emerging investigator series: Molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles. Environmental Science. Nano, 7(8), 2214–2228.

    Article  CAS  Google Scholar 

  • Anand, K. V., Anugraga, A. R., Kannan, M., Singaravelu, G., & Govindaraju, K. (2020). Bio-engineered magnesium oxide nanoparticles as nano-priming agent for enhancing seed germination and seedling vigour of green gram (Vigna radiata L.). Materials Letters, 271, 127792.

    Article  CAS  Google Scholar 

  • Anusuya, S., & Banu, K. N. (2016). Silver-chitosan nanoparticles induced biochemical variations of chickpea (Cicer arietinum L.). Biocatalysis and Agricultural Biotechnology, 8, 39–44.

    Google Scholar 

  • Antony, D., Yadav, R., & Kalimuthu, R. (2021). Accumulation of phyto-mediated nano-CeO2 and selenium doped CeO2 on Macrotyloma uniflorum (horse gram) seed by nano-priming to enhance seedling vigor. Biocatalysis and Agricultural Biotechnology, 31, 101923.

    Article  CAS  Google Scholar 

  • Asoufi, H. M., Al-Antary, T. M., & Awwad, A. M. (2018a). Biosynthesis and characterization of iron sulfide (FeS) nanoparticles and evaluation their aphicidal activity on the green peach aphid Myzus persicae (Homoptera: Aphidae). Fresenius Environmental Bulletin, 27(11), 7767–7775.

    CAS  Google Scholar 

  • Asoufi, H. M., Al-Antary, T. M., & Awwad, A. M. (2018b). Effect of biosynthesized iron sulfide (FeS) nanoparticles on the green peach aphid Myzus persicae (Homoptera: Aphidae) longevity and fecundity. Fresenius Environmental Bulletin, 27(11), 7817–7821.

    CAS  Google Scholar 

  • Babajani, A., Iranbakhsh, A., Ardebili, Z. O., & Eslami, B. (2019). Differential growth, nutrition, physiology, and gene expression in Melissa officinalis mediated by zinc oxide and elemental selenium nanoparticles. Environmental Science and Pollution Research, 26(24), 24430–24444.

    Article  CAS  PubMed  Google Scholar 

  • Bahrami, M. K., Movafeghi, A., Mahdavinia, G. R., Hassanpouraghdam, M. B., & Gohari, G. (2018). Effects of bare and chitosan-coated Fe3O4 magnetic nanoparticles on seed germination and seedling growth of Capsicum annuum L. Biointerface Research in Applied Chemistry, 8(5), 3552–3559.

    CAS  Google Scholar 

  • Bahrulolum, H., Nooraei, S., Javanshir, N., Tarrahimofrad, H., Mirbagheri, V. S., Easton, A. J., & Ahmadian, G. (2021). Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. Journal of Nanobiotechnology, 19, 86.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bala, R., Kalia, A., & Dhaliwal, S. S. (2019). Evaluation of efficacy of ZnO nanoparticles as remedial zinc nanofertilizer for rice. Journal of Soil Science and Plant Nutrition, 19(2), 379–389.

    Article  CAS  Google Scholar 

  • Baligar, V. C., & Fageria, N. K. (2015). Nutrient use efficiency in plants: An overview. In A. Rakshit, H. B. Singh, & A. Sen (Eds.), Nutrient use efficiency: From basics to advances (pp. 1–14). Springer India.

    Google Scholar 

  • Baltazar, M., Reis, S., Carvalho, A., & Lima-Brito, J. (2021). Cytological and yield-related analyses in offspring of primed bread wheat (Triticum aestivum L.) seeds. Genetic Resources and Crop Evolution, 68(1), 359–370.

    Article  CAS  Google Scholar 

  • Banerjee, A., Singh, A., Sudarshan, M., & Roychoudhury, A. (2021). Silicon nanoparticle-pulsing mitigates fluoride stress in rice by fine-tuning the ionomic and metabolomic balance and refining agronomic traits. Chemosphere, 262, 127826.

    Article  CAS  PubMed  Google Scholar 

  • Bapat, G., Zinjarde, S., & Tamhane, V. (2020). Evaluation of silica nanoparticle mediated delivery of protease inhibitor in tomato plants and its effect on insect pest Helicoverpa armigera. Colloids and Surfaces. B, Biointerfaces, 193, 111079.

    Article  CAS  PubMed  Google Scholar 

  • Baranitharan, M., Alarifi, S., Alkahtani, S., Ali, D., Elumalai, K., Pandiyan, J., Krishnappa, K., Rajeswary, M., & Govindarajan, M. (2021). Phytochemical analysis and fabrication of silver nanoparticles using Acacia catechu: An efficacious and ecofriendly control tool against selected polyphagous insect pests. Saudi Journal of Biological Science, 28(1), 148–156.

    Article  CAS  Google Scholar 

  • Barcala, V., Rozemeijer, J., Oste, L., van der Grift, B., Gerner, L., & Behrends, T. (2021). Processes controlling the flux of legacy phosphorus to surface waters at the farm scale. Environmental Research Letters, 16(1), 015003.

    Article  CAS  Google Scholar 

  • Barrer, R. M., & Villiger, H. (1969). The crystal structure of the synthetic zeolite L. Z Kristallogr Cryst Mater, 128, 352–370.

    Article  CAS  Google Scholar 

  • Benelli, G. (2018). Mode of action of nanoparticles against insects. Environmental Science and Pollution Research, 25(13), 12329–12341.

    Article  CAS  PubMed  Google Scholar 

  • Bernardo, P., Charles-Dominique, T., Barakat, M., Ortet, P., Fernandez, E., Filloux, D., Hartnady, P., Rebelo, T. A., Cousins, S. R., Mesleard, F., Cohez, D., Yavercovski, N., Varsani, A., Harkins, G. W., Peterschmitt, M., Malmstrom, C. M., Martin, D. P., & Rounagnac, P. (2018). Geometagenomics illuminates the impact of agriculture on the distribution and prevalence of plant viruses at the ecosystem scale. The ISME Journal, 12, 173–184.

    Article  PubMed  Google Scholar 

  • Bettencourt, G. M. D., Degenhardt, J., Torres, L. A. Z., Tanobe, V. O. D., & Soccol, C. R. (2020). Green biosynthesis of single and bimetallic nanoparticles of iron and manganese using bacterial auxin complex to act as plant bio-fertilizer. Biocatalysis and Agricultural Biotechnology, 30, 101822.

    Article  Google Scholar 

  • Bilal, M., Xu, C. L., Cao, L. D., Zhao, P. Y., Cao, C., Li, F. M., & Huang, Q. L. (2020). Indoxacarb-loaded fluorescent mesoporous silica nanoparticles for effective control of Plutella xylostella L. with decreased detoxification enzymes activities. Pest Management Science, 76(11), 3749–3758.

    Article  CAS  PubMed  Google Scholar 

  • Bindraban, P. S., Dimkpa, C., Nagarajan, L., Roy, A., & Rudy Rabbinge, R. (2015). Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biology and Fertility of Soils, 51, 897–911.

    Article  CAS  Google Scholar 

  • Biswas, B., Warr, L. N., Hilder, E. F., Goswami, N., Rahman, M. M., Churchman, J. G., Vasilev, K., Pan, G., & Naidu, R. (2019). Biocompatible functionalisation of nanoclays for improved environmental remediation. Chemical Society Reviews, 48, 3740–3770.

    Article  CAS  PubMed  Google Scholar 

  • Blank, L., Cohen, Y., Borenstein, M., Shulhani, R., Lofthouse, M., Sofer, M., & Shtienberg, D. (2016). Variables associated with severity of bacterial canker and wilt caused by Clavibacter michiganensis subsp.michiganensis in tomato greenhouses. Phytopathology, 106(3), 254–261.

    Article  CAS  PubMed  Google Scholar 

  • Bonilla-Bird, N. J., Ye, Y., Akter, T., Valdes-Bracamontes, C., Darrouzet-Nardi, A. J., Saupe, G. B., Flores-Marges, J. P., Ma, L., Hernandez-Viezcas, J. A., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2020). Effect of copper oxide nanoparticles on two varieties of sweetpotato plants. Plant Physiology and Biochemistry, 154, 277–286.

    Article  CAS  PubMed  Google Scholar 

  • Boroumand, Z., Golmakani, N., & Boroumand, S. (2018). Clinical trials on silver nanoparticles for wound healing. Nanomedicine Journal, 5(4), 186–191.

    CAS  Google Scholar 

  • Bortolin, A., Serafim, A. R., Aouada, F. A., Mattoso, L. H. C., & Ribeiro, C. (2016). Macro- and micronutrient simultaneous slow release from highly swellable nanocomposite hydrogels. Journal of Agricultural and Food Chemistry, 64(16), 3133–3140.

    Article  CAS  PubMed  Google Scholar 

  • Burdon, J. J., & Zhan, J. (2020). Climate change and disease in plant communities. PLoS Biology, 18(11), e3000949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caceres, M., Vassena, C. V., Garcera, M. D., & Santo-Orihuela, P. L. (2019). Silica nanoparticles for insect pest control. Current Pharmaceutical Design, 25(37), 4030–4038.

    Article  CAS  PubMed  Google Scholar 

  • Cadena, M. B., Preston, G. M., Van der Hoorn, R. A. L., Flanagan, N. A., Townley, H. E., & Thompson, I. P. (2018a). Enhancing cinnamon essential oil activity by nanoparticle encapsulation to control seed pathogens. Industrial Crops and Products, 124, 755–764.

    Article  CAS  Google Scholar 

  • Cadena, M. B., Preston, G. M., Van der Hoorn, R. A. L., Townley, H. E., & Thompson, I. P. (2018b). Species-specific antimicrobial activity of essential oils and enhancement by encapsulation in mesoporous silica nanoparticles. Industrial Crops and Products, 122, 582–590.

    Article  CAS  Google Scholar 

  • Cai, L., Cai, L. T., Jia, H. Y., Liu, C. Y., Wang, D. B., & Sun, X. C. (2020). Foliar exposure of Fe3O4 nanoparticles on Nicotiana benthamiana: Evidence for nanoparticles uptake, plant growth promoter and defense response elicitor against plant virus. Journal of Hazardous Materials, 393, 122415.

    Article  CAS  PubMed  Google Scholar 

  • Cai, L., Chen, J. N., Liu, Z. W., Wang, H. C., Yang, H. K., & Ding, W. (2018b). Magnesium oxide nanoparticles: Effective agricultural antibacterial agent against Ralstonia solanacearum. Frontiers in Microbiology, 9, 790.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai, L., Liu, C. Y., Fan, G. J., Liu, C. L., & Sun, X. C. (2019). Preventing viral disease by ZnONPs through directly deactivating TMV and activating plant immunity in Nicotiana benthamiana. Environmental Science. Nano, 6(12), 3653–3669.

    Article  CAS  Google Scholar 

  • Cai, L., Liu, M. H., Liu, Z. W., Yang, H. K., Sun, X. C., Chen, J. N., Xiang, S. Y., & Ding, W. (2018a). MgONPs can boost plant growth: Evidence from increased seedling growth, morpho-physiological activities, and Mg uptake in tobacco (Nicotiana tabacum L.). Molecules, 23(12), 3375.

    Google Scholar 

  • Carvalho, R., Duman, K., Jones, J. B., & Paret, M. L. (2019). Bactericidal activity of copper-zinc hybrid nanoparticles on copper-tolerant Xanthomonas perforans. Scientific Reports, 9, 20124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatzistathis, T., Papaioannou, E., Giannakoula, A., & Papadakis, I. E. (2021). Zeolite and vermiculite as inorganic soil amendments modify shoot-root allocation, mineral nutrition, photosystem II activity and gas exchange parameters of chestnut (Castanea sativa Mill.) plants. Agronomy, 11(1), 109.

    Google Scholar 

  • Chatzistathis, T., Tzanakakis, V., Giannakoula, A., & Psoma, P. (2020). Inorganic and organic amendments affect soil fertility, nutrition, photosystem II activity, and fruit weight and may enhance the sustainability of Solanum lycopersicon L. (cv. ‘Mountain Fresh’) crop. Sustainability, 12(21), 9028.

    Article  CAS  Google Scholar 

  • Chaudhary, P., Khati, P., Chaudhary, A., Gangola, S., Kumar, R., & Sharma, A. (2021). Bioinoculation using indigenous Bacillus spp. improves growth and yield of Zea mays under the influence of nanozeolite. 3. Biotech, 11(1), 11.

    Google Scholar 

  • Chen, H. (2018). Metal based nanoparticles in agricultural system: Behavior, transport, and interaction with plants. Chemical Speciation & Bioavailability, 30(1), 123–134.

    Article  CAS  Google Scholar 

  • Chen, J. N., Mao, S. Y., Xu, Z. F., & Ding, W. (2019b). Various antibacterial mechanisms of biosynthesized copper oxide nanoparticles against soilborne Ralstonia solanacearum. RSC Advances, 9(7), 3788–3799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, J. N., Wu, L. T., Lu, M., Lu, S. S., Li, Z. Y., & Ding, W. (2020). Comparative study on the fungicidal activity of metallic MgO nanoparticles and macroscale MgO against soilborne fungal phytopathogens. Frontiers in Microbiology, 11, 365.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, L., Meng, X., Gu, J., Fan, W. Q., Abdili, N., Peprah, F. A., Wang, N. N., Zhu, F. F., Lu, P., Ma, S. S., & Chen, K. P. (2019a). Silver nanoparticle toxicity in silkworms: Omics technologies for a mechanistic understanding. Ecotoxicology and Environmental Safety, 172, 388–395.

    Article  CAS  PubMed  Google Scholar 

  • Chen, W. Q., Wellings, C., Chen, X. M., Kang, Z. S., & Liu, T. G. (2014). Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. Molecular Plant Pathology, 15(5), 433–446.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chhipa, H. (2017). Nanofertilizers and nanopesticides for agriculture. Environmental Chemistry Letters, 15(1), 15–22.

    Article  CAS  Google Scholar 

  • Chhipa, H., & Joshi, P. (2016). Nanofertilisers, nanopesticides and nanosensors in agriculture. In S. Tanjan, N. Dasguota, & E. Lichtfouse (Eds.), Nanoscience in food and agriculture, book series: Sustainable agriculture reviews (Vol. 20, pp. 247–282). Springer International Publishing.

    Google Scholar 

  • Choudhary, R. C., Kumaraswamy, R. V., Kumari, S., Sharma, S. S., Pal, A., Raliya, R., Biswas, P., & Saharan, V. (2019). Zinc encapsulated chitosan nanoparticle to promote maize crop yield. International Journal of Biological Macromolecules, 127, 126–135.

    Article  CAS  PubMed  Google Scholar 

  • Cieschi, M. T., Polyakov, A. Y., Lebedev, V. A., Volkov, D. S., Pankratov, D. A., Veligzhanin, A. A., Perminova, I. V., & Lucena, J. J. (2019). Eco-friendly iron-humic nanofertilizers synthesis for the prevention of iron chlorosis in soybean (Glycine max) grown in calcareous soil. Frontiers in Plant Science, 10, 413.

