Skip to main content

Nitric Oxide: A Key Modulator of Plant Responses Under Environmental Stress

  • Chapter
  • First Online:
Plant Performance Under Environmental Stress

Abstract

The multitasked Nitric oxide (NO) is a highly reactive, gaseous molecule that is endogenously produced in the plant cells through various routes. In the plant, NO participates in numerous physiological processes including growth and development as well as adaptation against (a)biotic stresses. At the molecular level, NO acts as a redox-related signaling molecule whose function entirely depends on two factors (concentration and spatial generation pattern). Once generated, it directly or indirectly interacts with other redox-related molecules (O2, H2O2, H2S, NO2) and potentially interacts with various biomolecules including proteins, lipids, hormones, and nucleic acid at the downstream level. The variety of NO acting mechanisms include direct reaction with redox molecule, metal-nitrosation of transient metals, protein tyrosine nitration, and S-nitrosation. Since the discovery of the physiological role of NO in plants, numerous studies have been conducted to elucidate the production pathways, mechanism of action, and its ultimate effect in distinct physiological processes. However, over time, some questions still remain unanswered, and with new knowledge on interactions of NO with fatty acids and nucleic acids, more possible regulatory roles of NO in mitigation of stresses is still under investigation. Therefore, this chapter discusses the NO production, mechanism of action, and role in the regulation of plant’s (a)biotic stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GSH:

Glutathione

GSNO:

S-Nitroglutathione

GSNOR:

S-Nitroglutathione reductase

NO:

Nitric oxide

NR:

Nitrate reductase

PTM:

Post-translational modification

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SNO:

S-Nitrosothiol

SNP:

Sodium nitroprusside

Thr:

Threonine

Trx:

Thioredoxin

References

  • Airaki M, Leterrier M, Mateos RM, Valderrama R, Chaki M, Barroso JB, del Río LA, Palma JM, Corpas FJ (2012) Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress. Plant Cell Environ 35:281–295

    Article  PubMed  CAS  Google Scholar 

  • Alamri SA, Siddiqui MH, Al-Khaishany MY, Khan MN, Ali HM, Alakeel KA (2019) Nitric oxide-mediated cross-talk of proline and heat shock proteins induce thermotolerance in Vicia faba L. Environ Exp Bot 161:290–302

    Article  CAS  Google Scholar 

  • Alexandra Ageeva-Kieferle, Elisabeth Georgii, Barbro Winkler, Andrea Ghirardo, Andreas Albert, Patrick Hüther, Alexander Mengel, Claude Becker, Jörg-Peter Schnitzler, Jörg Durner, Christian Lindermayr, (2021) Nitric oxide coordinates growth, development, and stress response via histone modification and gene expression. Plant Physiol

    Google Scholar 

  • Anamika, Mehta S, Singh B, Patra A, Islam MA (2019) Databases: a weapon from the arsenal of bioinformatics for plant abiotic stress research. In: Recent approaches in omics for plant resilience to climate change. Springer, Cham, pp 135–169

    Chapter  Google Scholar 

  • Andrade HM, Oliveira JA, Farnese FS, Ribeiro C, Silva AA, Campos FV, Neto JL (2016) Arsenic toxicity: cell signalling and the attenuating effect of nitric oxide in Eichhornia crassipes. Biol Plant 60:173–180

    Article  CAS  Google Scholar 

  • Arasimowicz M, Floryszak-Wieczorek J (2007) Nitric oxide as a bioactive signalling molecule in plant stress responses. Plant Sci 172:876–887

    Article  CAS  Google Scholar 

  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J (2014) Nitric oxide: an effective weapon of the plant or the pathogen? Mol Plant 15:406–416

    Article  CAS  Google Scholar 

  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J (2019) A physiological perspective on targets of nitration in NO-based signaling networks in plants. J Exp Bot 70:4379–4389

    Article  PubMed  CAS  Google Scholar 

  • Astier J, Lindermayr C (2012) Nitric oxide-dependent posttranslational modification in plants: an update. Int J Mol Sci 13:15193–15208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Astier J, Gross I, Durner J (2018) Nitric oxide production in plants: an update. J Exp Bot 69:3401–3411

    Google Scholar 

  • Baena G, Feria AB, Echevarría C, Monreal JA, García-Mauriño S (2017) Salinity promotes opposite patterns of carbonylation and nitrosylation of C4 phosphoenolpyruvate carboxylase in sorghum leaves. Planta 246:1203–1214

    Article  PubMed  CAS  Google Scholar 

  • Bartesaghi S, Radi R (2018) Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox Biol 14:618–625

    Article  PubMed  CAS  Google Scholar 

  • Begara-Morales JC, Sánchez-Calvo B, Chaki M, Valderrama R, Mata-Pérez C, López-Jaramillo J, Padilla MN, Carreras A, Corpas FJ, Barroso JB (2014) Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation. J Exp Bot 65:527–538

    Article  PubMed  CAS  Google Scholar 

  • Begara-Morales JC, Sánchez-Calvo B, Chaki M, Mata-Pérez C, Valderrama R, Padilla MN, López-Jaramillo J, Luque F, Corpas FJ, Barroso JB (2015) Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and S-nitrosylation. J Exp Bot 66:5983–5996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Begara-Morales JC, Sánchez-Calvo B, Chaki M, Valderrama R, Mata-Pérez C, Padilla MN, Corpas FJ, Barroso JB (2016) Antioxidant systems are regulated by nitric oxide-mediated post-translational modifications (NO-PTMs). Front Plant Sci 7:152

    Article  PubMed  PubMed Central  Google Scholar 

  • Begara-Morales JC, Sánchez-calvo B, Gómez-rodríguez MV, Chaki M, Valderrama R, Mata-pérez C, López-jaramillo J, Corpas FJ, Barroso JB (2019) Short-term low temperature induces nitro-oxidative stress that deregulates the nadp-malic enzyme function by tyrosine nitration in Arabidopsis thaliana. Antioxidants 8:448

    Article  PubMed Central  CAS  Google Scholar 

  • Belenghi B, Romero-Puertas MC, Vercammen D, Brackenier A, Inzé D, Delledonne M, Van Breusegem F (2007) Metacaspase activity of Arabidopsis thaliana is regulated by S-nitrosylation of a critical cysteine residue. J Biol Chem 282:1352–1358

    Article  PubMed  CAS  Google Scholar 

  • Berger A, Boscari A, Frendo P, Brouquisse R (2019) Nitric oxide signaling, metabolism and toxic nitrogen-fixing symbiosis. J Exp 70:4505–4520

    CAS  Google Scholar 

  • Besson-Bard A, Courtois C, Gauthier A, Dahan J, Dobrowolska G, Jeandroz S, Wendehenne D (2008) Nitric oxide in plants: production and cross-talk with Ca2+ signaling. Mol Plant 1:218–228

    Article  PubMed  CAS  Google Scholar 

  • Besson-Bard A, Gravot A, Richaud P, Auroy P, Duc C, Gaymard F, Taconnat L, Renou JP, Pugin A, Wendehenne D (2009) Nitric oxide contributes to cadmium toxicity in arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. Plant Physiol 149:1302–1315

    Article  PubMed  PubMed Central  Google Scholar 

  • Bharti J, Sahil, Mehta S, Ahmad S, Singh B, Padhy AK, Srivastava N, Pandey V (2021) Mitogen-Activated Protein Kinase, Plants, and Heat Stress. In Harsh Environment and Plant Resilience: Molecular and Functional Aspects. Springer Nature, Switzerland AG, pp 323–354

    Google Scholar 

  • Bohnert HJ, Gong Q, Li P, Ma S (2006) Unraveling abiotic stress tolerance mechanisms—getting genomics going. Curr Opin Plant Biol 9:180–188

    Article  PubMed  CAS  Google Scholar 

  • Boogar AR, Salehi H, Jowkar A (2014) Exogenous nitric oxide alleviates oxidative damage in turfgrasses under drought stress. South Afr J Bot 92:78–82

    Article  CAS  Google Scholar 

  • Bot P, Mun BG, Imran QM, Hussain A, Lee SU, Loake G, Yun BW (2019) Differential expression of AtWAKL10 in response to nitric oxide suggests a putative role in biotic and abiotic stress responses. PeerJ 7:7383

    Article  CAS  Google Scholar 

  • Boyarshinov AV, Asafova EV (2011) Stress responses of wheat leaves to dehydration: participation of endogenous NO and effect of sodium nitroprusside. Russ J Plant Physiol 58:1034–1039

    Article  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  PubMed  CAS  Google Scholar 

  • Brouquisse R (2019) Multifaceted roles of nitric oxide in plants. Oxford University Press, Oxford, pp 4319–4322

    Google Scholar 

  • Cao N, Zhan B, Zhou X (2019) Nitric oxide as a downstream signaling molecule in brassinosteroid-mediated virus susceptibility to maize chlorotic mottle virus in maize. Viruses 11:368

    Article  PubMed Central  CAS  Google Scholar 

  • Castro L, Demicheli V, Tórtora V, Radi R (2011) Mitochondrial protein tyrosine nitration. Free Radic Res 45:37–52

    Article  PubMed  CAS  Google Scholar 

  • Cechin I, Cardoso GS, de Fátima Fumis T, Corniani N (2015) Nitric oxide reduces oxidative damage induced by water stress in sunflower plants. Bragantia 74:200–206

    Article  Google Scholar 

  • Chaki M, Valderrama R, Fernández-Ocaña AM, Carreras A, López-Jaramillo J, Luque F, Palma JM, Pedrajas JR, Begara-Morales JC, Sánchez-Calvo B, Gómez-Rodríguez MV, Corpas FJ, Barroso JB (2009) Protein targets of tyrosine nitration in sunflower (Helianthus annuus L.) hypocotyls. J Exp Bot 60:4221–4234

    Article  PubMed  CAS  Google Scholar 

  • Chaki M, Valderrama R, Fernández-Ocaña AM, Carreras A, Gómez-Rodríguez MV, López-Jaramillo J, Begara-Morales JC, Sánchez-Calvo B, Luque F, Leterrier M, Corpas FJ, Barroso JB (2011) High temperature triggers the metabolism of S-nitrosothiols in sunflower mediating a process of nitrosative stress which provokes the inhibition of ferredoxin-NADP reductase by tyrosine nitration. Plant Cell Environ 34:1803–1818

    Article  PubMed  CAS  Google Scholar 

  • Chaki M, Carreras A, López-Jaramillo J, Begara-Morales JC, Sánchez-Calvo B, Valderrama R, Corpas FJ, Barroso JB (2013) Tyrosine nitration provokes inhibition of sunflower carbonic anhydrase (β-CA) activity under high temperature stress. Nitric Oxide 29:30–33

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Wu R, Feng J, Feng T, Wang C, Hu J, Zhan N, Li Y, Ma X, Ren B, Zhang J, Song CP, Li J, Zhou JM, Zuo J (2020) Transnitrosylation mediated by the non-canonical catalase ROG1 regulates nitric oxide signaling in plants. Dev Cell 53:444–457.e5

    Article  PubMed  CAS  Google Scholar 

  • Chmielowska-Bąk J, Gzyl J, Rucińska-Sobkowiak R, Arasimowicz-Jelonek M, Deckert J (2014) The new insights into cadmium sensing. Front Plant Sci 5:245

    PubMed  PubMed Central  Google Scholar 

  • Chun HJ, Park HC, Koo SC, Lee JH, Park CY, Choi MS, Chung WS (2012) Constitutive expression of mammalian nitric oxide synthase in tobacco plants triggers disease resistance to pathogens. Mol Cells 34:463–471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chu-Puga Á, González-Gordo S, Rodríguez-Ruiz M, Palma JM, Corpas FJ (2019) NADPH oxidase (Rboh) activity is up regulated during sweet pepper (capsicum annuum L.) fruit ripening. Antioxidants 8:9

    Article  PubMed Central  CAS  Google Scholar 

  • Clark D, Durner J, Navarre DA, Klessig DF (2000) Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase. Mol Plant-Microbe Interact 13:1380–1384

    Article  PubMed  CAS  Google Scholar 

  • Corpas FJ, Barroso JB (2013) Nitro-oxidative stress vs oxidative or nitrosative stress in higher plants. New Phytol 199:633–635

    Article  PubMed  CAS  Google Scholar 

  • Corpas FJ, Chaki M, Fernández-Ocaña A, Valderrama R, Palma JM, Carreras A, Begara-Morales JC, Airaki M, Del Río LA, Barroso JB (2008) Metabolism of reactive nitrogen species in pea plants under abiotic stress conditions. Plant Cell Physiol 49:1711–1722

    Article  PubMed  CAS  Google Scholar 

  • Cui XM, Zhang YK, Wu XB, Liu CS (2010) The investigation of the alleviated effect of copper toxicity by exogenous nitric oxide in tomato plants. Plant Soil 56:274–281

    Article  CAS  Google Scholar 

  • Cui B, Pan Q, Clarke D, Villarreal MO, Umbreen S, Yuan B, Shan W, Jiang J, Loake GJ (2018) S-nitrosylation of the zinc finger protein SRG1 regulates plant immunity. Nat Commun 9:1–12