    Article  PubMed  PubMed Central  Google Scholar 

  • Costamagna, G., Chiabrando, V., Fassone, E., Mania, I., Gorra, R., Ginepro, M., & Giacalone, G. (2020). Characterization and use of absorbent materials as slow-release fertilizers for growing strawberry: Preliminary results. Sustainability, 12(17), 6854.

    Article  CAS  Google Scholar 

  • Crane, J. K. (2020). Metal nanoparticles in infection and imunity. Immunological Investigations, 49(7), 794–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui, H. B., Shi, Y., Zhou, J., Chu, H., Cang, L., & Zhou, D. M. (2018). Effect of different grain sizes of hydroxyapatite on soil heavy metal bioavailability and microbial community composition. Agriculture, Ecosystems and Environment, 267, 165–173.

    Article  CAS  Google Scholar 

  • Cumplido-Najera, C. F., Gonzalez-Morales, S., Ortega-Ortiz, H., Cadenas-Pliego, G., Benavides-Mendoza, A., & Juarez-Maldonado, A. (2019). The application of copper nanoparticles and potassium silicate stimulate the tolerance to Clavibacter michiganensis in tomato plants. Scientia Horticulturae, 245, 82–89.

    Article  CAS  Google Scholar 

  • Dapkekar, A., Deshpande, P., Oak, M. D., Paknikar, K. M., & Rajwade, J. M. (2018). Zinc use efficiency is enhanced in wheat through nanofertilization. Scientific Reports, 8, 6832.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Das, S., Yadav, A., & Debnath, N. (2019). Entomotoxic efficacy of aluminium oxide, titanium dioxide and zinc oxide nanoparticles against Sitophilus oryzae (L.): A comparative analysis. Journal of Stored Products Research, 83, 92–96.

    Article  Google Scholar 

  • Debnath, N., Das, S., Seth, D., Chandra, R., Bhattacharya, S. C., & Goswami, A. (2011). Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). Journal of Pest Science, 84(1), 99–105.

    Article  Google Scholar 

  • Derbalaha, A. S. H., & Elsharkawy, M. M. (2019). A new strategy to control cucumber mosaic virus using fabricated NiO-nanostructures. Journal of Biotechnology, 306, 134–141.

    Article  CAS  Google Scholar 

  • Deutsch, C. A., Tewksbury, J. J., Tigchelaar, M., Battisti, D. S., Merrill, S. C., Huey, R. B., & Naylor, R. L. (2018). Increase in crop losses to insect pests in a warming climate. Science, 361(6405), 916–919.

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa, C. O., Singh, U., Adisa, I. O., Bindraban, P. S., Elmer, W. H., Gardea-Torresdey, J. L., & White, J. C. (2018). Effects of manganese nanoparticle exposure on nutrient acquisition in wheat (Triticum aestivum L.). Agronomy, 8(9), 158.

    Article  CAS  Google Scholar 

  • Dimkpa, C. O., Singh, U., Bindraban, P. S., Elmer, W. H., Gardea-Torresdey, J. L., & White, J. C. (2019). Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification. The Science of the Total Environment, 688, 926–934.

    Article  CAS  PubMed  Google Scholar 

  • Disfani, M. N., Mikhak, A., Kassaee, M. Z., & Maghari, A. (2017). Effects of nano Fe/SiO2 fertilizers on germination and growth of barley and maize. Archives of Agronomy and Soil Science, 63(6), 817–826.

    Article  CAS  Google Scholar 

  • Donatelli, M., Magarey, R. D., Bregaglio, S., Willocquet, L., Whish, J. P. M., & Savary, S. (2017). Modelling the impacts of pests and diseases on agricultural systems. Agricultural Systems, 155, 213–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubey, A. N., Chattopadhyaya, N., & Mandal, N. (2021). Variation in soil microbial population and soil enzymatic activities under zincated nanoclay polymer composites (ZNCPCs), nano-ZnO and Zn solubilizers in rice rhizosphere. Agricultural Research, 10(1), 21–31.

    Article  CAS  Google Scholar 

  • Dzimitrowicz, A., Motlyka-Pomagruk, A., Cyganowski, P., Babinska, W., Terefinko, D., Jamroz, P., Lojkowska, E., Pohl, P., & Sledz, W. (2018). Antibacterial activity of fructose-stabilized silver nanoparticles produced by direct current atmospheric pressure glow discharge towards quarantine pests. Nanomaterials, 8(10), 751.

    Article  PubMed Central  CAS  Google Scholar 

  • Echeverría, J., & de Albuquerque, R. D. D. G. (2019). Nanoemulsions of essential oils: New tool for control of vector-borne diseases and in vitro effects on some parasitic agents. Medicine, 6(2), 42.

    Google Scholar 

  • Egusa, M., Matsui, H., Urakami, T., Okuda, S., Ifuku, S., Nakagami, H., & Kaminaka, H. (2015). Chitin nanofiber elucidates the elicitor activity of polymeric chitin in plants. Frontiers in Plant Science, 6, 1098.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ekroth, A. K. E., Rafaluk-Mohr, C., & King, K. C. (2019). Host genetic diversity limits parasite success beyond agricultural systems: A meta-analysis. Proceedings of the Royal Society B: Biological Sciences, 286(1911), 20191811.

    Article  PubMed  PubMed Central  Google Scholar 

  • Elakkiya, V. T., Meenakshi, R. V., Kumar, P. S., Karthik, V., Shankar, K. R., Sureshkumar, P., & Hanan, A. (2021). Green synthesis of copper nanoparticles using Sesbania aculeata to enhance the plant growth and antimicrobial activities. International Journal of Science & Environmental Technology. https://doi.org/10.1007/s13762-021-03182-9

  • Elamawi, R. M., Al-Harbi, R. E., & Hendi, A. A. (2018). Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egyptian Journal of Biological Pest Control, 28, 28.

    Article  Google Scholar 

  • El-Batal, A. I., Balabel, N. M., Attia, M. S., & El-Sayyad, G. S. (2020). Antibacterial and antibiofilm potential of mono-dispersed stable copper oxide nanoparticles-streptomycin nano-drug: Implications for some potato plant bacterial pathogen treatment. Journal of Cluster Science, 31(5), 1021–1040.

    Article  CAS  Google Scholar 

  • El-Batal, A. I., Gharib, F. A., Ghazi, S. M., Hegazi, A. Z., & AbdEl Hafz, A. G. M. (2016). Physiological responses of two varieties of common bean (Phaseolus vulgaris L.) to foliar application of silver nanoparticles. Nanomaterials and Nanotechnology, 6, 13.

    Article  CAS  Google Scholar 

  • Elbeshehy, E. K. F., Elazzazy, A. M., & Aggelis, G. (2015). Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against bean yellow mosaic virus and human pathogens. Frontiers in Microbiology, 6, 453.

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Dougdoug, N. K., Bondok, A. M., & El-Dougdoug, K. A. (2018). Evaluation of silver nanoparticles as antiviral agent against ToMV and PVY in tomato plants. Middle East Journal of Applied Science, 08(1), 100–111.

    Google Scholar 

  • Elemike, E. E., Uzoh, I. M., Onwudiwe, D. C., & Babalola, O. O. (2019). The role of nanotechnology in the fortification of plant nutrients and improvement of crop production. Applied Sciences, 9(3), 499.

    Article  CAS  Google Scholar 

  • El-Gazzar, N., & Ismail, A. M. (2020). The potential use of titanium, silver and selenium nanoparticles in controlling leaf blight of tomato caused by Alternaria alternata. Biocatalysis and Agricultural Biotechnology, 27, 101708.

    Article  Google Scholar 

  • Elgorban, A. M., El-Samawaty, A. M., Abd-Elkader, O. H., Yassin, M. A., Sayed, S. R. M., Khan, M., & Adil, S. F. (2017). Bioengineered silver nanoparticles using Curvularia pallescens and its fungicidal activity against Cladosporium fulvum. Saudi Journal of Biological Science, 24(7), 1522–1528.

    Article  CAS  Google Scholar 

  • Elmer, W., & White, J. C. (2018). The future of nanotechnology in plant pathology. Annual Review of Phytopathology, 56, 111–133.

    Article  CAS  PubMed  Google Scholar 

  • El-Naggar, M. A., Alrajhi, A. M., Fouda, M. M., Abdelkareem, E. M., Thabit, T. M., & Bouqellah, N. A. (2018). Effect of silver nanoparticles on toxigenic Fusarium spp. and deoxynivalenol secretion in some grains. Journal of AOAC International, 101(5), 1534–1541.

    Article  CAS  PubMed  Google Scholar 

  • El-Ramady, H., Abdalla, N., Alshaal, T., El-Henawy, A., Elmahrouk, M., Bayoumi, Y., Shalaby, T., Amer, M., Shehata, S., Fari, M., Domokos-Szabolcsy, E., Sztrik, A., & Prokisch, J. (2018). Plant nano-nutrition: Perspectives and challenges. In K. M. Gothandam, S. Ranjan, N. Dasgupta, C. Ramalingam, & E. Lichtfouse (Eds.), Nanotechnology, food, security and water treatment, book series: Environmental chemistry for a sustainable world (Vol. 11, pp. 129–161). Springer International Publishing.

    Google Scholar 

  • El-Ramady, H. R., Domokos-Szabolcsy, E., Abdalla, N. A., Alshaal, T. A., Shalaby, T. A., Sztrik, A., Prokisch, J., & Fari, M. (2014). Selenium and nano-selenium in agroecosystems. Environmental Chemistry Letters, 12(4), 495–510.

    Article  CAS  Google Scholar 

  • El-Saadony, M. T., Abd El-Hack, M. E., Taha, A. E., Fouda, M. M. G., Ajarem, J. S., Maodaa, S. N., Allam, A. A., & Elshaer, N. (2020). Ecofriendly synthesis and insecticidal application of copper nanoparticles against the storage pest Tribolium castaneum. Nanomaterials, 10(3), 587.

    Article  CAS  PubMed Central  Google Scholar 

  • El-Sawy, M., Elsharkawy, M., Abass, J., & Hagag, E. (2017). Inhibition of tomato yellow leaf curl virus by Zingiber officinale and Mentha longifolia extracts and silica nanoparticles. IJAA, 1(1), 1–6.

    Google Scholar 

  • Elsharkawy, M., Derbalah, A., Hamza, A., & El-Shaer, A. (2020a). Zinc oxide nanostructures as a control strategy of bacterial speck of tomato caused by Pseudomonas syringae in Egypt. Environmental Science and Pollution Research, 27(16), 19049–19057.

    Article  CAS  PubMed  Google Scholar 

  • Elsharkawy, M. M., & Derbalah, A. (2019). Antiviral activity of titanium dioxide nanostructures as a control strategy for broad bean strain virus in faba bean. Pest Management Science, 75(3), 828–834.

    Article  CAS  PubMed  Google Scholar 

  • Elsharkawy, M. M., & Mousa, K. M. (2015). Induction of systemic resistance against Papaya ring spot virus (PRSV) and its vector Myzus persicae by Penicillium simplicissimum GP17-2 and silica (SiO2) nanopowder. International Journal of Pest Management, 61(4), 353–358.

    Google Scholar 

  • Elsharkawy, M. M., Suga, H., & Shimizu, M. (2020b). Systemic resistance induced by Phoma sp. GS8-3 and nanosilica against Cucumber mosaic virus. Environmental Science and Pollution Research, 27(16), 19029–19037.

    Article  CAS  PubMed  Google Scholar 

  • Elshayb, O. M., Farroh, K. Y., Amin, H. E., & Atta, A. M. (2021). Green synthesis of zinc oxide nanoparticles: Fortification for rice grain yield and nutrients uptake enhancement. Molecules, 26(3), 584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • EPA (2011). Pesticides; policies concerning products containing nanoscale materials; opportunity for public comment. from: https://www.federalregister.gov/documents/2011/06/17/2011-14943/pesticides-policies-concerning-products-containing-nanoscale-materials-opportunity-for-public

  • Eskin, A., Ozturk, S., & Korukcu, M. (2019). Determination of the acute toxic effects of zinc oxide nanoparticles (ZnO NPs) in total hemocytes counts of Galleria mellonella (Lepidoptera: Pyralidae) with two different methods. Ecotoxicology, 28(7), 801–808.

    Google Scholar 

  • Eslami, M., Khorassani, R., Fotovat, A., & Halajnia, A. (2020). NH4+-K+ co-loaded clinoptilolite as a binary fertilizer. Archives of Agronomy and Soil Science, 66(1), 33–45.

    Article  CAS  Google Scholar 

  • FAO (2019) New standards to curb the global spread of plant pests and diseases. from: http://www.fao.org/news/story/en/item/1187738/icode/

  • FAO (2020) International Year of Plant Health. from http://www.fao.org/plant-health-2020/en/

  • Farooq, T., Adeel, M., He, Z. F., Umar, M., Shakoor, N., da Silva, W., Elmer, W., White, J. C., & Rui, Y. K. (2021). Nanotechnology and plant viruses: An emerging disease management approach for resistant pathogens. ACS Nano 15(4), 6030–6037.

    Google Scholar 

  • Feizi, H., Moghaddam, P. R., Shahtahmassebi, N., & Fotovat, A. (2012). Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biological Trace Element Research, 146(1), 101–106.

    Article  CAS  PubMed  Google Scholar 

  • Feng, J. G., Chen, W., Shen, Y. M., Chen, Q. C., Yang, J. H., Zhang, M. M., Yang, W. C., & Yuan, S. Z. (2020). Fabrication of abamectin-loaded mesoporous silica nanoparticles by emulsion-solvent evaporation to improve photolysis stability and extend insecticidal activity. Nanotechnology, 31(34), 345705.

    Article  CAS  PubMed  Google Scholar 

  • Feng, J. G., Yang, J. H., Shen, Y. M., Deng, W., Chen, W., Ma, Y. J., Chen, Z. Y., & Dong, S. (2021). Mesoporous silica nanoparticles prepared via a one-pot method for controlled release of abamectin: Properties and applications. Microporous and Mesoporous Materials, 311, 110688.

    Article  CAS  Google Scholar 

  • Ferreira, C. R., Tanaka, F. N., Bortolin, A., de Moura, M. R., & Aouada, F. A. (2018). Thermal and morphological characterization of highly porous nanocomposites for possible application in potassium controlled release. Journal of Thermal Analysis and Calorimetry, 131(3), 2205–2212.

    Article  CAS  Google Scholar 

  • Francl, L. J. (2001). The disease triangle: A plant pathological paradigm revisited. Plant Health Instructor. https://doi.org/10.1094/PHI-T-2001-0517-01

  • Fu, L., Wang, Z., Dhankher, O. P., & Xing, B. (2020). Nanotechnology as a new sustainable approach for controlling crop diseases and increasing agricultural production. Journal of Experimental Botany, 71, 507–519.