    Article  CAS  Google Scholar 

  • Dat JF, Capelli N, Folzer H, Bourgeade P, Badot PM (2004) Sensing and signalling during plant flooding. Plant Physiol Biochem 42:273–282

    Article  PubMed  CAS  Google Scholar 

  • De Michele R, Vurro E, Rigo C, Costa A, Elviri L, Di Valentin M, Careri M, Zottini M, Di Toppi LS, Lo Schiavo F (2009) Nitric oxide is involved in cadmium-induced programmed cell death in arabidopsis suspension cultures. Plant Physiol 150:217–228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Del Castello F, Nejamkin A, Cassia R, Correa-Aragunde N, Fernández B, Foresi N, Lombardo C, Ramirez L, Lamattina L (2019) The era of nitric oxide in plant biology: twenty years tying up loose ends. Nitric Oxide 85:17–27

    Article  PubMed  CAS  Google Scholar 

  • Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    Article  PubMed  CAS  Google Scholar 

  • Desikan R, Cheung MK, Bright J, Henson D, Hancock JT, Neill SJ (2004) ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J Exp Bot 55:205–212

    Article  PubMed  CAS  Google Scholar 

  • Dilawari R, Kaur N, Priyadarshi N, Kumar B, Abdelmotelb KF, Lal SK, Singh B, Tripathi A, Aggarwal SK, Jat BS, Mehta S (2021) Genome Editing: A Tool from the Vault of Science for Engineering Climate-Resilient Cereals. In: Harsh Environment and Plant Resilience: Molecular and Functional Aspects. Springer Nature, Switzerland AG, pp 45–72

    Google Scholar 

  • Ding Y, Gardiner DM, Xiao D, Kazan K (2020) Regulators of nitric oxide signaling triggered by host perception in a plant pathogen. Proc Natl Acad Sci U S A 117:11147–11157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dmitriev AP (2003) Signal molecules for plant defense responses to biotic stress. Russ J Plant 50:417–425

    Article  CAS  Google Scholar 

  • Dordas C, Rivoal J, Hill RD (2003) Plant haemoglobins, nitric oxide and hypoxic stress. Ann Bot 91:173–178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dordas C, Hasinoff BB, Rivoal J, Hill RD (2004) Class-1 hemoglobins, nitrate and NO levels in anoxic maize cell-suspension cultures. Planta 219:66–72

    Article  PubMed  CAS  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci U S A 95:10328–10333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Embiale A, Hussein A, Husen A, Sahile S, Mohammed K (2016) Differential sensitivity of Pisum sativum L. cultivars to water-deficit stress: changes in growth, water status, chlorophyll fluorescence and gas exchange attributes. J Agron 15:45–57

    Article  CAS  Google Scholar 

  • Farooq M, Basra SMA, Wahid A, Rehman H (2009) Exogenously applied nitric oxide enhances the drought tolerance in fine grain aromatic rice (Oryza sativa L.). J Agron Crop Sci 195:254–261

    Article  CAS  Google Scholar 

  • Farooq M, Siddique KH, Schubert S (2013) Role of nitric oxide in improving plant resistance against salt stress. In: Ecophysiology and responses of plants under salt. Springer, New York, pp 413–424

    Chapter  Google Scholar 

  • Feechan A, Kwon E, Yun BW, Wang Y, Pallas JA, Loake GJ (2005) A central role for S-nitrosothiols in plant disease resistance. Proc Natl Acad Sci U S A 102:8054–8059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feigl G, Czifra Á, Molnár Á, Bodor A, Kovács E, Perei K, Jebet V, Kolbert Z (2020) Reorganization of protein tyrosine nitration pattern indicates the relative tolerance of Brassica napus (L.) over Helianthus annuus (L.) to combined heavy metal treatment. Plants 9:902

    Article  PubMed Central  CAS  Google Scholar 

  • Ferrer-Sueta G, Campolo N, Trujillo M, Bartesaghi S, Carballal S, Romero N, Alvarez B, Radi R (2018) Biochemistry of peroxynitrite and protein tyrosine nitration. Chem Rev 118:1338–1408

    Article  PubMed  CAS  Google Scholar 

  • Foresi N, Correa-Aragunde N, Parisi G, Caló G, Salerno G, Lamattina L (2010) Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent. Plant Cell 22:3816–3830

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Foresi N, Mayta ML, Lodeyro AF, Scuffi D, Correa-Aragunde N, García-Mata C, Casalongué C, Carrillo N, Lamattina L (2015) Expression of the tetrahydrofolate-dependent nitric oxide synthase from the green alga Ostreococcus tauri increases tolerance to abiotic stresses and influences stomatal development in Arabidopsis. Plant J 82:806–821

    Article  PubMed  CAS  Google Scholar 

  • Getnet Z, Husen A, Fetene M, Yemata G (2015) Growth, water status, physiological, biochemical and yield response of stay green sorghum {Sorghum bicolor (L.) Moench} varieties—a field trial under drought-prone area in Amhara regional state, Ethiopia. J Agron 14:188–202

    Article  CAS  Google Scholar 

  • Gill, S. S., Hasanuzzaman, M., Nahar, K., Macovei, A., & Tuteja, N. (2013). Importance of nitric oxide in cadmium stress tolerance in crop plants. Plant Physiol Biochem 63:254–261

    Google Scholar 

  • Gong B, Shi Q (2019) Identifying S-nitrosylated proteins and unraveling S-nitrosoglutathione reductase-modulated sodic alkaline stress tolerance in Solanum lycopersicum L. Plant Physiol Biochem 142:84–93

    Article  PubMed  CAS  Google Scholar 

  • González-Gordo S, Bautista R, Claros MG, Cañas A, Palma JM, Corpas FJ (2019) Nitric oxide-dependent regulation of sweet pepper fruit ripening. J Exp 70:4557–4570

    Google Scholar 

  • Habib N, Ali Q, Ali S, Javed MT, Zulqurnain Haider M, Perveen R, Shahid MR, Rizwan M, Abdel-Daim MM, Elkelish A, Bin-Jumah M (2020) Use of nitric oxide and hydrogen peroxide for better yield of wheat (Triticum aestivum L.) under water deficit conditions: growth, osmoregulation, and antioxidative defense mechanism. Plants 9:285

    Article  PubMed Central  CAS  Google Scholar 

  • Hancock JT (2012) No synthase? generation of nitric oxide in plants. Period Biol 114:19–24

    Google Scholar 

  • Hancock JT, Neill SJ (2019) Nitric oxide: its generation and interactions with other reactive signaling compounds. Plants 8(2):41

    Article  PubMed Central  CAS  Google Scholar 

  • Hancock JT, Veal D (2021) Nitric oxide, other reactive signalling compounds, redox and reductive stress. J Exp Bot 72(3):819–829

    Article  PubMed  Google Scholar 

  • Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K (2016) New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci 7:1787

    Article  PubMed  PubMed Central  Google Scholar 

  • Hao, G. P., Xing, Y., & Zhang, J. H. (2008). Role of nitric oxide dependence on nitric oxide synthase‐like activity in the water stress signaling of maize seedling. J Integr Plant Biol  50(4):435–442

    Google Scholar 

  • Hartman S, Liu Z, van Veen H, Vicente J, Reinen E, Martopawiro S, Zhang H, van Dongen N, Bosman F, Bassel GW, Visser EJW, Bailey-Serres J, Theodoulou FL, Hebelstrup KH, Gibbs DJ, Holdsworth MJ, Sasidharan R, Voesenek LACJ (2019) Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress. Nat Commun 10:1–9

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heinrich TA, Da Silva RS, Miranda KM, Switzer CH, Wink DA, Fukuto JM (2013) Biological nitric oxide signalling: chemistry and terminology. Br J Pharmacol 169:1417–1429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herold S, Puppo A (2005) Oxyleghemoglobin scavenges nitrogen monoxide and peroxynitrite: a possible role in functioning nodules? J Biol Inorg Chem 10:935–945

    Article  PubMed  CAS  Google Scholar 

  • Hill R, Hargrove M, Arredondo-Peter R (2016) Phytoglobin: a novel nomenclature for plant globins accepted by the globin community at the 2014 XVIII conference on Oxygen-Binding and Sensing Proteins. F1000Res 5:212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hirabayashi Y, Mahendran R, Koirala S, Konoshima L, Yamazaki D, Watanabe S, Kim H, Kanae S (2013) Global flood risk under climate change. Nat Clim Chang 3:816–821

    Article  Google Scholar 

  • Holzmeister C, Gaupels F, Geerlof A, Sarioglu H, Sattler M, Durner J, Lindermayr C (2015) Differential inhibition of Arabidopsis superoxide dismutases by peroxynitrite-mediated tyrosine nitration. J Exp Bot 66:989–999

    Article  PubMed  CAS  Google Scholar 

  • Hong JK, Yun BW, Kang JG, Raja MU, Kwon E, Sorhagen K, Chu C, Wang Y, Loake GJ (2008) Nitric oxide function and signalling in plant disease resistance. J Exp Bot 59:147–154

    Article  PubMed  CAS  Google Scholar 

  • Husen A (2010) Growth characteristics, physiological and metabolic responses of teak (Tectona grandis Linn. f.) clones differing in rejuvenation capacity subjected to drought stress. Silva Genet 59:124–136

    Article  Google Scholar 

  • Husen A, Iqbal M, Aref IM (2014) Growth, water status and leaf characteristics of Brassica carinata under drought and rehydration conditions. Braz J Bot 37:217–227

    Article  Google Scholar 

  • Husen A, Iqbal M, Aref IM (2016) IAA-induced alteration in growth and photosynthesis of pea (Pisum sativum L.) plants grown under salt stress. J Environ Biol 37:421–429

    CAS  Google Scholar 

  • Husen A, Iqbal M, Aref IM (2017) Plant growth and foliar characteristics of faba bean (Vicia faba L.) as affected by indole-acetic acid under water-sufficient and water-deficient conditions. J Environ Biol 38:179–186

    Article  Google Scholar 

  • Husen A, Iqbal M, Sohrab SS, Ansari MKA (2018) Salicylic acid alleviates salinity-caused damage to foliar functions, plant growth and antioxidant system in Ethiopian mustard (Brassica carinata A. Br.). Agric Food Secur 7:44

    Article  Google Scholar 

  • Husen A, Iqbal M, Khanum N, Aref IM, Sohrab SS, Meshresa G (2019) Modulation of salt-stress tolerance of niger (Guizotia abyssinica), an oilseed plant, by application of salicylic acid. J Environ Biol 40:94–104

    Article  Google Scholar 

  • Hussein M, Embiale A, Husen A, Aref IM, Iqbal M (2017) Salinity-induced modulation of plant growth and photosynthetic parameters in faba bean (Vicia faba) cultivars. Pak J Bot 49:867–877

    CAS  Google Scholar 

  • Ismail GSM (2012) Protective role of nitric oxide against arsenic-induced damages in germinating mung bean seeds. Acta Physiol Plant 34:1303–1311

    Article  CAS  Google Scholar 

  • Jahnová J, Luhová L, Petřivalský M (2019) S-nitrosoglutathione reductase-the master regulator of protein S-nitrosation in plant NO signaling. Plants 8:48

    Article  PubMed Central  CAS  Google Scholar 

  • Jain P, Bhatla SC (2018) Tyrosine nitration of cytosolic peroxidase is probably triggered as a long distance signaling response in sunflower seedling cotyledons subjected to salt stress. PLoS One 13:e0197132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jain P, von Toerne C, Lindermayr C, Bhatla SC (2018) S-nitrosylation/denitrosylation as a regulatory mechanism of salt stress sensing in sunflower seedlings. Physiol Plant 162:49–72

    Article  PubMed  CAS  Google Scholar 

  • Janus Ł, Milczarek G, Arasimowicz-Jelonek M, Abramowski D, Billert H, Floryszak-Wieczorek J (2013) Normoergic NO-dependent changes, triggered by a SAR inducer in potato, create more potent defense responses to Phytophthora infestans. Plant Sci 211:23–34

    Article  PubMed  CAS  Google Scholar 

  • Jeandroz S, Wipf D, Stuehr DJ, Lamattina L, Melkonian M, Tian Z, Zhu Y, Carpenter EJ, Wong GKS, Wendehenne D (2016) Occurrence, structure, and evolution of nitric oxide synthase-like proteins in the plant kingdom. Sci Signal 9:re2

    Article  PubMed  CAS  Google Scholar 

  • Jedelská T, Kraiczová VŠ, Bercíková L, Cincalová L, Luhová L, Petrivalský M (2019) Tomato root growth inhibition by salinity and cadmium is mediated by S-nitrosative modifications of ROS metabolic enzymes controlled by s-nitrosoglutathione reductase. Biomolecules 9:393

    Article  PubMed Central  CAS  Google Scholar 

  • Jin JW, Xu YF, Huang YF (2010) Protective effect of nitric oxide against arsenic-induced oxidative damage in tall fescue leaves. Afr J Biotechnol 9:1619–1627

    Article  CAS  Google Scholar 

  • Kalaivanan D, Ganeshamurthy AN (2016) Mechanisms of heavy metal toxicity in plants. In: Abiotic stress physiology of horticultural crops. Springer, pp 85–102

    Chapter  Google Scholar 

  • Kato H, Takemoto D, Kawakita K (2013) Proteomic analysis of S-nitrosylated proteins in potato plant. Physiol Plant 148:371–386