    Article  CAS  PubMed  Google Scholar 

  • Gao, Y. H., Xiao, Y. N., Mao, K. K., Qin, X. Y., Zhang, Y., Li, D. L., Zhang, Y. H., Li, J. H., Wan, H., & He, S. (2020). Thermoresponsive polymer-encapsulated hollow mesoporous silica nanoparticles and their application in insecticide delivery. Chemical Engineering Journal, 383, 123169.

    Article  CAS  Google Scholar 

  • Gao, Y. Y., Yu, S. X., Li, J. J., Sun, P. D., Xiong, M., Lei, C. L., Zhang, Z. B., & Huang, Q. Y. (2018). Bioactivity of diatomaceous earth against the subterranean termite Reticulitermes chinensis Snyder (Isoptera: Rhinotermitidae). Environmental Science and Pollution Research, 25(28), 28102–28108.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Gomez, C., Babin, M., Garcia, S., Almendros, P., Perez, R. A., & Fernandez, M. D. (2019). Joint effects of zinc oxide nanoparticles and chlorpyrifos on the reproduction and cellular stress responses of the earthworm Eisenia andrei. The Science of the Total Environment, 688, 199–207.

    Google Scholar 

  • Garcia-Lopez, J. I., Nino-Medina, G., Olivares-Saenz, E., Lira-Saldivar, R. H., Barriga-Castro, E. D., Vazquez-Alvarado, R., Rodriguez-Salinas, P. A., & Zavala-Garcia, F. (2019). Foliar application of zinc oxide nanoparticles and zinc sulfate boosts the content of bioactive compounds in habanero peppers. Plants, 8(8), 254.

    Article  CAS  PubMed Central  Google Scholar 

  • García-Sánchez, S., Gala, M., & Žoldák, G. (2021). Nanoimpact in plants: Lessons from the transcriptome. Plants, 10(4), 751.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garrett, K. A., Nita, M., Wolf, E. D., Esker, P. D., Gomez-Montano, L., & Sparks, A. H. (2016). Plant pathogens as indicators of climate change. In T. Letcher (Ed.), Climate change, 2nd edn. Observed impacts on planet earth (pp. 325–338). Elsevier.

    Google Scholar 

  • Ghidan, A. Y., Al-Antary, T. M., Awwad, A. M., Ghidan, O. Y., Araj, S. E. A., & Ateyyat, M. A. (2018). Comparison of different green synthesized nanomaterials on green peach aphid as aphicidal potential. Fresenius Environmental Bulletin, 27(10), 7009–7016.

    CAS  Google Scholar 

  • Gibson, A. K., & Nguyen, A. E. (2021). Does genetic diversity protect host populations from parasites? A meta-analysis across natural and agricultural systems. Evolution Letters, 5(1), 16–32.

    Article  PubMed  Google Scholar 

  • Gogoi, B., Kumar, R., Upadhyay, J., & Borah, D. (2020). Facile biogenic synthesis of silver nanoparticles (AgNPs) by Citrus grandis (L.) Osbeck fruit extract with excellent antimicrobial potential against plant pathogens. SN Applied Sciences, 2(10), 1723.

    Article  CAS  Google Scholar 

  • Gohari, G., Mohammadi, A., Akbari, A., Panahirad, S., Dadpour, M. R., Fotopoulos, V., & Kimura, S. (2020). Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Scientific Reports, 10, 912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guha, T., Ravikumar, K. V. G., Mukherjee, A., Mukherjee, A., & Kundu, R. (2018). Nanopriming with zero valent iron (nZVI) enhances germination and growth in aromatic rice cultivar (Oryza sativa cv. Gobindabhog L.). Plant Physiology and Biochemistry, 127, 403–413.

    Article  CAS  PubMed  Google Scholar 

  • Guilger-Casagrande, M., Germano-Costa, T., Bilesky-Jose, N., Pasquoto-Stigliani, T., Carvalho, L., Fraceto, L. F., & de Lima, R. (2021). Influence of the capping of biogenic silver nanoparticles on their toxicity and mechanism of action towards Sclerotinia scierotiorum. Journal of Nanobiotechnology, 19(1), 53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, F., Aryana, S., Han, Y., & Jiao, Y. (2018). A review of the synthesis and applications of polymer–nanoclay composites. Applied Sciences, 8, 1696.

    Article  CAS  Google Scholar 

  • Gupta, S. D., Agarwal, A., & Pradhan, S. (2018). Phytostimulatory effect of silver nanoparticles (AgNPs) on rice seedling growth: An insight from antioxidative enzyme activities and gene expression patterns. Ecotoxicology and Environmental Safety, 161, 624–633.

    Article  CAS  PubMed  Google Scholar 

  • Gusev, A. A., Kudrinsky, A. A., Zakharova, O. V., Klimov, A. I., Zherebin, P. M., Lisichkin, G. V., Vasyukova, I. A., Denisov, A. N., & Krutyakov, Y. A. (2016). Versatile synthesis of PHMB-stabilized silver nanoparticles and their significant stimulating effect on fodder beet (Beta vulgaris L.). Materials Science & Engineering. C, Materials for Biological Applications, 62, 152–159.

    Article  CAS  Google Scholar 

  • Hakim, S., Darounkola, M. R. R., Talari, H., Barghemadi, M., & Parvazinia, M. (2019). Fabrication of PVA/nanoclay hydrogel nanocomposites and their microstructural effect on the release behavior of a potassium phosphate fertilizer. Journal of Polymers and the Environment, 27(12), 2925–2932.

    Article  CAS  Google Scholar 

  • Hameed, R. S., Fayyad, R. J., Nuaman, R. S., Hamdan, N. T., & Maliki, S. A. J. (2019). Synthesis and characterization of a novel titanium nanoparticals using banana peel extract and investigate its antibacterial and insecticidal activity. Journal of Pure and Applied Microbiology, 13(4), 2241–2249.

    Article  CAS  Google Scholar 

  • Hao, Y., Yuan, W., Ma, C. X., White, J. C., Zhang, Z. T., Adeel, M., Zhou, T., Rui, Y. K., & Xing, B. S. (2018). Engineered nanomaterials suppress turnip mosaic virus infection in tobacco (Nicotiana benthamiana). Environmental Science. Nano, 5(7), 1685–1693.

    Article  CAS  Google Scholar 

  • Hasbullah, N. A., Ahmed, O. H., & Ab Majid, N. M. (2020). Effects of amending phosphatic fertilizers with clinoptilolite zeolite on phosphorus availability and its fractionation in an acid soil. Applied Sciences, 10(9), 3162.

    Article  CAS  Google Scholar 

  • Haseena, P. V., Padmavathy, K. S., Krishnan, R. P., & Madhu, G. (2016). Adsorption of ammonium nitrogen from aqueous systems using chitosan-bentonite film composite. Procedia Technology 24, 733–740.

    Google Scholar 

  • Hashem, A. S., Awadalla, S. S., Zayed, G. M., Maggi, F., & Benelli, G. (2018). Pimpinella anisum essential oil nanoemulsions against Tribolium castaneum-insecticidal activity and mode of action. Environmental Science and Pollution Research International, 25(19), 18802–18812.

    Article  CAS  PubMed  Google Scholar 

  • Hazaa, M., Alm-Eldin, M., Ibrahim, A. E., Elbarky, N., Salama, M., Sayed, R., & Sayed, W. (2021). Biosynthesis of silver nanoparticles using Borago officinslis leaf extract, characterization and larvicidal activity against cotton leaf worm, Spodoptera littoralis (Bosid). International Journal of Tropical Insect Science, 41(1), 145–156.

    Article  Google Scholar 

  • Hoffmeister, M., Gabriel, D., Thines, M., & Maier, W. (2020). Epidemiology of sage downy mildew, Peronospora salviae-officinalis. European Journal of Plant Pathology, 156(4), 1147–1162.

    Article  CAS  Google Scholar 

  • Hong, J., Wang, C., Wagner, D. C., Gardea-Torresdey, J. L., He, F., & Rico, C. M. (2021). Foliar application of nanoparticles: Mechanisms of absorption, transfer, and multiple impacts. Environmental Science. Nano, 8, 1196–1210.

    Google Scholar 

  • Hossain, A., Abdallah, Y., Ali, M. A., Masum, M. M. I., Li, B., Sun, G. C., Meng, Y. Q., Wang, Y. L., & An, Q. L. (2019). Lemon-fruit-based green synthesis of zinc oxide nanoparticles and titanium dioxide nanoparticles against soft rot bacterial pathogen Dickeya dadantii. Biomolecules, 9(12), 863.

    Article  CAS  PubMed Central  Google Scholar 

  • Humaira, R., Rahul, G., Israil, A. M., & Kumar, S. A. (2020). Impact of bioengineered copper quantum dots on germination, photosynthetic pigment and antioxidant response in chik-pea under dark stress environment. Research Journal of Biotechnology, 15(12), 120–130.

    CAS  Google Scholar 

  • Hunting, E., Vonk, J., Musters, C., Kraak, M. H. S., & Vijver, M. G. (2016). Effects of agricultural practices on organic matter degradation in ditches. Scientific Reports, 6, 21474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain, A., Rizwan, M., Ali, Q., & Ali, S. (2019). Seed priming with silicon nanoparticles improved the biomass and yield while reduced the oxidative stress and cadmium concentration in wheat grains. Environmental Science and Pollution Research, 26(8), 7579–7588.

    Article  CAS  PubMed  Google Scholar 

  • Hussein, H. A. A., Darwesh, O. M., & Mekki, B. (2019). Environmentally friendly nano-selenium to improve antioxidant system and growth of groundnut cultivars under sandy soil conditions. Biocatalysis and Agricultural Biotechnology, 18, 101080.

    Article  Google Scholar 

  • Ibrahim, A. M. A., & Ali, A. M. (2018). Silver and zinc oxide nanoparticles induce developmental and physiological changes in the larval and pupal stages of Spodoptera littoralis (Lepidoptera: Noctuidae). Journal of Asia-Pacific Entomology, 21(4), 1373–1378.

    Google Scholar 

  • Ibrahim, H. M., & Alghamdi, A. G. (2021). Effect of the particle size of clinoptilolite zeolite on water content and soil water storage in a loamy sand soil. Water, 13(5), 607.

    Article  CAS  Google Scholar 

  • Ilhami, N., Hermawan, W., Miranti, M., Melanie, M., Kasmara, H., Joni, I. M., & Panatarani, C. (2020). Encapsulation of Metarhizium anisopliae spores with zeolite nanoparticles and magnesium silicate nanoparticles against mortality and lethal times of Crocidolomia pavonana larvae. Malaysian Journal of Microbiology, 16(5), 407–413.

    CAS  Google Scholar 

  • Iliger, K. S., Sofi, T. A., Bhat, N. A., Ahanger, F. A., Sekhar, J. C., Elhendi, A. Z., Al-Huqail, A. A., & Khan, F. (2021). Copper nanoparticles: Green synthesis and managing fruit rot disease of chilli caused by Colletotrichum capsici. Saudi Journal of Biological Science, 28(2), 1477–1486.

    Article  CAS  Google Scholar 

  • Imada, K., Sakai, S., Kajihara, H., Tanaka, S., & Ito, S. (2016). Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathology, 65(4), 551–560.

    Article  CAS  Google Scholar 

  • Islam, W. (2018). Plant disease epidemiology: Disease triangle and forecasting mechanisms in highlights. Hosts Viruses, 5(1), 7–11.

    Google Scholar 

  • Itroutwar, P. D., Govindaraju, K., Tamilselvan, S., Kannan, M., Raja, K., & Subramanian, K. S. (2020b). Seaweed-based biogenic ZnO nanoparticles for improving agro-morphological characteristics of rice (Oryza sativa L.). Journal of Plant Growth Regulation, 39(2), 717–728.

    Article  CAS  Google Scholar 

  • Itroutwar, P. D., Kasivelu, G., Raguraman, V., Malaichamy, K., & Sevathapandian, S. K. (2020a). Effects of biogenic zinc oxide nanoparticles on seed germination and seedling vigor of maize (Zea mays). Biocatalysis and Agricultural Biotechnology, 29, 101778.

    Article  Google Scholar 

  • Iyaniwura, T. T. (1991). Non-target and environmental hazards of pesticides. Reviews on Environmental Health, 9(3), 161–176.

    Article  CAS  PubMed  Google Scholar 

  • Jahagirdar, A. S., Shende, S., Gade, A., & Rai, M. (2020). Bioinspired synthesis of copper nanoparticles and its efficacy on seed viability and seedling growth in mungbean (Vigna radiata L.). Current Nanoscience, 16(2), 246–252.

    Article  CAS  Google Scholar 

  • Jahangirian, H., Rafiee-Moghaddam, R., Jahangirian, N., Nikpey, B., Jahangirian, S., Bassous, N., Saleh, B., Kalantari, K., & Webster, T. J. (2020). Green synthesis of zeolite/Fe2O3 nanocomposites: Toxicity & cell proliferation assays and application as a smart iron nanofertilizer. International Journal of Nanomedicine, 15, 1005–1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jameel, M., Shoeb, M., Khan, M. T., Ullah, R., Mobin, M., Farooqi, M. K., & Adnan, S. M. (2020). Enhanced insecticidal activity of thiamethoxam by zinc oxide nanoparticles: A novel nanotechnology approach for pest control. ACS Omega, 5(3), 1607–1615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jampílek, J., & Kráľová, K. (2015). Application of nanotechnology in agriculture and food industry, its prospects and risks. Ecological Chemistry and Engineering S, 22(3), 321–361.

    Article  CAS  Google Scholar 

  • Jampílek, J., & Kráľová, K. (2017a). Nanomaterials for delivery of nutrients and growth-promoting compounds to plants. In R. Prasad, M. Kumar, & V. Kumar (Eds.), Nanotechnology: An agricultural paradigm (pp. 177–226). Springer Verlag.

    Chapter  Google Scholar 

  • Jampílek, J., & Kráľová, K. (2017b). Nanopesticides: Preparation, targeting and controlled release. In A. M. Grumezescu (Ed.), Nanotechnology in Agri-food industry—New pesticides and soil sensors (pp. 81–127). Elsevier.

    Chapter  Google Scholar 

  • Jampílek, J., & Kráľová, K. (2017c). Nano-antimicrobials: Activity, benefits and weaknesses. In A. Ficai & A. M. Grumezescu (Eds.), Nanostructures for antimicrobial therapy (pp. 23–54). Elsevier.

    Chapter  Google Scholar 

  • Jampílek, J., & Kráľová, K. (2018). Benefits and potential risks of nanotechnology applications in crop protection. In K. Abd-Elsalam & R. Prasad (Eds.), Nanobiotechnology applications in plant protection (pp. 189–246). Springer.

    Chapter  Google Scholar 

  • Jampílek, J., & Kráľová, K. (2019a). Beneficial effects of metal- and metalloid-based nanoparticles on crop production. In D. G. Panpatte & Y. K. Jhala (Eds.), Nanotechnology for agriculture (pp. 161–219). Springer Nature.