    Article  PubMed  CAS  Google Scholar 

  • Kharbech O, Ben Massoud M, Sakouhi L, Djebali W, Jose Mur LA, Chaoui A (2020) Exogenous application of hydrogen sulfide reduces chromium toxicity in maize seedlings by suppressing NADPH oxidase activities and methylglyoxal accumulation. Plant Physiol Biochem 154:646–656

    Article  PubMed  CAS  Google Scholar 

  • Kim SO, Merchant K, Nudelman R, Beyer WF, Keng T, DeAngelo J, Hausladen A, Stamler JS (2002) OxyR: a molecular code for redox-related signaling. Cell 109:383–396

    Article  PubMed  CAS  Google Scholar 

  • Klepper L (1979) Nitric oxide (NO) and nitrogen dioxide (NO2) emissions from herbicide-treated soybean plants. Atmos Environ 13:537–542

    Article  CAS  Google Scholar 

  • Kolbert Z, Feigl G, Bordé Á, Molnár Á, Erdei L (2017) Protein tyrosine nitration in plants: present knowledge, computational prediction and future perspectives. Plant Physiol Biochem 113:56–63

    Article  PubMed  CAS  Google Scholar 

  • Kolbert Z, Molnr A, Olh D, Feigl G, Horvth E, Erdei L, Ardg A, Rudolf E, Barth T, Lindermayr C (2019) S-nitrosothiol signaling is involved in regulating hydrogen peroxide metabolism of zinc-stressed Arabidopsis. Plant Cell Physiol 60:2449–2463

    Article  PubMed  CAS  Google Scholar 

  • Kopyra M, Gwóźdź EA (2003) Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol Biochem 41:1011–1017

    Article  CAS  Google Scholar 

  • Kubienová L, Tichá T, Jahnová J, Luhová L, Mieslerová B, Petřivalský M (2014) Effect of abiotic stress stimuli on S-nitrosoglutathione reductase in plants. Planta 239:139–146

    Article  PubMed  CAS  Google Scholar 

  • Kushwaha BK, Singh S, Tripathi DK, Sharma S, Prasad SM, Chauhan DK, Kumar V, Singh VP (2019) New adventitious root formation and primary root biomass accumulation are regulated by nitric oxide and reactive oxygen species in rice seedlings under arsenate stress. J Hazard Mater 361:134–140

    Article  PubMed  CAS  Google Scholar 

  • Lal SK, Kumar S, Sheri V, Mehta S, Varakumar P, Ram B, Borphukan B, James D, Fartyal D, Reddy MK (2018) Seed priming: an emerging technology to impart abiotic stress tolerance in crop plants. In: Advances in seed priming. Springer, Singapore, pp 41–50

    Google Scholar 

  • Leshem YY, Kuiper PJC (1996) Is there a GAS (general adaptation syndrome) response to various types of environmental stress? Biol Plant 38:1–18

    Article  Google Scholar 

  • Leterrier M, Airaki M, Palma JM, Chaki M, Barroso JB, Corpas FJ (2012) Arsenic triggers the nitric oxide (NO) and S-nitrosoglutathione (GSNO) metabolism in Arabidopsis. Environ Pollut 166:136–143

    Article  PubMed  CAS  Google Scholar 

  • Li X, Pan Y, Chang B, Wang Y, Tang Z (2016) NO promotes seed germination and seedling growth under high salt may depend on EIN3 protein in Arabidopsis. Front Plant Sci 6:1203

    Article  PubMed  PubMed Central  Google Scholar 

  • Li R, Sheng J, Shen L (2020) Nitric oxide plays an important role in β-aminobutyric acid-induced resistance to Botrytis cinerea in tomato plants. Plant Pathol J 36:121–132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Limami AM, Diab H, Lothier J (2014) Nitrogen metabolism in plants under low oxygen stress. Planta 239:531–541

    Article  PubMed  CAS  Google Scholar 

  • Lindermayr C, Durner J (2015) Interplay of reactive oxygen species and nitric oxide: nitric oxide coordinates reactive oxygen species homeostasis. Plant Physiol 167:1209–1210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu JZ, Duan J, Ni M, Liu Z, Qiu WL, Whitham SA, Qian WJ (2017) S-Nitrosylation inhibits the kinase activity of tomato phosphoinositide-dependent kinase 1 (PDK1). J Biol Chem 292:19743–19751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu R, Liu Z, Shao Y, Su J, Li X, Sun F, Zhang Y, Li S, Zhang Y, Cui J, Zhou Y, Shen W, Zhou T (2020) Nitric oxide enhances rice resistance to rice black-streaked dwarf virus infection. Rice 13:1–13

    Article  Google Scholar 

  • Lv X, Li H, Chen X, Xiang X, Guo Z, Yu J, Zhou Y (2018) The role of calcium-dependent protein kinase in hydrogen peroxide, nitric oxide and ABA-dependent cold acclimation. J Exp Bot 69:4127–4139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maiti RK, Satya P (2014) Research advances in major cereal crops for adaptation to abiotic stresses. GM Crops Food 5:259–279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Małolepsza U (2009) Nitric oxide production in plants. Postepy Biochem 53:263–271

    Google Scholar 

  • Matamoros MA, Cutrona MC, Wienkoop S, Begara-Morales JC, Sandal N, Orera I, Barroso JB, Stougaard J, Becana M (2020) Altered plant and nodule development and protein s-nitrosylation in lotus japonicus mutants deficient in s-nitrosoglutathione reductases. Plant Cell Physiol 61:105–117

    Article  PubMed  CAS  Google Scholar 

  • Mata-Pérez C, Sánchez-Calvo B, Begara-Morales JC, Carreras A, Padilla MN, Melguizo M, Valderrama R, Corpas FJ, Barroso JB (2016) Nitro-linolenic acid is a nitric oxide donor. Nitric Oxide 57:57–63

    Article  PubMed  CAS  Google Scholar 

  • Mathieu C, Moreau S, Frendo P, Puppo A, Davies MJ (1998) Direct detection of radicals in intact soybean nodules: presence of nitric oxide-leghemoglobin complexes. Free Radic Biol Med 24:1242–1249

    Article  PubMed  CAS  Google Scholar 

  • Mehta S, James D, Reddy MK (2019a) Omics technologies for abiotic stress tolerance in plants: current status and prospects. In: Recent approaches in omics for plant resilience to climate change. Springer, Cham, pp 1–34

    Google Scholar 

  • Mehta S, Singh B, Dhakate P, Rahman M, Islam MA (2019b) Rice, marker-assisted breeding, and disease resistance. In: Disease resistance in crop plants. Springer, Cham, pp 83–111

    Chapter  Google Scholar 

  • Mehta S, Lal SK, Sahu KP, Venkatapuram AK, Kumar M, Sheri V, Varakumar P, Vishwakarma C, Yadav R, Jameel MR, Ali M, Achary VMM, Reddy MK (2020) CRISPR/Cas9-Edited Rice: A New Frontier for Sustainable Agriculture. In: New Frontiers in Stress Management for Durable Agriculture. Springer, Singapore, pp 427–458

    Google Scholar 

  • Mehta S, Singh B, Patra A, Tripathi A, Easwaran M, Choudhary JR, Choudhary M, Aggarwal SK (2020) Maize microbiome: current insights for the sustainable agriculture. In: Microbiomes and Plant Health. Academic Press, Massachusetts, pp 267–297

    Google Scholar 

  • Mehta S, Chakraborty A, Roy A, Singh IK, Singh A (2021) Fight Hard or Die Trying: Current Status of Lipid Signaling during Plant–Pathogen Interaction. Plants 10:1098

    Google Scholar 

  • Mehta S, Gogna M, Singh B, Patra A, Singh IK, Singh A (2021) Silicon: a plant nutritional “non-entity” for mitigating abiotic stresses. In: Plant stress biology. Springer, Singapore, pp 17–49

    Google Scholar 

  • Meier S, Ruzvidzo O, Morse M, Donaldson L, Kwezi L, Gehring C (2010) The Arabidopsis wall associated kinase-like 10 gene encodes a functional guanylyl cyclase and is co-expressed with pathogen defense related genes. PLoS One 5:e8904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miller YI, Smith A, Morgan WT, Shaklai N (1996) Role of hemopexin in protection of low-density lipoprotein against hemoglobin-induced oxidation. Biochemistry 35:13112–13117

    Article  PubMed  CAS  Google Scholar 

  • Modolo LV, Augusto O, Almeida IMG, Magalhaes JR, Salgado I (2005) Nitrite as the major source of nitric oxide production by Arabidopsis thaliana in response to Pseudomonas syringae. FEBS Lett 579:3814–3820

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Passioura JB, Colmer TD, Byrt CS (2020) Osmotic adjustment and energy limitations to plant growth in saline soil. New Phytol 225:1091–1096

    Article  PubMed  CAS  Google Scholar 

  • Mur, L. A., Prats, E., Pierre, S., Hall, M. A., & Hebelstrup, K. H. (2013). Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defense pathways. Front Plant Sci 4:215

    Google Scholar 

  • Nabi RBS, Tayade R, Hussain A, Kulkarni KP, Imran QM, Mun BG, Yun BW (2019) Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environ Exp Bot 161:120–133

    Article  CAS  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1247

    Article  PubMed  CAS  Google Scholar 

  • Nejamkin A, Foresi N, Mayta ML, Lodeyro AF, Del Castello F, Correa-Aragunde N, Carrillo N, Lamattina L (2020) Nitrogen depletion blocks growth stimulation driven by the expression of nitric oxide synthase in tobacco. Front Plant Sci 11:312

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelson MJ (1987) The nitric oxide complex of ferrous soybean lipoxygenase-1. Substrate, pH, and ethanol effects on the active-site iron. J Biol Chem 262:12137–12142

    Article  PubMed  CAS  Google Scholar 

  • Niu L, Yu J, Liao W, Wu Y, Xie J, Yu J, Lv J, Xiao X, Hu L (2019) Proteomic investigation of S-nitrosylated proteins during NO-induced adventitious rooting of cucumber. Int J Mol Sci 20:5363

    Article  PubMed Central  CAS  Google Scholar 

  • Ortega-Galisteo AP, Rodríguez-Serrano M, Pazmiño DM, Gupta DK, Sandalio LM, Romero-Puertas MC (2012) S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress. J Exp Bot 63:2089–2103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palma JM, Freschi L, Rodríguez-Ruiz M, González-Gordo S, Corpas FJ (2019) Nitric oxide in the physiology and quality of fleshy fruits. J Exp Bot 70:4405–4417

    Article  PubMed  CAS  Google Scholar 

  • Parankusam S, Adimulam SS, Bhatnagar-Mathur P, Sharma KK (2017) Nitric oxide (NO) in plant heat stress tolerance: current knowledge and perspectives. Front Plant Sci 8:1582

    Article  PubMed  PubMed Central  Google Scholar 

  • Perazzolli M, Dominici P, Romero-Puertas MC, Zago E, Zeier J, Sonoda M, Lamb C, Delledonne M (2004) Arabidopsis nonsymbiotic hemoglobin AHb1 modulates nitric oxide bioactivity. Plant Cell 16:2785–2794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prakash V, Singh VP, Tripathi DK, Sharma S, Corpas FJ (2019) Crosstalk between nitric oxide (NO) and abscisic acid (ABA) signalling molecules in higher plants. Environ Exp Bot 161:41–49

    Article  CAS  Google Scholar 

  • Prakash V, Vishwakarma K, Singh VP, Rai P, Ramawat N, Tripathi DK, Sharma S (2020) NO and ROS implications in the organization of root system architecture. Physiol Plant 168:473–489

    PubMed  CAS  Google Scholar 

  • Qiao M, Sun J, Liu N, Sun T, Liu G, Han S, Hou C, Wang D (2015) Changes of nitric oxide and its relationship with H2O2 and Ca2+ in defense interactions between wheat and Puccinia triticina. PLoS One 10:e0132265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qiu C, Sun J, Wang Y, Sun L, Xie H, Ding Y, Qian W, Ding Z (2019) First nitrosoproteomic profiling deciphers the cysteine S-nitrosylation involved in multiple metabolic pathways of tea leaves. Sci Rep 9:1–9

    Article  Google Scholar 

  • Radi R (2004) Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci U S A 101:4003–4008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rahman M, Sultana S, Nath D, Kalita S, Chakravarty D, Mehta S, Wani SH, Islam MA (2019) Molecular breeding approaches for disease resistance in sugarcane. In: Disease resistance in crop plants. Springer, Cham, pp 131–155

    Chapter  Google Scholar 

  • Rajput LS, Aggarwal SK, Mehta S, Kumar S, Nataraj V, Shivakumar M, Maheshwari HS, Yadav S, Goswami D (2021) Role of WRKY Transcription Factor Superfamily in Plant Disease Management. In: Plant Stress Biology. Springer, Singapore, pp 335–361

    Google Scholar 

  • Rhoads DM, Subbaiah CC (2007) Mitochondrial retrograde regulation in plants. Mitochondrion 7:177–194

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Ruiz M, González-Gordo S, Cañas A, Campos MJ, Paradela A, Corpas FJ, Palma JM (2019) Sweet pepper (Capsicum annuum L.) fruits contain an atypical peroxisomal catalase that is modulated by reactive oxygen and nitrogen species. Antioxidants 8:374