    Chapter  Google Scholar 

  • Jampílek, J., & Kráľová, K. (2019b). Impact of nanoparticles on photosynthesizing organisms and their use in hybrid structures with some components of photosynthetic apparatus. In R. Prasad (Ed.), Plant Nanobionics, nanotechnology in the life sciences (pp. 255–332).

    Google Scholar 

  • Jampílek, J., & Kráľová, K. (2019c). Nano-biopesticides in agriculture: State of art and future opportunities. In O. Koul (Ed.), Nano-biopesticides today and future perspectives (pp. 397–447). Academic Press & Elsevier.

    Chapter  Google Scholar 

  • Jampílek, J., & Kráľová, K. (2020a). Impact of nanoparticles on toxigenic fungi. In M. Rai & K. A. Abd-Elsalam (Eds.), Nanomycotoxicology—Treating mycotoxins in the Nano way (pp. 309–348). Academic Press & Elsevier.

    Google Scholar 

  • Jampílek, J., & Kráľová, K. (2020b). Nanocomposites: Synergistic nanotools for management mycotoxigenic fungi. In M. Rai & K. A. Abd-Elsalam (Eds.), Nanomycotoxicology—Treating mycotoxins in the Nano way (pp. 349–383). Academic Press & Elsevier.

    Google Scholar 

  • Jampílek, J., Kráľová, K., Campos, E. V. R., & Fraceto, L. F. (2019). Bio-based nanoemulsion formulations applicable in agriculture, medicine and food industry. In R. Prasad, V. Kumar, M. Kumar, & D. K. Choudhary (Eds.), Nanobiotechnology in bioformulations (pp. 33–84). Springer.

    Chapter  Google Scholar 

  • Jampílek, J., Kráľová, K., & Fedor, P. (2020). Bioactivity of nanoformulated synthetic and natural insecticides and their impact on the environment. In: Nanopesticides - from Research and Development to mechanisms of action and sustainable use in agriculture. In L. F. Fraceto, V. L. S. S. de Castro, R. Grillo, D. Ávila, H. C. Oliveira, & R. de Lima (Eds.), (pp. 165–225). Springer.

    Google Scholar 

  • Jaskulska, I., & Jaskulski, D. (2020). Effects of using nanoparticles of silver (AgNPs) and copper (CuNPs) in foliar fertilizers. Przemysl Chemiczny, 99(2), 250–253.

    CAS  Google Scholar 

  • Javed, B., Nadhman, A., & Mashwani, Z. U. R. (2020). Optimization, characterization and antimicrobial activity of silver nanoparticles against plant bacterial pathogens phyto-synthesized by Mentha longifolia. Material Research Express, 7(8), 085406.

    Article  CAS  Google Scholar 

  • Jayarambabu, N., Kumari, B. S., Rao, K. V., & Prabhu, Y. T. (2016). Enhancement of growth in maize by biogenic synthesized MgO nanoparticles. International Journal of Pure and Applied Zoology, 4(3), 262–270.

    Google Scholar 

  • Jeger, M. J. (2020). The epidemiology of plant virus disease: Towards a new synthesis. Plants, 9(12), 1768.

    Article  CAS  PubMed Central  Google Scholar 

  • Jhanzab, H. M., Razzaq, A., Bibi, Y., Yasmeen, F., Yamaguchi, H., Hitachi, K., Tsuchida, K., & Komatsu, S. (2019). Proteomic analysis of the effect of inorganic and organic chemicals on silver nanoparticles in wheat. International Journal of Molecular Sciences, 20(4), 825.

    Article  CAS  PubMed Central  Google Scholar 

  • Jindo, K., Evenhuis, A., Kempenaar, C., Sudre, C. P., Zhan, X. X., Teklu, M. G., & Kessel, G. (2021). Review: Holistic pest management against early blight disease towards sustainable agriculture. Pest Management Science, 77(9), 3871–3880.

    Google Scholar 

  • Jones, R. A. C. (2021). Global plant virus disease pandemics and epidemics. Plants, 10, 233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, R. A. C., & Naidu, R. A. (2019). Global dimensions of plant virus diseases: Current status and future perspectives. Annual Review of Virology, 6, 387–409.

    Article  CAS  PubMed  Google Scholar 

  • Kadmiri, I. M., El Mernissi, N., Azaroual, S. E., Mekhzoum, M. E., Qaiss, A., & Bouhfid, R. (2021). Bioformulation of microbial fertilizer based on clay and alginate encapsulation. Current Microbiology, 78(1), 86–94.

    Article  CAS  Google Scholar 

  • Kalboush, Z. A., Hassan, A. A., & Gabr, W. E. (2016). Control of rice blast and brown spot diseases by synthesized zinc oxide nanoparticles. Egyptian Journal of Biological Pest Control, 26(4), 713–720.

    Google Scholar 

  • Kalia, A., Abd-Elsalam, K. A., & Kuca, K. (2020). Zinc-based nanomaterials for diagnosis and management of plant diseases: Ecological safety and future prospects. Journal of Fungi, 6(4), 222.

    Article  CAS  PubMed Central  Google Scholar 

  • Kalpana, V. N., & Rajeswari, V. D. (2018). Synthesis of palladium nanoparticles via a green route using Lagenaria siceraria: Assessment of their innate antidandruff, insecticidal and degradation activities. Material Research Express, 5(11), 115406.

    Article  CAS  Google Scholar 

  • Kamil, D., Prameeladevi, T., Ganesh, S., Prabhakaran, N., Nareshkumar, R., & Thomas, S. P. (2017). Green synthesis of silver nanoparticles by entomopathogenic fungus Beauveria bassiana and their bioefficacy against mustard aphid (Lipaphis erysimi Kalt.). Indian Journal of Experimental Biology, 55(8), 555–561.

    CAS  Google Scholar 

  • Kanjana, D. (2020). Foliar application of magnesium oxide nanoparticles on nutrient element concentrations, growth, physiological, and yield parameters of cotton. Journal of Plant Nutrition, 43(20), 3035–3049.

    Article  CAS  Google Scholar 

  • Kannaujia, E., Srivastava, C. M., Prasad, V., Singh, B. N., & Pandey, V. (2019). Phyllanthus emblica fruit extract stabilized biogenic silver nanoparticles as a growth promoter of wheat varieties by reducing ROS toxicity. Plant Physiology and Biochemistry, 142, 460–471.

    Article  CAS  PubMed  Google Scholar 

  • Kasote, D. M., Lee, J. H. J., Jayaprakasha, G. K., & Patil, B. S. (2019). Seed priming with iron oxide nanoparticles modulate antioxidant potential and defense-linked hormones in watermelon seedlings. ACS Sustainable Chemistry & Engineering, 7(5), 5142–5151.

    Article  CAS  Google Scholar 

  • Katagi, T. (2010). Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms. Reviews of Environmental Contamination and Toxicology, 204, 1–132.

    CAS  PubMed  Google Scholar 

  • Kavallieratos, N. G., Nika, E. P., Skourti, A., Ntalli, N., Boukouvala, M. C., Ntalaka, C. T., Maggi, F., Rakotosaona, R., Cespi, M., Perinelli, D. R., Canale, A., Bonacucina, G., & Benelli, G. (2021). Developing a Hazomalania voyronii essential oil nanoemulsion for the eco-friendly management of Tribolium confusum, Tribolium castaneum and Tenebrio molitor larvae and adults on stored wheat. Molecules, 26(6), 1812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenawy, E., Azaam, M. M., & El-nshar, E. M. (2018). Preparation of carboxymethyl cellulose-g-poly (acrylamide)/montmorillonite superabsorbent composite as a slow-release urea fertilizer. Polymers for Advanced Technologies, 29(7), 2072–2079.

    Article  CAS  Google Scholar 

  • Kenawy, E., Azaam, M. M., & El-nshar, E. M. (2019). Sodium alginate-g-poly(acrylic acid-co-2-hydroxyethyl methacrylate)/montmorillonite superabsorbent composite: Preparation, swelling investigation and its application as a slow-release fertilizer. Arabian Journal of Chemistry, 12(6), 847–856.

    Article  CAS  Google Scholar 

  • Khalaki, M. A., Moameri, M., Lajayer, B. A., & Astatkie, T. (2021). Influence of nano-priming on seed germination and plant growth of forage and medicinal plants. Plant Growth Regulation, 93(1), 13–28.

    Article  CAS  Google Scholar 

  • Khan, A. U., Khan, M., & Khan, M. M. (2019). Antifungal and antibacterial assay by silver nanoparticles synthesized from aqueous leaf extract of Trigonella foenum-graecum. Bionanoscience, 9(3), 597–602.

    Article  Google Scholar 

  • Khan, I., Raza, M. A., Awan, S. A., Shah, G. A., Rizwan, M., Ali, B., Tariq, R., Hassan, M. J., Alyemeni, M. N., Brestic, M., Zhang, X. Q., Ali, S., & Huang, L. (2020). Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): The oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiology and Biochemistry, 156, 221–232.

    Article  CAS  PubMed  Google Scholar 

  • Khan, M. Z. H., Islam, M. R., Nahar, N., Al-Mamun, M. R., Khan, M. A. S., & Matin, M. A. (2021). Synthesis and characterization of nanozeolite based composite fertilizer for sustainable release and use efficiency of nutrients. Heliyon, 7(1), e06091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khati, P., Parul, B. P., Nisha, K. R., & Sharma, A. (2018). Effect of nanozeolite and plant growth promoting rhizobacteria on maize. 3 Biotech, 8, 141.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kheirallah, D. A. M., El-Samad, L. M., & Abdel-Moneim, A. (2021). DNA damage and ovarian ultrastructural lesions induced by nickel oxide nano-particles in Blaps polycresta (Coleoptera: Tenebrionidae). The Science of the Total Emvironment, 753, 141743.

    CAS  Google Scholar 

  • Kheyri, N., Norouzi, A. H., Mobasser, H. R., & Torabi, B. (2018). Application on agronomic traits, nutrient uptake and grain yield of rice (Oryza sativa L.). Applied Ecology and Environmental Research, 16(5), 5781–5798.

    Article  Google Scholar 

  • Knyazeva, E. E., & Ivanova, I. I. (2019). Synthesis of nanoscale zeolites. Petroleum Chemistry, 59(3), 262–274.

    Article  CAS  Google Scholar 

  • Kolencik, M., Ernst, D., Komar, M., Urik, M., Sebesta, M., Dobrocka, E., Cerny, I., Ilia, R., Kanike, R., Qian, Y., Feng, H., Orlova, D., & Kartosova, G. (2019). Effect of foliar spray application of zinc oxide nanoparticles on quantitative, nutritional, and physiological parameters of foxtail millet (Setaria italica L.) under field conditions. Nanomaterials, 9(11), 1559.

    Article  CAS  PubMed Central  Google Scholar 

  • Kolomiiets, Y. V., Grygoryuk, I. P., Butsenko, L. M., & Kalinichenko, A. V. (2019). Biotechnological control methods against phytopathogenic bacteria in tomatoes. Applied Ecology and Environmental Research, 17(2), 3215–3230.

    Article  Google Scholar 

  • Koohsaryan, E., & Anbia, M. (2016). Nanosized and hierarchical zeolites: A short review. Chinese Journal of Catalysis, 37(4), 447–467.

    Article  CAS  Google Scholar 

  • Korosi, L., Pertics, B., Schneider, G., Bognar, B., Kovacs, J., Meynen, V., Scarpellini, A., Pasquale, L., & Prato, M. (2020). Photocatalytic inactivation of plant pathogenic bacteria using TiO2 nanoparticles prepared hydrothermally. Nanomaterials, 10(9), 1730.

    Article  CAS  PubMed Central  Google Scholar 

  • Kottegoda, N., Sandaruwan, C., Priyadarshana, G., Siriwardhana, A., Rathnayake, U. A., Arachchige, D. M. B., Kumarasinghe, A. R., Dahanayake, D., Karunaratne, V., & Amaratunga, G. A. J. (2017). Urea-hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano, 11(2), 1214–1221.

    Article  CAS  PubMed  Google Scholar 

  • Kowalczyk, P., Sprynskyy, M., Terzyk, A. O., Lebedynets, M., Namiesnik, J., & Buszewski, B. (2006). Porous structure of natural and modified clinoptilolites. Journal of Colloid and Interface Science, 297(1), 77–85.

    Article  CAS  PubMed  Google Scholar 

  • Kráľová, K., & Jampílek, J. (2021a). Responses of medicinal and aromatic plants to engineered nanoparticles. Applied Sciences, 11, 1813.

    Article  CAS  Google Scholar 

  • Kráľová, K., & Jampílek, J. (2021b). Nanotechnology as effective tool for improved crop production under changing climatic conditions. In H. Sarma, S. Joshi, R. Prasad, & J. Jampilek (Eds.), Biobased nanotechnology for green application (pp. 463–512). Springer Nature.

    Chapter  Google Scholar 

  • Kráľová, K., & Jampílek, J. (2021c). Impact of metal nanoparticles on marine and freshwater algae. In M. Pessarakli (Ed.), Handbook of plant and crop physiology (4th ed., pp. 889-921). CRC Press, Taylor and Francis.

    Google Scholar 

  • Kráľová, K., Masarovičová, E., & Jampílek, J. (2019). Plant responses to stress induced by toxic metals and their nanoforms. In M. Pessarakli (Ed.), Handbook of plant and crop stress (4th ed., pp. 479–522). CRC Press, Taylor and Francis.

    Google Scholar 

  • Kráľová, K., Masarovičová, E., & Jampílek, J. (2021). Risks and benefits of metal-based nanoparticles for vascular. In M. Pessarakli (Ed.), Handbook of plant and crop physiology (4th ed., pp. 923-963). CRC Press, Taylor and Francis.

    Google Scholar 

  • Kumar, A., Singh, I. K., Mishra, R., Singh, A., Ramawat, N., & Singh, A. (2021). The role of zinc oxide nanoparticles in plants: A critical appraisal. In N. Sharma & S. Sahi (Eds.), Nanomaterial biointeractions at the cellular, organismal and system levels. Nanotechnology in the life sciences (pp. 249–267). Springer.

    Chapter  Google Scholar 

  • Kumar, V. K., Muthukrishnan, S., & Rajalakshmi, R. (2020). Phytostimulatory effect of phytochemical fabricated nanosilver (AgNPs) on Psophocarpus tetragonolobus (L.) DC. Seed germination: An insight from antioxidative enzyme activities and genetic similarity studies. Current Plant Biology, 23, 100158.

    Article  Google Scholar 

  • Kumari, S., Sharma, A., Chaudhary, P., & Khati, P. (2020). Management of plant vigor and soil health using two agriusable nanocompounds and plant growth promotory rhizobacteria in fenugreek. 3 Biotech, 10(11), 461.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lafmejani, Z. N., Jafari, A. A., Moradi, P., & Moghadam, A. L. (2018). Impact of foliar application of iron-chelate and iron nano particles on some morpho-physiological traits and essential oil composition of peppermint (Mentha piperita L.). Journal of Essential Oil Bearing Plants, 21(5), 1374–1384.