    Article  PubMed Central  CAS  Google Scholar 

  • Sahil, Keshan R, Patra A, Mehta S, Abdelmotelb KF, Lavale SA, Chaudhary M, Aggarwal SK, Chattopadhyay A (2021) Expression and Regulation of Stress-Responsive Genes in Plants Under Harsh Environmental Conditions. In: Harsh Environment and Plant Resilience: Molecular and Functional Aspects. Springer Nature, Switzerland AG, pp 25–44

    Google Scholar 

  • Sainz M, Calvo-Begueria L, Pérez-Rontomé C, Wienkoop S, Abián J, Staudinger C, Bartesaghi S, Radi R, Becana M (2015) Leghemoglobin is nitrated in functional legume nodules in a tyrosine residue within the heme cavity by a nitrite/peroxide-dependent mechanism. Plant J 81:723–735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santisree P, Bhatnagar-Mathur P, Sharma KK (2015) NO to drought-multifunctional role of nitric oxide in plant drought: do we have all the answers? Plant Sci 239:44–55

    Article  PubMed  CAS  Google Scholar 

  • Sarkar TS, Biswas P, Ghosh SK, Ghosh S (2014) Nitric oxide production by necrotrophic pathogen Macrophomina phaseolina and the host plant in charcoal rot disease of jute: complexity of the interplay between necrotroph-host plant interactions. PLoS One 9:e107348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Serrato AJ, Romero-Puertas MC, Lázaro-Payo A, Sahrawy M (2018) Regulation by S-nitrosylation of the Calvin-Benson cycle fructose-1,6-bisphosphatase in Pisum sativum. Redox Biol 14:409–416

    Article  PubMed  CAS  Google Scholar 

  • Sharma P, Sharma MMM, Patra A, Vashisth M, Mehta S, Singh B, Tiwari M, Pandey V (2020) The role of key transcription factors for cold tolerance in plants. In: Transcription factors for abiotic stress tolerance in plants. Academic, London, pp 123–152

    Chapter  Google Scholar 

  • Sharma P, Sharma MMM, Malik A, Vashisth M, Singh D, Kumar R, Singh B, Patra A, Mehta S, Pandey V (2021) Rhizosphere, Rhizosphere Biology, and Rhizospheric Engineering. In: Plant Growth-Promoting Microbes for Sustainable Biotic and Abiotic Stress Management. Springer, Cham, pp 577–624

    Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  PubMed  CAS  Google Scholar 

  • Shukla S, Zhao C, Shukla D (2019) Dewetting controls plant hormone perception and initiation of drought resistance signaling. Structure 27:692–702.e3

    Article  PubMed  CAS  Google Scholar 

  • Silva LS, Alves MQ, Seabra AR, Carvalho HG (2019) Characterization of plant glutamine synthetase S-nitrosation. Nitric Oxide 88:73–86

    Article  PubMed  CAS  Google Scholar 

  • Singh HP, Kaur S, Batish DR, Sharma VP, Sharma N, Kohli RK (2009) Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice). Nitric Oxide 20:289–297

    Article  PubMed  CAS  Google Scholar 

  • Singh RK, Anandhan S, Singh S, Patade VY, Ahmed Z, Pande V (2011) Metallothionein-like gene from Cicer microphyllum is regulated by multiple abiotic stresses. Protoplasma 248:839–847

    Article  PubMed  CAS  Google Scholar 

  • Singh B, Mehta S, Tiwari M, Bhatia S (2018) Legume breeding for fungal resistance: a lesson to learn. In: Molecular approaches for plant improvement. Kalpaz Publication, New Delhi, pp 159–180

    Google Scholar 

  • Singh B, Mehta S, Aggarwal SK, Tiwari M, Bhuyan SI, Bhatia S, Islam MA (2019) Barley, disease resistance, and molecular breeding approaches. In: Disease resistance in crop plants. Springer, Cham, pp 261–299

    Chapter  Google Scholar 

  • Skelly MJ, Malik SI, Le Bihan T, Bo Y, Jiang J, Spoel SH, Loake GJ (2019) A role for S-nitrosylation of the SUMO-conjugating enzyme SCE1 in plant immunity. Proc Natl Acad Sci U S A 116:17090–17095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stanton K, Mickelbart M (2014) Maintenance of water uptake and reduced water loss contribute to water stress tolerance of Spiraea alba Du Roi and Spiraea tomentosa L. Hortic Res 1:14033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stasolla C, Huang S, Hill RD, Igamberdiev AU, Brouquisse R (2019) Spatio-temporal expression of phytoglobin: a determining factor in the NO specification of cell fate. J Exp Bot 70:4365–4377

    Article  PubMed  CAS  Google Scholar 

  • Steffens B (2014) The role of ethylene and ROS in salinity, heavy metal, and flooding responses in rice. Front Plant Sci 5:685

    Article  PubMed  PubMed Central  Google Scholar 

  • Stiti N, Podgórska KA, Bartels D (2020) S-Nitrosation impairs activity of stress-inducible aldehyde dehydrogenases from Arabidopsis thaliana. Plant Sci 292:110389

    Article  PubMed  CAS  Google Scholar 

  • Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X (2008) Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. Science 321:952–956

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Shigeto J, Izumi S, Yoshizato K, Morikawa H (2016) Nitration is exclusive to defense-related PR-1, PR-3 and PR-5 proteins in tobacco leaves. Plant Signal Behav 11:e1197464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takahashi M, Shigeto J, Sakamoto A, Morikawa H (2017) Selective nitration of PsbO1, PsbO2, and PsbP1 decreases PSII oxygen evolution and photochemical efficiency in intact leaves of Arabidopsis. Plant Signal Behav 12:1376157

    Article  CAS  Google Scholar 

  • Thu NBA, Hoang XLT, Truc MT, Sulieman S, Thao NP, Tran LP. (2017). Cytokinin signaling in plant response to abiotic stresses. In: Pandey GK, ed. Mechanism of plant hormone signaling under stress. Hoboken, NJ: John Wiley & Sons, 71–100

    Google Scholar 

  • Tun NN, Santa-Catarina C, Begum T, Silveira V, Handro W, Segal Floh EI, Scherer GFE (2006) Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol 47:346–354

    Article  PubMed  CAS  Google Scholar 

  • Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163:515–523

    Article  CAS  Google Scholar 

  • Umbreen S, Lubega J, Loake GJ, Kopriva S (2019) Sulfur: the heart of nitric oxide-dependent redox signalling. J Exp Bot 70:4279–4286

    Article  PubMed  CAS  Google Scholar 

  • Van Zelm E, Zhang Y, Testerink C (2020) Salt tolerance mechanisms of plants. Annu Rev Plant Biol 71:403–433