    Article  Google Scholar 

  • Lakshmeesha, T. R., Murali, M., Ansari, M. A., Udayashankar, A. C., Alzohairy, M. A., Almatroudi, A., Alomary, M. N., Asiri, S. M. M., Ashwini, B. S., Kalagatur, N. K., Nayak, C. S., & Niranjana, S. R. (2020). Biofabrication of zinc oxide nanoparticles from Melia azedarach and its potential in controlling soybean seed-borne phytopathogenic fungi. Saudi Journal of Biological Science, 27(8), 1923–1930.

    Article  CAS  Google Scholar 

  • Lal, R. (2020). Soil organic matter and water retention. Agronomy Journal, 112, 3265–3277.

    Article  Google Scholar 

  • Latef, A. A. H. A., Abu Alhmad, M. F., & Abdelfattah, K. E. (2017). The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) plants. Journal of Plant Growth Regulation, 36(1), 60–70.

    Article  CAS  Google Scholar 

  • Latef, A. A. H. A., Zaid, A., Abu Alhmad, M. F., & Abdelfattah, K. E. (2020). The impact of priming with Al2O3 nanoparticles on growth, pigments, osmolytes, and antioxidant enzymes of Egyptian Roselle (Hibiscus sabdariffa L.) cultivar. Agronomy, 10(5), 681.

    Article  CAS  Google Scholar 

  • Lazarevic, J., Radojkovic, A., Kostic, I., Krnjajic, S., Mitrovic, J., Kostic, M. B., Novakovic, T., Brankovic, Z., & Brankovic, G. (2018). Insecticidal impact of alumina powders against Acanthoscelides obtectus (say). Journal of Stored Products Research, 77, 45–54.

    Article  Google Scholar 

  • Leonardi, M., Caruso, G. M., Carroccio, S. C., Boninelli, S., Curcuruto, G., Zimbone, M., Allegra, M., Torrisi, B., Ferlito, F., & Miritello, M. (2021). Smart nanocomposites of chitosan/alginate nanoparticles loaded with copper oxide as alternative nanofertilizers. Environmental Science. Nano, 8(1), 174–187.

    Article  CAS  Google Scholar 

  • Leon-Jimenez, E., Valdez-Salas, B., Gonzalez-Mendoza, D., & Tzintzun-Camacho, O. (2019). Synthesis and insecticide activity of Cu-nanoparticles from Prosopis juliflora (Sw) DC and Pluchea sericea (Nutt.) on Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Revista de la Sociedad Entomológica Argentina, 78(2), 12–21.

    Google Scholar 

  • Li, C. M., Li, B. G., & Yu, J. P. (2014b). Melittin based on silica nanoparticles for agrobacterium tumefaciens inhibition. Micro Nano Letters, 9(12), 913–916.

    Article  CAS  Google Scholar 

  • Li, F., Gu, Z., Wang, B., Xie, Y., Ma, L., Xu, K., Ni, M., Zhang, H., Shen, W., & Li, B. (2014a). Effects of the biosynthesis and signaling pathway of ecdysterone on silkworm (Bombyx mori) following exposure to titanium dioxide nanoparticles. Journal of Chemical Ecology, 40, 913–922.

    Article  CAS  PubMed  Google Scholar 

  • Li, J. X., Xue, B., Cheng, X. Y., Hu, J. H., Hu, J. S., Tian, J. H., Li, F. C., Yu, X. H., & Li, B. (2018). TiO2 NPs alleviates high-temperature induced oxidative stress in silkworms. Journal of Economic Entomology, 111(2), 879–884.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Abegunrin, T. P., Guo, H., Huang, Z. G., Are, K. S., Wang, H. L., Gu, M. H., & Wei, L. C. (2020a). Variation of dissolved nutrient exports by surface runoff from sugarcane watershed is controlled by fertilizer application and ground cover. Agriculture, Ecosystems and Environment, 303, 107121.

    Article  CAS  Google Scholar 

  • Li, Y. D., Liu, Y. L., Yang, D. S., Jin, Q., Wu, C. L., & Cui, J. H. (2020b). Multifunctional molybdenum disulfide-copper nanocomposite that enhances the antibacterial activity, promotes rice growth and induces rice resistance. Journal of Hazardous Materials, 394, 122551.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y. Y., Ni, M., Li, F. C., Zhang, H., Xu, K. Z., Zhao, X. M., Tian, J. H., Hu, J. S., Wang, B. B., Shen, W. D., & Li, B. (2016). Effects of TiO2 NPs on silkworm growth and feed efficiency. Biological Trace Element Research, 169(2), 382–386.

    Article  CAS  PubMed  Google Scholar 

  • Liang, Y., Gao, Y. H., Wang, W. C., Dong, H. Q., Tang, R., Yang, J. L., Niu, J. F., Zhou, Z. Y., Jiang, N., & Cao, Y. S. (2020). Fabrication of smart stimuli-responsive mesoporous organosilica nano-vehicles for targeted pesticide delivery. Journal of Hazardous Materials, 389, 122075.

    Article  CAS  PubMed  Google Scholar 

  • Liu, R. Q., & Lal, R. (2017). Nanofertilizers. In R. Lal (Ed.), Encyclopedia of soil science (Vol. I-III, 3rd ed., pp. 1511–1515). CRC Press.

    Google Scholar 

  • Liu, R. Q., Zhang, H. Y., & Lal, R. (2016). Concentrations on lettuce (Lactuca sativa) seed germination: Nanotoxicants or nanonutrients? Water, Air, and Soil Pollution, 227(1), 42.

    Article  CAS  Google Scholar 

  • Lopez-Garcia, G. P., Buteler, M., & Stadler, T. (2018). Testing the insecticidal activity of nanostructured alumina on Sitophilus oryzae (L.) (Coleoptera: Curculionidae) under laboratory conditions using galvanized steel containers. Insects, 9(3), 87.

    Article  PubMed Central  Google Scholar 

  • Lopez-Munoz, D., Ochoa-Zapater, M. A., Torreblanca, A., & Garcera, M. D. (2019). Evaluation of the effects of titanium dioxide and aluminum oxide nanoparticles through tarsal contact exposure in the model insect Oncopeltus fasciatus. The Science of the Total Environment, 666, 759–765.

    Article  CAS  PubMed  Google Scholar 

  • Lu, X. H., Sun, D. Q., Rookes, J. E., Kong, L. X., Zhang, X. M., & Cahill, D. M. (2019). Nanoapplication of a resistance inducer to reduce Phytophthora disease in pineapple (Ananas comosus L.). Frontiers in Plant Science, 10, 1238.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo, X. Q., Zhang, C. L., Xu, W. H., Peng, Q., Jiao, L. C., & Deng, J. B. (2020). Effects of nanometer magnesium hydroxide on growth, cadmium (Cd) uptake of chinese cabbage (Brassica campestris) and soil cd form. International Journal of Agriculture and Biology, 24(4), 1006–1016.

    Google Scholar 

  • Lyu, S. H., Wei, X. Y., Chen, J. J., Wang, C., Wang, X. M., & Pan, D. M. (2017). Titanium as a beneficial element for crop production. Frontiers in Plant Science, 8, 597.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maghsoodi, M. R., Ghodszad, L., & Lajayer, B. A. (2020b). Dilemma of hydroxyapatite nanoparticles as phosphorus fertilizer: Potentials, challenges and effects on plants. Environmental Technology and Innovation, 19, 100869.

    Article  Google Scholar 

  • Maghsoodi, M. R., Najafi, N., Reyhanitabar, A., & Oustan, S. (2020a). Hydroxyapatite nanorods, hydrochar, biochar, and zeolite for controlled-release urea fertilizers. Geoderma, 379, 114644.

    Article  CAS  Google Scholar 

  • Mahakham, W., Sarmah, A. K., Maensiri, S., & Theerakulpisut, P. (2017). Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Scientific Reports, 7, 8263.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mahakham, W., Theerakulpisut, P., Maensiri, S., Phumying, S., & Sarmah, A. K. (2016). Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination. The Science of the Total Environment, 573, 1089–1102.

    Article  CAS  PubMed  Google Scholar 

  • Mahawar, H., Prasanna, R., Gogoi, R., & Singh, A. K. (2020b). Differential modes of disease suppression elicited by silver nanoparticles alone and augmented with Calothrix elenkinii against leaf blight in tomato. European Journal of Plant Pathology, 157(3), 663–678.

    Google Scholar 

  • Mahawar, H., Prasanna, R., Gogoi, R., Singh, S. B., Chawla, G., & Kumar, A. (2020a). Synergistic effects of silver nanoparticles augmented Calothrix elenkinii for enhanced biocontrol efficacy against Alternaria blight challenged tomato plants. 3 Biotech, 10(3), 102.

    Article  PubMed  PubMed Central  Google Scholar 

  • Malaikozhundan, B., Vaseeharan, B., Vijayakumar, S., & Thangaraj, M. P. (2017). Bacillus thuringiensis coated zinc oxide nanoparticle and its biopesticidal effects on the pulse beetle, Callosobruchus maculatus. Journal of Photochemistry and Photobiology. B, 174, 306–314.

    Article  CAS  Google Scholar 

  • Malaikozhundan, B., & Vinodhini, J. (2018). Nanopesticidal effects of Pongamia pinnata leaf extract coated zinc oxide nanoparticle against the pulse beetle, Callosobruchus maculates. Materials Today Communication, 14, 106–115.

    Article  CAS  Google Scholar 

  • Malathi, S., Rameshkumar, G., Rengarajan, R. L., Rajagopar, T., Muniasamy, S., & Ponmanickam, P. (2019). Phytofabrication of silver nanoparticles using Annona reticulata and assessment of insecticidal and bactericidal activities. Journal of Environmental Biology, 40(4), 626–633.

    Article  CAS  Google Scholar 

  • Mandal, N., Datta, S. C., Manjaiah, K. M., Dwivedi, B. S., Kumar, R., & Aggarwal, P. (2019). Evaluation of zincated nanoclay polymer composite in releasing Zn and P and effect on soil enzyme activities in a wheat rhizosphere. European Journal of Soil Science, 70(6), 1164–1182.

    Article  CAS  Google Scholar 

  • Mansoor, N., Younus, A., Jamil, Y., & Shahid, M. (2019). Assessment of nutritional quality, yield and antioxidant activity of Triticum aestivum treated with zinc oxide nanoparticles. Digest Journal of Nanomaterials and Biostructures, 14(2), 491–500.

    Google Scholar 

  • Marathe, K., Naik, J. & Maheshwari, V. (2021). Biogenic synthesis of silver nanoparticles using streptomyces spp. and their antifungal activity against Fusarium verticillioides. Journal of Cluster Science 32, 1299–1309.

    Google Scholar 

  • Marchiol, L., Filippi, A., Adamiano, A., Esposti, L. D., Iafisco, M., Mattiello, A., Petrussa, E., & Braidot, E. (2019). Influence of hydroxyapatite nanoparticles on germination and plant metabolism of tomato (Solanum lycopersicum L.): Preliminary evidence. Agronomy, 9(4), 161.

    Article  CAS  Google Scholar 

  • Marquez, V. G., Moreno, A. M., Mendoza, A. B., & Macias, J. M. (2020). Ionic selenium and nanoselenium as biofortifiers and stimulators of plant metabolism. Agronomy, 10(9), 1399.

    Article  CAS  Google Scholar 

  • Martins, N. C. T., Avellan, A., Rodrigues, S., Salvador, D., Rodrigues, S. M., & Trindade, T. (2020). Composites of biopolymers and ZnO NPs for controlled release of zinc in agricultural soils and timed delivery for maize. ACS Applied Nano Material, 3(3), 2134–2148.

    Article  CAS  Google Scholar 

  • Marucci, R. C., Freitas, L. M., Santos-Rasera, J. R., Alves, D. S., Carvalho, G. A., & de Carvalho, H. W. P. (2019). Are cerium oxide nanoparticles transferred from plants to the aphid Myzus persicae (Hemiptera: Aphididae)? Florida Entomologist, 102(3), 555–561.

    Article  Google Scholar 

  • Masarovičová, E., & Kráľová, K. (2013). Metal nanoparticles and plants. Ecological Chemistry and Engineering S, 20(1), 9–22.

    Article  CAS  Google Scholar 

  • Masarovičová, E., Kráľová, K., & Zinjarde, S. S. (2014). Metal nanoparticles in plants. Formation and action. In M. Pessarakli (Ed.), Handbook of plant and crop physiology (3rd ed., pp. 683–731). CRC Press, Taylor and Francis.

    Google Scholar 

  • Maswada, H. F., Djanaguiraman, M., & Prasad, P. V. V. (2018). Seed treatment with nano-iron (III) oxide enhances germination, seeding growth and salinity tolerance of sorghum. Journal of Agronomy and Crop Science, 204(6), 577–587.

    Article  CAS  Google Scholar 

  • Mathur, P., & Roy, S. (2020). Nanosilica facilitates silica uptake, growth and stress tolerance in plants. Plant Physiology and Biochemistry, 157, 114–127.

    Article  CAS  PubMed  Google Scholar 

  • Mazloomi, F., & Jalali, M. (2019). Effects of vermiculite, nanoclay and zeolite on ammonium transport through saturated sandy loam soil: Column experiments and modeling approaches. Catena, 176, 170–180.

    Article  CAS  Google Scholar 

  • McCusker, L. B., & Baerlocher, C. (2001). Zeolite structures. In H. van Bekkum, E. M. Flanigen, P. A. Jacobs, & J. C. Jansen (Eds.), Introduction to zeolite science and practice, studies in surface science and catalysis (Vol. 137, pp. 37–67). Elsevier.

    Google Scholar 

  • Mehmood, A., & Murtaza, G. (2017). Application of SNPs to improve yield of Pisum sativum L. (pea). IET Nanobiotechnology, 11(4), 390–394.

    Article  PubMed  Google Scholar 

  • Mendez-Trujillo, V., Valdez-Salas, B., Carrillo-Beltran, M., Curiel-Alvarez, M. A., Tzintzun-Camacho, O., Cecena-Duran, C., & Gonzalez-Mendoza, D. (2019). Green synthesis of bimetallic nanoparticles from Prosopis juliflora (Sw) DC., and its effect against cotton mealybug, Phenacoccus solenopsis (Hemiptera: Pseudococcidae). Phyton-International Journal of Experimental Botany, 88(3), 269–275.

    Google Scholar 

  • Menzies Pluer, E. G., Schneider, R., Morreale, S., Liebig, M. A., Li, J., Li, C. X., & Walter, M. T. (2020). Returning degraded soils to productivity: An examination of the potential of coarse woody amendments for improved water retention and nutrient holding capacity. Water, Air, and Soil Pollution, 231, 15.

    Article  CAS  Google Scholar 

  • Messa, L. L., Froes, J. D., Souza, C. F., & Faez, R. (2016). Chitosan-clay hybrid for encapsulation of fertilizers and release sustained of potassium nitrate fertilizer. Quim Nova, 39(10), 1215–1220.

    CAS  Google Scholar 

  • Mikhak, A., Sohrabi, A., Kassaee, M. Z., & Feizian, M. (2017). Synthetic nanozeolite/nanohydroxyapatite as a phosphorus fertilizer for German chamomile (Matricaria chamomilla L.). Industrial Crops and Products, 95, 444–452.

    Article  CAS  Google Scholar 

  • Mikhak, A., Sohrabi, A., Kassaee, M. Z., & Feizian, M. (2018). Effect of nanoclinoptilolite/ nanohydroxyapatite mixtures on phosphorus solubility in soil. Journal of Plant Nutrition, 41(10), 1227–1239.

    Article  CAS  Google Scholar 

  • Mikula, K., Izydorczyk, G., Skrzypczak, D., Mironiuk, M., Moustakas, K., Witek-Krowiak, A., & Chojnacka, K. (2020). Controlled release micronutrient fertilizers for precision agriculture - a review. The Science of the Total Environment, 712, 136365.

    Article  CAS  PubMed  Google Scholar 

  • Mishra, S., Singh, B. R., Singh, A., Keswani, C., Naqvi, A. H., & Singh, H. B. (2014). Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One, 9(5), e97881.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mittal, D., Kaur, G., Singh, P., Yadav, K., & Ali, S. A. (2020). Nanoparticle-based sustainable agriculture and food science: Recent advances and future outlook. Frontiers in Nanotechnology, 2, 579954.

    Article  Google Scholar 

  • Mohamed, A. K. S. H., Qayyum, M. F., Abdel-Hadi, A. M., Rehman, R. A., Ali, S., & Rizwan, M. (2017). Interactive effect of salinity and silver nanoparticles on photosynthetic and biochemical parameters of wheat. Archives of Agronomy and Soil Science, 63(12), 1736–1747.

    Article  CAS  Google Scholar 

  • Mondal, M., Biswas, B., Garai, S., Sarkar, S., Banerjee, H., Brahmachari, K., Bandyopadhyay, P. K., Maitra, S., Brestic, M., Skalicky, M., Ondrisik, P., & Hossain, A. (2021). Zeolites enhance soil health, crop productivity and environmental safety. Agronomy, 11(3), 448.

    Article  CAS  Google Scholar 

  • Morales-Espinoza, M. C., Cadenas-Pliego, G., Perez-Alvarez, M., Hernandez-Fuentes, A. D., de la Fuente, M. C., Benavides-Mendoza, A., Valdes-Reyna, J., & Juarez-Maldonado, A. (2019). Se nanoparticles induce changes in the growth, antioxidant responses, and fruit quality of tomato developed under NaCl stress. Molecules, 24(17), 3030.

    Article  CAS  PubMed Central  Google Scholar 

  • Mosquera-Sanchez, L. P., Arciniegas-Grijalba, P. A., Patino-Portela, M. C., Guerra-Sierra, B. E., Munoz-Florez, J. E., & Rodriguez-Paez, J. E. (2020). Antifungal effect of zinc oxide nanoparticles (ZnO-NPs) on Colletotrichum sp., causal agent of anthracnose in coffee crops. Biocatalysis and Agricultural Biotechnology, 25, 101579.

    Article  Google Scholar 

  • Mozafariyan, M., Kamelmanesh, M. M., & Hawrylak-Nowak, B. (2016). Ameliorative effect of selenium on tomato plants grown under salinity stress. Archives of Agronomy and Soil Science, 62, 1368–1380.

    Article  CAS  Google Scholar 

  • Murugan, K., Roni, M., Panneerselvam, C., Aziz, A., Suresh, U., Rajaganesh, R., Aruliah, R., Mahyoub, J. A., Trivedi, S., Rehman, H., Hatem, A. N. A., Kumar, S., Higuchi, A., Vaseeharan, B., Wei, H., Senthil-Nathan, S., Canale, A., & Benelli, G. (2018). Sargassum wightii-synthesized ZnO nanoparticles reduce the fitness and reproduction of the malaria vector Anopheles stephensi and cotton bollworm Helicoverpa armigera. Physiological and Molecular Plant Pathology, 101, 202–213.

    Article  CAS  Google Scholar 

  • Nanografi Nano Technology (2021) Nanoclay: Properties, production, applications. from: https://nanografi.com/blog/nanoclay-properties-production-applications/

  • Nan-Yao, L., Wen-Chien, K., & Po-Ren, H. (2019). Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Frontiers in Pharmacology, 10, 1153.

    Article  CAS  Google Scholar 

  • Narendrakumar, G., & Namasivayam, S. K. R. (2021). Surface-modified nanosilica-chitinase (SiNp-Chs)-doped nano enzyme conjugate and its synergistic pesticidal activity with plant extracts against armyworm Spodoptera litura (fab.) (Lepidoptera: Noctuidae). IET Nanobiotechnology, 15(1), 117–134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naseem, F., Zhi, Y., Farrukh, M. A., Hussain, F., & Yin, Z. Y. (2020). Mesoporous ZnAl2Si10O24 nanofertilizers enable high yield of Oryza sativa L. Scientific Reports, 10(1), 10841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navas-Castillo, J., & Fiallo-Olivé, E. (2017). Plant virus diseases: Epidemiology. eLS. https://doi.org/10.1002/9780470015902.a0000759.pub2

  • Neto, M. E., Britt, D. W., Lara, L. M., Cartwright, A., dos Santos, R. F., Inoue, T. T., & Batista, M. A. (2020). Initial development of corn seedlings after seed priming with nanoscale synthetic zinc oxide. Agronomy, 10(2), 307.

    Article  CAS  Google Scholar 

  • Noshad, A., Hetherington, C., & Iqbal, M. (2019a). Impact of AgNPs on seed germination and seedling growth: A focus study on its antibacterial potential against Clavibacter michiganensis subsp. michiganensis infection in Solanum lycopersicum. Journal of Nanomaterials, 2019, 6316094.

    Article  CAS  Google Scholar 

  • Noshad, A., Iqbal, M., Folkers, L., Hetherington, C., Khan, A., Numan, M., & Ullah, S. (2019b). Antibacterial effect of silver nanoparticles (AgNPs) synthesized from Trichoderma harzianum against Clavibacter michiganensis. Journal of Nano Research, 58, 10–19.

    Article  CAS  Google Scholar 

  • Nozhkina, A., Perfileva, A. I., Graskova, I. A., Dyakova, A. V., Nurminsky, V. N., Klimenkov, I. V., Ganenko, T. V., Borodina, T. N., Aleksandrova, G. P., Sukhov, B. G., & Trofimov, B. A. (2019). Macromolecules with respect to ring rot pathogenesis of potato plants. Nanotechnologies in Russia, 14(5–6), 255–262.

    Article  CAS  Google Scholar 

  • Palmqvist, N. G. M., Seisenbaeva, G. A., Svedlindh, P., & Kessler, V. G. (2017). Maghemite nanoparticles acts as nanozymes, improving growth and abiotic stress tolerance in Brassica napus. Nanoscale Research Letters, 12, 631.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pandiarajan, J., & Krishnan, M. (2017). Properties, synthesis and toxicity of silver nanoparticles. Environmental Chemistry Letters, 15(3), 387–397.

    Article  CAS  Google Scholar 

  • Paparella, S., Araújo, S. S., Rossi, G., Wijayasinghe, M., Carbonera, D., & Balestrazzi, A. (2015). Seed priming: State of art and new perspectives. Plant Cell Reports, 34(8), 1281–1293.

    Article  CAS  PubMed  Google Scholar 

  • Pavelic, S. K., Medica, J. S., Gumbarevic, D., Filosevic, A., Przulj, N., & Pavelic, K. (2018). Critical review on zeolite clinoptilolite safety and medical applications in vivo. Frontiers in Pharmacology, 9, 1350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavoni, L., Perinelli, D. R., Bonacucina, G., Cespi, M., & Palmieri, G. F. (2020). An overview of micro- and nanoemulsions as vehicles for essential oils: Formulation, preparation and stability. Nanomaterials, 10(1), 135.

    Article  CAS  PubMed Central  Google Scholar 

  • Pereira, T. D., Binotto, V. D. D. N., & Faez, R. (2020). Multilayer films of carboxymethylcellulose/zeolite as smart materials for macro and micronutrients delivery. Microporous, 302, 110195.

    Article  CAS  Google Scholar 

  • Perfileva, A. I., Nozhkina, O. A., Tretyakova, M. S., Graskova, I. A., Klimenkov, I. V., Sudakov, N. P., Alexandrova, G. P., & Sukhov, B. G. (2020). Biological activity and environmental safety of selenium nanoparticles encapsulated in starch macromolecules. Nanotechnologies in Russia, 15(1), 96–104.

    Article  CAS  Google Scholar 

  • Perveen, G., Urooj, F., Moin, S., & Farhat, H. (2020). Estimation of losses caused by root rotting fungi and root knot nematodes infecting some important crops in lower Sindh and Hub, Balochistan of Pakistan. Pakistan Journal of Botany, 52(2), 673–678.

    Article  Google Scholar 

  • Pham, N. D., Duong, M. M., Le, M. V., Hoang, H. A., & Pham, L. K. O. (2019). Preparation and characterization of antifungal colloidal copper nanoparticles and their antifungal activity against Fusarium oxysporum and Phytophthora capsici. Comptes Rendus Chimie, 22(11–12), 786–793.

    Google Scholar 

  • Prajapati, R., Kataria, S., & Jain, M. (2020). Seed priming for alleviation of heavy metal toxicity in plants: An overview. Plant Science Today, 7(3), 308–313.

    Article  CAS  Google Scholar 

  • Priyam, A., Das, R. K., Schultz, A., & Singh, P. P. (2019). A new method for biological synthesis of agriculturally relevant nanohydroxyapatite with elucidated effects on soil bacteria. Scientific Reports, 9, 15083.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pulimi M, Subramanian S, (2016) Nanomaterials for soil fertilisation and contaminant removal. In: Ranjan S, Dasgupta Nm Lichtfouse E (eds) Nanoscience in Food and Agriculture 1, vol. 20, Springer International Publishing, pp. 229–246.

    Chapter  Google Scholar 

  • Queiros, J., Malca, J., & Freire, F. (2015). Environmental life-cycle assessment of rapeseed produced in Central Europe: Addressing alternative fertilization and management practices. Journal of Cleaner Production, 99, 266–274.

    Article  CAS  Google Scholar 

  • Quiterio-Gutierrez, T., Ortega-Ortiz, H., Cadenas-Pliego, G., Hernandez-Fuentes, A. D., Sandoval-Rangel, A., Benavides-Mendoza, A., Cabrera-de la Fuente, M., & Juarez-Maldonado, A. (2019). The application of selenium and copper nanoparticles modifies the biochemical responses of tomato plants under stress by Alternaria solani. International Journal of Molecular Sciences, 20(8), 1950.

    Article  CAS  PubMed Central  Google Scholar 

  • Rafique, M., Jahangir, J., Amin, B. A. Z., Tahir, M. B., Nabi, G., Khan, M. I., Khalid, N. R., Gillani, S. S. A., & Sadaf, I. (2019). Investigation of photocatalytic and seed germination effects of TiO2 nanoparticles synthesized by Melia azedarach L. leaf extract. Journal of Inorganic and Organometallic Polymers and Materials, 29(6), 2133–2144.

    Article  CAS  Google Scholar 

  • Ragavan, P., Ananth, A., & Rajan, M. R. (2017). Impact of selenium nanoparticles on growth, biochemical characteristics and yield of cluster bean Cyamopsis tetragonoloba. IJEAB, 2(6), 2917–2926.

    Article  Google Scholar 

  • Ragab, G., & Saad-Allah, K. (2021). Seed priming with greenly synthesized sulfur nanoparticles enhances antioxidative defense machinery and restricts oxidative injury under manganese stress in Helianthus annuus (L.) seedlings. Journal of Plant Growth Regulation, 40, 1894–190

    Google Scholar 

  • Rahman, M. A., Parvin, A., Khan, M. S. H., Lingaraju, K., Prasad, R., Das, S., Hussain, B., War, A. R., & Bhattacharyya, A. (2021). Efficacy of the green synthesized nickel-oxide nanoparticles against pulse beetle, Callosobruchus maculatus (F.) in black gram (Vigna mungo L.). International Journal of Pest Management, 67(4), 306–314.

    Google Scholar 

  • Rai, M., Ingle, A. P., Pandit, R., Paralikar, P., Shende, S., Gupta, I., Biswas, J. K., & da Silva, S. S. (2018). Copper and copper nanoparticles: Role in management of insect-pests and pathogenic microbes. Nanotechnology Reviews, 7(4), 303–315.

    Article  CAS  Google Scholar 

  • Rajwade, J. M., Chikte, R. G., & Paknikar, K. M. (2020). Nanomaterials: New weapons in a crusade against phytopathogens. Applied Microbiology and Biotechnology, 104, 1437–1461.

    Article  CAS  PubMed  Google Scholar 

  • Raliya, R., Biswas, P., & Tarafdae, J. C. (2015). TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnology Reports (Amsterdam, Netherlands), 5, 22–26.

    Google Scholar 

  • Raliya, R., Saharan, V., Dimkpa, C., & Biswas, P. (2018). Nanofertilizer for precision and sustainable agriculture: Current state and future perspectives. Journal of Agricultural and Food Chemistry, 66(26), 6487–6503.

    Article  CAS  PubMed  Google Scholar 

  • Ramkumar, G., Asokan, R., Ramya, S., & Gayathri, G. (2020). Characterization of Trigonella foenum-graecum derived iron nanoparticles and its potential pesticidal activity against Tuta absoluta (Lepidoptera). Journal of Cluster Science. https://doi.org/10.1007/s10876-020-01867-8

  • Rana, K., Kumari, M., Mishra, A., & Pudake, R. N. (2019). Engineered nanoparticles for increasing micronutrient use efficiency. In R. N. Pudake, N. Chauhan, & C. Kole (Eds.), Nanoscience For Sustainable Agriculture (pp. 25–49). Springer Verlag.

    Chapter  Google Scholar 

  • Ranjbar, S., Ramezanian, A., & Rahemi, M. (2020). Nano-calcium and its potential to improve ‘Red Delicious’ apple fruit characteristics. Horticulture, Environment and Biotechnology, 61(1), 23–30.

    Article  CAS  Google Scholar 

  • Rankic, I., Janova, A., Sturikova, H., & Huska, D. (2019). Insecticidal effect of silica dioxide nanoparticles against Tenebrio molitor larvae. In R. Cerkal, N. B. Belcredi, L. Prokesova, & A. Pilatova (Eds.), Mendelnet 2019: Proceedings of 26th international PhD students conference (pp. 104–107). Mendel University in Brno.