    Article  PubMed  CAS  Google Scholar 

  • Vishwakarma A, Wany A, Pandey S, Bulle M, Kumari A, Kishorekumar R, Igamberdiev AU, Mur LAJ, Gupta KJ, Brouquisse R (2019) Current approaches to measure nitric oxide in plants. J Exp Bot 70:4333–4343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Viswanath KK, Varakumar P, Pamuru RR, Basha SJ, Mehta S, Rao AD (2020) Plant lipoxygenases and their role in plant physiology. J Plant Biol 63:83–95

    Google Scholar 

  • Wang X, Hargrove MS (2013) Nitric oxide in plants: the roles of ascorbate and hemoglobin. PLoS One 8:e82611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang P, Du Y, Hou YJ, Zhao Y, Hsu CC, Yuan F, Zhu X, Tao WA, Song CP, Zhu JK (2015) Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proc Natl Acad Sci U S A 112:613–618

    Article  PubMed  CAS  Google Scholar 

  • Wei L, Zhang M, Wei S, Zhang J, Wang C, Liao W (2020) Roles of nitric oxide in heavy metal stress in plants: cross-talk with phytohormones and protein S-nitrosylation. Environ Pollut 259:113943

    Article  PubMed  CAS  Google Scholar 

  • Wendehenne D, Durner J, Klessig DF (2004) Nitric oxide: a new player in plant signalling and defence responses. Curr Opin Plant 7:449–455

    Article  CAS  Google Scholar 

  • Wimalasekera R, Tebartz F, Scherer GFE (2011) Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Sci 181:593–603

    Article  PubMed  CAS  Google Scholar 

  • Wong A, Donaldson L, Portes MT, Eppinger J, Feijó JA, Gehring C (2020) Arabidopsis DIACYLGLYCEROL KINASE4 is involved in nitric oxide-dependent pollen tube guidance and fertilization. Development 147:dev183715

    Article  PubMed  CAS  Google Scholar 

  • Woźniak A, Formela M, Bilman P, Grześkiewicz K, Bednarski W, Marczak Ł, Narożna D, Dancewicz K, Mai VC, Borowiak-Sobkowiak B, Floryszak-Wieczorek J, Gabryś B, Morkunas I (2017) The dynamics of the defense strategy of pea induced by exogenous nitric oxide in response to aphid infestation. Int J Mol Sci 18:329

    Article  PubMed Central  CAS  Google Scholar 

  • Yadav B, Jogawat A, Lal SK, Lakra N, Mehta S, Shabek N, Narayan OP (2021) Plant mineral transport systems and the potential for crop improvement. Planta 253:45

    Google Scholar 

  • Yu CC, Hung KT, Kao CH (2005) Nitric oxide reduces Cu toxicity and Cu-induced NH4+ accumulation in rice leaves. J Plant 162:1319–1330

    CAS  Google Scholar 

  • Yu Q, Sun L, Jin H, Chen Q, Chen Z, Xu M (2012) Lead-induced nitric oxide generation plays a critical role in lead uptake by pogonatherum crinitum root cells. Plant Cell Physiol 53:1728–1736

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Chen X, Wang Z, Wang S, Wang Y, Zhu Q, Li S, Xiang C (2013) Arabidopsis enhanced drought tolerance1/HOMEODOMAIN GLABROUS11 confers drought tolerance in transgenic rice without yield penalty. Plant Physiol 162:1378–1391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yun BW, Feechan A, Yin M, Saidi NBB, Le Bihan T, Yu M, Moore JW, Kang JG, Kwon E, Spoel SH, Pallas JA, Loake GJ (2011) S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 478:264–268

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Liao W (2019) Protein S-nitrosylation in plant abiotic stresses. Funct Plant Biol 47:1–10

    Article  PubMed  CAS  Google Scholar 

  • Zhang LX, Li SX, Zhang H, Liang ZS (2007) Nitrogen rates and water stress effects on production, lipid peroxidation and antioxidative enzyme activities in two maize (Zea mays L.) genotypes. J Agron Crop Sci 193:387–397

    Article  CAS  Google Scholar 

  • Zhang ZW, Luo S, Zhang GC, Feng LY, Zheng C, Zhou YH, Du JB, Yuan M, Chen YE, Wang CQ, Liu WJ, Xu XC, Hu Y, Bai SL, Kong DD, Yuan S, He YK (2017) Nitric oxide induces monosaccharide accumulation through enzyme S-nitrosylation. Plant Cell Environ 40:1834–1848

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Shi X, Zhang Y, Wang J, Yang J, Ishida T, Jiang W, Han X, Kang J, Wang X, Pan L, Lv S, Cao B, Zhang Y, Wu J, Han H, Hu Z, Cui L, Sawa S, He J, Wang G (2019a) CLE9 peptide-induced stomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide in Arabidopsis thaliana. Plant Cell Environ 42:1033–1044

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZW, Fu YF, Zhou YH, Wang CQ, Lan T, Chen GD, Zeng J, Chen YE, Yuan M, Yuan S, Hu JY (2019b) Nitrogen and nitric oxide regulate Arabidopsis flowering differently. Plant Sci 284:177–184

    Article  PubMed  CAS  Google Scholar 

  • Zhao FY, Liu W, Zhang SY (2009) Different responses of plant growth and antioxidant system to the combination of cadmium and heat stress in transgenic and non-transgenic rice. J Integr Plant Biol 51:942–950

    Article  PubMed  CAS  Google Scholar 

  • Zhao CZ, Xia H, Frazier TP, Yao YY, Bi YP, Li AQ, Li MJ, Li CS, Zhang BH, Wang XJ (2010) Deep sequencing identifies novel and conserved microRNAs in peanuts (Arachis hypogaea L.). BMC Plant Biol 10:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou S, Jia L, Chu H, Wu D, Peng X, Liu X, Zhang J, Zhao J, Chen K, Zhao L (2016) Arabidopsis CaM1 and CaM4 promote nitric oxide production and salt resistance by inhibiting S-nitrosoglutathione reductase via direct binding. PLoS Genet 12:e1006255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu Y, Gao H, Lu M, Hao C, Pu Z, Guo M, Hou D, Chen LY, Huang X (2019) Melatonin-nitric oxide crosstalk and their roles in the redox network in plants. Int J Mol Sci 20:6200

    Article  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandey, P. et al. (2021). Nitric Oxide: A Key Modulator of Plant Responses Under Environmental Stress. In: Husen, A. (eds) Plant Performance Under Environmental Stress . Springer, Cham. https://doi.org/10.1007/978-3-030-78521-5_12

Download citation

Publish with us

Policies and ethics