    Google Scholar 

  • Rastogi, A., Zivcak, M., Sytar, O., Kalaji, H. M., He, X. L., Mbarki, S., & Brestic, M. (2017). Impact of metal and metal oxide nanoparticles on plant: A critical review. Frontiers in Chemistry, 5, 78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Razzaq, A., Ammara, R., Jhanzab, H. M., Mahmood, T., Hafeez, A., & Hussain, S. (2016). A novel nanomaterial to enhance growth and yield of wheat. Journal of Nanoscience Technology, 2, 55–58.

    Google Scholar 

  • Rizwan, M., Ali, S., Qayyum, M. F., Ok, Y. S., Adrees, M., Ibrahim, M., Rehman, M. Z. U., Farid, M., & Abbas, S. (2017). Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review. Journal of Hazardous Materials, 322A, 2–16.

    Google Scholar 

  • Rizwan, M., Ali, S., Ali, B., Adrees, M., Arshad, M., Hussain, A., Rehman, M. Z. U., & Waris, A. A. (2019). Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere, 214, 269–277.

    Article  CAS  PubMed  Google Scholar 

  • Rizwan, M., Ali, S., Qayyum, M. F., Ok, Y. S., Adrees, M., Ibrahim, M., Rehman, M. Z. U., Farid, M., & Abbas, S. (2017). Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review. Journal of Hazardous Materials, 322A, 2–16.

    Article  CAS  Google Scholar 

  • Rodriguez-Gonzalez, V., Terashima, C., & Fujishima, A. (2019). Applications of photocatalytic titanium dioxide-based nanomaterials in sustainable agriculture. Journal of Photochemistry and Photobiology C, 40, 49–67.

    Article  CAS  Google Scholar 

  • Rouhani, M., Samih, M. A., & Kalantari, S. (2012). Insecticide effect of silver and zinc nanoparticles against Aphis nerii Boyer de Fonscolombe (Hemiptera: Aphidae). Chilian Journal of Agricultural Research, 72(4), 590–594.

    Article  Google Scholar 

  • Ruddaraju, L. K., Pammi, S. V. N., Guntuku, G. S., Padavala, V. S., & Kolapalli, V. R. M. (2020). A review on anti-bacterials to combat resistance: From ancient era of plants and metals to present and future perspectives of green nano technological combinations. Asian Journal of Pharmaceutical Sciences, 15(1), 42–59.

    Article  PubMed  Google Scholar 

  • Rudmin, M. A., Reva, I. V., Yakich, T. Y., Soktoev, B. R., Buyakov, A. S., Tabakaev, R. B., & Ibraeva, K. (2021). Montmorillonite as a prospective composite mineral for the creation of modern slow-release fertilizers. Bulletin of the Tomsk Polytechnic University-Geo Assets Engineering, 332(1), 14–22.

    Google Scholar 

  • Saad-Allah, K. M., & Ragab, G. A. (2020). Sulfur nanoparticles mediated improvement of salt tolerance in wheat relates to decreasing oxidative stress and regulating metabolic activity. Physiology and Molecular Biology of Plants, 26(11), 2209–2223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saboor, A., Mustafa, G., Arshad, M., Ahmad, M., Hussain, S., Ahmed, N., Ahmad, S., Shahid, M., & Ali, M. A. (2019). Seed priming and metal/metalloid stress tolerance in plants. In M. Hasanuzzaman & V. Fotopoulos (Eds.), Priming and pretreatment of seeds and seedlings: Implication in plant stress tolerance and enhancing productivity in crops plants (pp. 287–311). Springer Verlag.

    Google Scholar 

  • Sahin, B., Soylu, S., Kara, M., Turkmen, M., Aydin, R., & Cetin, H. (2021). Superior antibacterial activity against seed-borne plant bacterial disease agents and enhanced physical properties of novel green synthesized nanostructured ZnO using Thymbra spicata plant extract. Ceramics International, 47(1), 341–350.

    Article  CAS  Google Scholar 

  • Salcido-Martinez, A., Sanchez, E., Licon-Trillo, L. P., Perez-Alvarez, S., Palacio-Marquez, A., Amaya-Olivas, N. I., & Preciado-Rangel, P. (2020). Impact of the foliar application of magnesium nano fertilizer on physiological and biochemical parameters and yield in green beans. Notulae Botanicae Horti Agrobotanici Cluj Napoca, 48(4), 2167–2181.

    Article  Google Scholar 

  • Saldivar, R. H. L., Arguello, B. M., Reyes, I. V., & de los Villarreal, G. (2018). Agronanotechnology: A new tool for modern agriculture. Revista de la Facultad de Ciencias Agrarias, 50(2), 395–411.

    Google Scholar 

  • Samart, S., & Chutipaijit, S. (2019). Growth of pigmented rice (Oryza sativa L. cv. Riceberry) exposed to ZnO nanoparticles. Materials Today Proceedings, 17(Part 4), 1987-1994.

    Google Scholar 

  • Sanivada, S. K., Pandurangi, V. S., & Challa, M. M. (2017). Nanofertilizers for sustainable soil management. In S. Ranjan, N. Dasgupta, & E. Lichtfouse (Eds.), Nanoscience in food and agriculture 5, book series: Sustainable agriculture reviews (Vol. 26, pp. 267–307). Springer International Publishing.

    Chapter  Google Scholar 

  • Santo Pereira, A. D., Oliveira, H. C., Fraceto, L. F., & Santaella, C. (2021). Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials, 11(2), 267.

    Article  CAS  Google Scholar 

  • Satti, S. H., Raja, N. I., Javed, B., Akram, A., Mashwani, Z. U. R., Ahmad, M. S., & Ikram, M. (2021). Titanium dioxide nanoparticles elicited agro-morphological and physicochemical modifications in wheat plants to control Bipolaris sorokiniana. PLoS One, 16(2), e0246880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saurabh, K., Math, M. K., Datta, S. C., Thekkumpurath, A. S., & Kumar, R. (2019). Nanoclay polymer composites loaded with urea and nitrification inhibitors for controlling nitrification in soil. Archives of Agronomy and Soil Science, 65(4), 478–491.

    Article  CAS  Google Scholar 

  • Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N., & Nelson, A. (2019). The global burden of pathogens and pests on major food crops. Nature Ecology and Evolution, 3, 430–439.

    Article  PubMed  Google Scholar 

  • Savassa, S. M., Duran, N. M., Rodrigues, E. S., de Almeida, E., van Gestel, C. A. M., Bompadre, T. F. V., & de Carvalho, H. W. P. (2018). Effects of ZnO nanoparticles on Phaseolus vulgaris germination and seedling development determined by X-ray spectroscopy. ACS Applied Nano Materials, 1(11), 6414–6426.

    Article  CAS  Google Scholar 

  • Shafie, R. M., Salama, A. M., & Farroh, K. Y. (2018). Silver nanoparticles activity against tomato spotted wilt virus. Middle East Journal of Agricultural Research, 7(4), 1251–1267.

    Google Scholar 

  • Shah, T., Latif, S., Saeed, F., Ali, I., Ullah, S., Alsahli, A. A., Jan, S., & Ahmad, P. (2021). Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress. Journal of King Saud University—Science, 33(1), 101207.

    Article  Google Scholar 

  • Shahryari, F., Rabiei, Z., & Sadighian, S. (2020). Antibacterial activity of synthesized silver nanoparticles by sumac aqueous extract and silver-chitosan nanocomposite against Pseudomonas syringae pv. syringae. Journal of Plant Pathology, 102(2), 469–475.

    Google Scholar 

  • Shahzad, A., Ullah, S., Dar, A. A., Sardar, M. F., Mehmood, T., Tufail, M. A., Shakoor, A., & Haris, M. (2021). Nexus on climate change: Agriculture and possible solution to cope future climate change stresses. Environmental Science and Pollution Research, 28(12), 14211–14232.

    Article  PubMed  Google Scholar 

  • Shang, Y., Hasan, M. K., Ahammed, G. J., Li, M., Yin, H., & Zhou, J. (2019). Applications of nanotechnology in plant growth and crop protection: A review. Molecules, 24, 2558.

    Article  CAS  PubMed Central  Google Scholar 

  • Sharifi, R. S., Khalilzadeh, R., Pirzad, A., & Anwar, S. (2020). Effects of biofertilizers and nano zinc-iron oxide on yield and physicochemical properties of wheat under water deficit conditions. Communication in Soil Science and Plant Analysis, 51(19), 2511–2524.

    Article  CAS  Google Scholar 

  • Sharifi-Rad, J., Sharifi-Rad, M., & da Silva, J. A. T. (2016). Morphological, physiological and biochemical responses of crops (Zea mays L., Phaseolus vulgaris L.), medicinal plants (Hyssopus officinalis L., Nigella sativa L.), and weeds (Amaranthus retroflexus L., Taraxacum officinale F. H. Wigg) exposed to SiO2 nanoparticles. Journal of Agricultural Science and Technology, 18(4), 1027–1040.

    Google Scholar 

  • Shebl, A., Hassan, A. A., Salama, D. M., Abd El-Aziz, M. E., & Abd Elwahed, M. S. A. (2020). Template-free microwave-assisted hydrothermal synthesis of manganese zinc ferrite as a nanofertilizer for squash plant (Cucurbita pepo L). Heliyon, 6(3), e03596.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheeja, C. C., Ambali, A., Chacko, L., Aneesh, P. M., & Divya, L. (2020). MoS2 nanoparticles induce behavioral alteration and oxidative stress mediated cellular toxicity in the social insect Oecophylla smaragdina (Asian weaver ant). Journal of Hazardous Materials, 385, 121624.

    Article  CAS  Google Scholar 

  • Sheikhalipour, M., Esmaielpour, B., Behnamian, M., Gohari, G., Giglou, M. T., Vachova, P., Rastogi, A., Brestic, M., & Skalicky, M. (2021). Chitosan–selenium nanoparticle (Cs–S NP) foliar spray alleviates salt stress in bitter melon. Nanomaterials, 11(3), 684.

    Google Scholar 

  • Shende, S., Rathod, D., Gade, A., & Rai, M. (2017). Biogenic copper nanoparticles promote the growth of pigeon pea (Cajanus cajan L.). IET Nanobiotechnology, 11(7), 773–781.

    Article  PubMed Central  Google Scholar 

  • Shi, G. F., Zhan, P. F., Jin, W. M., Fei, J. M., & Zhao, L. H. (2017). Dietary TiO2 particles modulate expression of hormone-related genes in Bombyx mori. Archives of Insect Biochemistry and Physiology, 95(4), e21397.

    Article  CAS  Google Scholar 

  • Shinde, S., Paralikar, P., Ingle, A. P., & Rai, M. (2020). Promotion of seed germination and seedling growth of Zea mays by magnesium hydroxide nanoparticles synthesized by the filtrate from Aspergillus niger. Arabian Journal of Chemistry, 13(1), 3172–3182.

    Article  CAS  Google Scholar 

  • Shoaib, A., Elabasy, A., Waqas, M., Lin, L. L., Cheng, X. L., Zhang, Q. Q., & Shi, Z. H. (2018). Entomotoxic effect of silicon dioxide nanoparticles on Plutella xylostella (L.) (Lepidoptera: Plutellidae) under laboratory conditions. Toxicological and Environmental Chemistry, 100(1), 80–91.

    Article  CAS  Google Scholar 

  • Siddiqui, Z. A., Parveen, A., Ahmad, L., & Hashem, A. (2019). Effects of graphene oxide and zinc oxide nanoparticles on growth, chlorophyll, carotenoids, proline contents and diseases of carrot. Scientia Horticulturae, 249, 374–382.

    Article  CAS  Google Scholar 

  • Singh, H., Sharma, A., Bhardwaj, S. K., Arya, S. K., Bhardwaj, N., & Khatri, M. (2021). Recent advances in the applications of nano-agrochemicals for sustainable agricultural development. Environmental Science. Processes & Impacts, 23(2), 213–239.

    Article  Google Scholar 

  • Sivarethinamohan, R., & Sujatha, S. (2021). Unlocking the potentials of using nanotechnology to stabilize agriculture and food production. AIP Conference Proceedings, 2327, 020022.

    Article  CAS  Google Scholar 

  • Slippers, B. (2020). The plant disease pyramid: The relevance of the original vision of plant pathology in 2020. South African Journal of Science, 116(11/12), 9011.

    Article  Google Scholar 

  • Sloan, J. J., Ampim, P. A. Y., & Jaber, F. (2019). Phosphorus and nitrogen adsorption by clinoptilolite zeolite coated with iron-oxide. Communications in Soil Science and Plant Analysis, 50(20), 2669–2681.

    Article  CAS  Google Scholar 

  • Small, T., Ochoa-Zapater, M. A., Gallelo, G., Ribera, A., Romero, F. M., Torreblanca, A., & Garcera, M. D. (2016). Gold-nanoparticles ingestion disrupts reproduction and development in the German cockroach. The Science of the Total Environment, 565, 882–888.

    Article  CAS  PubMed  Google Scholar 

  • Sofy, A. R., Hmed, A. A., Alnaggar, A. A. M., Dawoud, R. A., Elshaarawy, R. F. M., & Sofy, M. R. (2020). Mitigating effects of bean yellow mosaic virus infection in faba bean using new carboxymethyl chitosan-titania nanobiocomposites. International Journal of Biological Macromolecules, 163, 1261–1275.

    Article  CAS  PubMed  Google Scholar 

  • Soltys, L. M., Mironyuk, I. F., Tatarchuk, T. R., & Tsinurchyn, V. I. (2020). Zeolite-based composites as slow release fertilizers (review). Physical Chemistry Solid State, 21(1), 89–104.

    Article  CAS  Google Scholar 

  • Song, U., & Kim, J. (2020). Zinc oxide nanoparticles: A potential micronutrient fertilizer for horticultural crops with little toxicity. Horticulture, Environment and Biotechnology, 61(3), 625–631.

    Article  Google Scholar 

  • Spielman-Sun, E., Lombi, E., Donner, E., Avellan, A., Etschmann, B., Howard, D., & Lowry, G. V. (2018). Temporal evolution of copper distribution and speciation in roots of Triticum aestivum exposed to CuO, Cu(OH)2, and CuS nanoparticles. Environmental Science & Technology, 52(17), 9777–9784.

    Google Scholar 

  • Strayer-Scherer, A., Liao, Y. Y., Young, M., Ritchie, L., Vallad, G. E., Santra, S., Freeman, J. H., Clark, D., Jones, J. B., & Paret, M. L. (2018). Advanced copper composites against copper-tolerant Xanthomonas perforans and tomato bacterial spot. Phytopathology, 108(2), 196–205.

    Article  CAS  PubMed  Google Scholar 

  • Sun, D. Q., Hussain, H. I., Yi, Z. F., Rookes, J. E., Kong, L. X., & Cahill, D. M. (2016). Mesoporous silica nanoparticles enhance seedling growth and photosynthesis in wheat and lupin. Chemosphere, 152, 81–91.

    Article  CAS  PubMed  Google Scholar 

  • Sun, L. J., Xue, Y., Peng, C., Xu, C., & Shi, J. Y. (2020). Influence of sulfur fertilization on CuO nanoparticles migration and transformation in soil pore water from the rice (Oryza sativa L.) rhizosphere. Environmental Pollution, 257, 113608.

    Article  CAS  PubMed  Google Scholar 

  • Sundaria, N., Singh, M., Upreti, P., Chauhan, R. P., Jaiswal, J. P., & Kumar, A. (2019). Seed priming with iron oxide nanoparticles triggers iron acquisition and biofortification in wheat (Triticum aestivum L.) grains. Journal of Plant Growth Regulation, 38(1), 122–131.

    Article  CAS  Google Scholar 

  • Sunderland, M. R., & McNeil, S. J. (2017). Protecting wool carpets from beetle and moth larvae with nanocidal titanium dioxide desiccant. Clean Technologies and Environment, 19(4), 1205–1213.

    Article  CAS  Google Scholar 

  • Suresh, U., Murugan, K., Panneerselvam, C., Aziz, A., Cianfaglione, K., Wang, L., & Maggi, F. (2020). Encapsulation of sea fennel (Crithmum maritimum) essential oil in nanoemulsion and SiO2 nanoparticles for treatment of the crop pest Spodoptera litura and the dengue vector Aedes aegypti. Industrial Crops and Products, 158, 113033.

    Article  CAS  Google Scholar 

  • Suryadi, Y., Samudra, I. M., & Susriani, S. B. M. (2020). The use of curcumin-loaded chitosan nanoparticles to control anthracnose disease on papaya. Suranaree Journal of Science and Technology, 27(1), 020002.

    Google Scholar 

  • Tarafder, C., Daizy, M., Alam, M. M., Ali, M. R., Islam, M. J., Islam, R., Ahommed, M. S., Aly, M. A. S., & Khan, M. Z. H. (2020). Formulation of a hybrid nanofertilizer for slow and sustainable release of micronutrients. ACS Omega, 5(37), 23960–23966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarazona, A., Gomez, J. V., Mateo, E. M., Jimenez, M., & Mateo, F. (2019). Antifungal effect of engineered silver nanoparticles on phytopathogenic and toxigenic Fusarium spp. and their impact on mycotoxin accumulation. International Journal of Food Microbiology, 306, 108259.

    Google Scholar 

  • Tauseef, A., Hisamuddin, K. A., & Uddin, I. (2021). Role of MgO nanoparticles in the suppression of Meloidogyne incognita, infecting cowpea and improvement in plant growth and physiology. Experimental Parasitology, 220, 108045.

    Article  CAS  PubMed  Google Scholar 

  • Teirumnieks, E., Balchev, I., Ghalot, R. S., & Lazov, L. (2021). Antibacterial and anti-viral effects of silver nanoparticles in medicine against COVID-19-a review. Laser Physics, 31(1), 013001.

    Article  CAS  Google Scholar 

  • Thompson, D. A., Lehmler, H. J., Kolpin, D. W., Hladik, M. L., Vargo, J. D., Schilling, K. E., LeFevre, G. H., Peeples, T. L., Poch, M. C., LaDuca, L. E., Cwiertny, D. M., & Field, R. W. (2020). A critical review on the potential impacts of neonicotinoid insecticide use: Current knowledge of environmental fate, toxicity, and implications for human health. Environmental Science. Processes & Impacts, 22, 1315–1346.

    Article  CAS  Google Scholar 

  • Tiwari, M., Sharma, N. C., Fleischmann, P., Burbage, J., Venkatachalam, P., & Sahi, S. V. (2017). Nanotitania exposure causes alterations in physiological, nutritional and stress responses in tomato (Solanum lycopersicum). Frontiers in Plant Science, 8, 633.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tombuloglu, H., Ercan, I., Alshammari, T., Tombuloglu, G., Slimani, Y., Almessiere, M., & Baykal, A. (2020). Incorporation of micro-nutrients (nickel, copper, zinc, and iron) into plant body through nanoparticles. Journal of Soil Science and Plant Nutrition, 20(4), 1872–1881.

    Article  CAS  Google Scholar 

  • Tombuloglu, H., Tombuloglu, G., Slimani, Y., Ercan, I., Sozeri, H., & Baykal, A. (2018). Impact of manganese ferrite (MnFe2O4) nanoparticles on growth and magnetic character of barley (Hordeum vulgare L.). Environmental Pollution, 243, 872–881.

    Article  CAS  PubMed  Google Scholar 

  • Umar, W., Hameed, M. K., Aziz, T., Maqsood, M. A., Bilal, H. M., & Rasheed, N. (2021). Synthesis, characterization and application of ZnO nanoparticles for improved growth and Zn biofortification in maize. Archives of Agronomy and Soil Science, 67(9), 1164–1176.

    Google Scholar 

  • UN (2019) World population projected to reach 9.8 billion in 2050, and 11.2 billion in 2100; United Nations report 2019. from: https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html

  • Van Nguyen, D., Nguyen, H. M., Le, N. T., Nguyen, K. H., Nguyen, H. T., Le, H. M., Nguyen, A. T., Dinh, N. T. T., Hoang, S. A., & Van Ha, C. (2022). Copper nanoparticle application enhances plant growth and grain yield in maize under drought stress conditions. Journal of Plant Growth Regulation, 41, 364–375

    Google Scholar 

  • Van den Noortgate, H., Lagrain, B., Sree, S. P., Kerkhofs, S., Wenseleers, T., & Martens, J. A. (2018). Material properties determining the insecticidal activity of highly divided porous materials on the pharaoh ant (Monomorium pharaonis). Pest Management Science, 74(6), 1374–1385.

    Article  CAS  Google Scholar 

  • Vanathi, P., Rajiv, P., & Sivaraj, R. (2016). Synthesis and characterization of Eichhornia-mediated copper oxide nanoparticles and assessing their antifungal activity against plant pathogens. Bulletin of Materials Science, 39(5), 1165–1170.

    Article  CAS  Google Scholar 

  • Vanti, G. L., Kurjogi, M., Basavesha, K. N., Teradal, N. L., Masaphy, S., & Nargund, V. B. (2020). Synthesis and antibacterial activity of Solanum torvum mediated silver nanoparticle against Xanthomonas axonopodis pv. punicae and Ralstonia solanacearum. Journal of Biotechnology, 309, 20–28.

    Google Scholar 

  • Varympopi, A., Dimopoulou, A., Theologidis, I., Karamanidou, T., Kaldeli Kerou, A., Vlachou, A., Karfaridis, D., Papafotis, D., Hatzinikolaou, D. G., Tsouknidas, A., & Skandalis, N. (2020). Bactericides based on copper nanoparticles restrain growth of important plant pathogens. Pathogens, 9, 1024.

    Article  CAS  PubMed Central  Google Scholar 

  • Viani, A., Gualtieri, A., & Artioli, G. (2002). The nature of disorder in montmorillonite by simulation of X-ray powder patterns. American Mineralogist, 87, 966–975.

    Google Scholar 

  • Wang, L., Su, M. Y., Zhao, X. Y., Hong, J., Yu, X. H., Xu, B. Q., Sheng, L., Liu, D., Shen, W. D., Li, B., & Hong, F. (2015). Nanoparticulate TiO2 protection of midgut damage in the silkworm (Bombyx mori) following phoxim exposure. Archives of Environmental Contamination and Toxicology, 68(3), 534–542.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y. J., Lin, Y. J., Xu, Y. W., Yin, Y., Guo, H. Y., & Du, W. C. (2019a). Divergence in response of lettuce (var. ramosa Hort.) to copper oxide nanoparticles/microparticles as potential agricultural fertilizer. Environmental Pollutants and Bioavailability, 31(1), 80–84.

    Google Scholar 

  • Wang, Y. Q., Wang, S. X., Xu, M. X., Xiao, L., Dai, Z. Y., & Li, J. L. (2019b). The impacts of gamma-Fe2O3 and Fe3O4 nanoparticles on the physiology and fruit quality of muskmelon (Cucumis melo) plants. Environmental Pollution, 249, 1011–1018.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z. S., Li, H., Li, X. N., Xin, C. Y., Si, J. S., Li, S. D., Li, Y. J., Zheng, X. X., Li, H. W., Wei, X. H., Zhang, Z. W., Kong, L. G., & Wang, F. H. (2020). Nano-ZnO priming induces salt tolerance by promoting photosynthetic carbon assimilation in wheat. Archives of Agronomy and Soil Science, 66(9), 1259–1273.

    Article  CAS  Google Scholar 

  • Win, T. T., Khan, S., & Fu, P. C. (2020). Fungus- (Alternaria sp.) mediated silver nanoparticles synthesis, characterization, and screening of antifungal activity against some phytopathogens. Journal of Nanotechnology, 2020, 8828878.

    Article  CAS  Google Scholar 

  • Wu, Q., Wang, Y. Z., Chen, T. T., Zheng, J. L., Sun, Y. D., & Chi, D. C. (2020). Soil nitrogen regulation using clinoptilolite for grain filling and grain quality improvements in rice. Soil and Tillage Research, 199, 104547.

    Article  Google Scholar 

  • Xu, J., Zhang, K. H., Cuthbertson, A. G. S., Du, C. L., & Ali, S. (2020). Toxicity and biological effects of Beauveria brongniartii Fe0 nanoparticles against Spodoptera litura (Fabricius). Insects, 11(12), 895.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao, P. J., Zou, A. H., Tian, Z. F., Meng, W. Y., Fang, X. L., Wu, T., & Cheng, J. G. (2021). Construction and characterization of a temperature-responsive nanocarrier for imidacloprid based on mesoporous silica nanoparticles. Colloids and Surfaces. B, Biointerfaces, 198, 111464.

    Google Scholar 

  • Yaqoob, A. A., Ahmad, H., Parveen, T., Ahmad, A., Oves, M., Ismail, I. M. I., Qari, H. A., Umar, K., & Ibrahim, M. N. M. (2020). Recent advances in metal decorated nanomaterials and their various biological applications: A review. Frontiers in Chemistry, 8, 341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaqoob, S., Ullah, F., Mehmood, S., Mahmood, T., Ullah, M., Khattak, A., & Zeb, M. A. (2018). Effect of waste water treated with TiO2 nanoparticles on early seedling growth of Zea mays L. Journal of Water Reuse and Desalination, 8(3), 424–431.

    Article  CAS  Google Scholar 

  • Ybanez, Q. E., Sanchez, P. B., Badayos, R. B., & Agravante, J. U. (2020). Synthesis and characterization of nano zinc oxide foliar fertilizer and its influence on yield and postharvest quality of tomato. Philippines Agricultural Science, 103(1), 55–65.

    Google Scholar 

  • Ye, Y. Q., Cota-Ruiz, K., Hernandez-Viezcas, J. A., Valdes, C., Medina-Velo, I. A., Turley, R. S., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2020). Manganese nanoparticles control salinity-modulated molecular responses in Capsicum annuum L. through priming: A sustainable approach for agriculture. ACS Sustainable Chemistry & Engineering, 8(3), 1427–1436.

    Article  Google Scholar 

  • Yoon, H. Y., Lee, J. G., Degli Esposti, L., Iafisco, M., Kim, P. J., Shin, S. G., Jeon, J. R., & Adamiano, A. (2020). Synergistic release of crop nutrients and stimulants from hydroxyapatite nanoparticles functionalized with humic substances: Toward a multifunctional nanofertilizer. ACS Omega, 5(12), 6598–6610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Younis, M. E., Abdel-Aziz, H. M. M., & Heikal, Y. M. (2019). Nanopriming technology enhances vigor and mitotic index of aged Vicia faba seeds using chemically synthesized silver nanoparticles. South African Journal of Botany, 125, 393–401.

    Article  CAS  Google Scholar 

  • Yuan, G. D. (2014). An organoclay formula for the slow release of soluble compounds. Applied Clay Science, 100, 84–87.

    Article  CAS  Google Scholar 

  • Yuan, J. X., Chen, Y., Li, H. S., Lu, J. Y., Zhao, H., Liu, M., Nechitaylo, G. S., & Glushchenko, N. N. (2018). New insights into the cellular responses to iron nanoparticles in Capsicum annuum. Scientific Reports, 8, 3228.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zahedi, S. M., Abdelrahman, M., Hosseini, M. S., Hoveizeh, N. F., & Tran, L. S. P. (2019). Alleviation of the effect of salinity on growth and yield of strawberry by foliar spray of selenium-nanoparticles. Environmental Pollution, 253, 246–258.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, W. B., Tang, G., Dong, H. Q., Geng, Q. Q., Niu, J. F., Tang, J. Y., Yang, J. L., Huo, H., & Cao, Y. S. (2019). Targeted release mechanism of λ-cyhalothrin nanocapsules using dopamine-conjugated silica as carrier materials. Colloids and Surfaces B: Biointerfaces, 178, 153–162.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, L., Lu, L., Wang, A., Zhang, H., Huang, M., Wu, H., Xing, B., Wang, Z., & Ji, R. (2020b). Nano-biotechnology in agriculture: Use of nanomaterials to promote plant growth and stress tolerance. Journal of Agricultural and Food Chemistry, 68, 1935–1947.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Y., Yang, J., Ren, J., Hou, Y., Han, Z., Xiao, J., & Li, Y. (2020a). Exposure level of neonicotinoid insecticides in the food chain and the evaluation of their human health impact and environmental risk: An overview. Sustainability, 12(18), 7523.

    Article  CAS  Google Scholar 

  • Zheng, J. L., Chen, T. T., Chi, D. C., Xia, G. M., Wu, Q., Liu, G. Y., Chen, W., Meng, W. Z., Chen, Y. L., & Siddique, K. H. M. (2019). Influence of zeolite and phosphorus applications on water use, P uptake and yield in rice under different irrigation managements. Agronomy, 9(9), 537.

    Article  CAS  Google Scholar 

  • Zhu, J. H., Li, J. F., Shen, Y., Liu, S. Q., Zeng, N. D., Zhan, X. H., White, J. C., Gardea-Torresdey, J., & Xing, B. S. (2020). Mechanism of zinc oxide nanoparticle entry into wheat seedling leaves. Environmental Science. Nano, 7(12), 3901–3913.

    Article  CAS  Google Scholar 

  • Zulfiqar, F., Navarro, M., Ashraf, M., Akram, N. A., & Munne-Bosch, S. (2019). Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Science, 289, 110270.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Slovak Research and Development Agency APVV-17–0318 and by VEGA 1/0116/22.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kráľová, K., Jampílek, J. (2022). Metal- and Metalloid-Based Nanofertilizers and Nanopesticides for Advanced Agriculture. In: Fernandes Fraceto, L., Pereira de Carvalho, H.W., de Lima, R., Ghoshal, S., Santaella, C. (eds) Inorganic Nanopesticides and Nanofertilizers. Springer, Cham. https://doi.org/10.1007/978-3-030-94155-0_10

Download citation

Publish with us

Policies and ethics