Skip to main content
Log in

Arsenic toxicity: cell signalling and the attenuating effect of nitric oxide in Eichhornia crassipes

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

Nitric oxide (NO) is an important molecule involved in the perception of stress induced by toxic compounds such as arsenic (As). The present study investigated the role of NO applied as sodium nitroprusside (SNP) in cell signalling and the ability of NO to attenuate the toxic effects of As (in the form of sodium arsenate) in water hyacinth (Eichhornia crassipes). Water hyacinth plants were collected and assigned to one of the following treatments: control; 100 μM SNP; 20 μM As; or 20 μM As + 100 μM SNP. The plants remained under these conditions for 0, 4, 12, and 24 h. After each time interval, the plants were collected and As absorption, production of reactive oxygen species (ROS), integrity of membranes, and antioxidant enzyme activities were evaluated. The plants were able to absorb and accumulate large amounts of As, even after only four hours of exposure to the pollutant. The absorption and bioaccumulation factor of As was even greater when plants were exposed to both As and SNP. The accumulation of As triggered increases in ROS production and cell membrane damage. In the presence of SNP, the tolerance index to As increased and damage was mitigated. Therefore, from the present work, it was possible to conclude that exogenous NO influenced the ability of plants to tolerate As; this finding has implications for phytoremediation in areas contaminated by As.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAT:

catalase

MDA:

malondialdehyde

POX:

peroxidase

ROS:

reactive oxygen species

SNP:

sodium nitropruside

SOD:

superoxide dismutase

TI:

tolerance index

References

  • Anderson, M.D., Prasad, T.K., Stewart, C.R.: Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotylus of maize seedlings. — Plant Physiol. 109: 1247–1257, 1995.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Arasimowicz, M., Floryszak-Wieczorek, J.: Nitric oxide as a bioactive signaling molecule in plant stress responses. — Plant Sci. 172: 876–887, 2007.

    Article  CAS  Google Scholar 

  • Beauchamp, C., Fridovich, I.: Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. — Anal. Biochem. 44: 276–287, 1971.

    Article  CAS  PubMed  Google Scholar 

  • Boveris, A., Alvarez, S., Bustamante, J., Valdez, L.: Measurement of superoxide radical and hydrogen peroxide production in isolated cells and subcellular organelles. — Methods Enzymol. 349: 280–287, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Chance, B., Maehley, A.C.: Assay of catalases and peroxidases. — Method. Enzymol. 2: 764–775, 1955.

    Article  Google Scholar 

  • Clark, R.B.: Characterization of phosphatase of intact maize roots. — J. Agr. Food Chem. 23: 458–460, 1975.

    Article  CAS  Google Scholar 

  • Crow, J.P.: Peroxynitrite scavenging by metalloporphyrins and thiolates. — Free Radicals Biol. Med. 28: 1487–1494, 2000.

    Article  CAS  Google Scholar 

  • Farnese, F.S., Oliveira, J.A., Gusman, G.S., Leao, G.A., Ribeiro, C., Siman, LI., Cambraia, J.: Plant responses to arsenic: the role of nitric oxide. — Water Air Soil Pollut. 224: 1660–1667, 2013.

    Article  Google Scholar 

  • Farnese, F.S., Oliveira, J.A., Gusman, G.S., Leão, G.A., Silveira, N.M., Silva, P.M., Ribeiro, C., Cambraia, J.: Effects of adding nitroprusside on arsenic stressed response of Pistia stratiotes L. under hydroponic conditions. — Int. J. Phytorem. 16: 123–137, 2014a.

    Article  CAS  Google Scholar 

  • Farnese, F.S., Oliveira, J.A., Lima, F.S., Leão, G.A., Gusman, G.S., Silva, L.C.: Evaluation of the potential of Pistia stratiotes L. (water lettuce) for bioindication and phytoremediation of aquatic environments contaminated with arsenic. — Braz. J. Biol. 74: 25–31, 2014b.

    Article  Google Scholar 

  • Gay, C., Gebicki, J.M.: A critical evaluation of the effect of sorbitol on the ferric-xylenol orange hydroperoxide assay. — Anal. Biochem. 284: 217–220, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Gebicka, L., Didik, J.: Catalytic scavenging of peroxynitrite by catalase. — J. inorg. Biochem. 103: 1375–1379, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Giannopolitis, C.N., Ries, S.K.: Superoxide dismutases.: I. Occurrence in higher plants. — Plant Physiol. 59: 309–314, 1977.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gusman, G.S., Oliveira, J.A., Farnese, F.S., Cambraia, J.: Arsenate and arsenite: the toxic effects on photosynthesis and growth of lettuce plants. — Acta Physiol. Plant. 35: 1201–1209, 2013.

    Article  CAS  Google Scholar 

  • Havir, E.A., McHale, N.A.: Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. — Plant Physiol. 84: 450–455, 1987.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hayat, S., Hasan, S.A., Mori, M., Fariduddin, Q., Ahmad, A.: Nitric oxide: chemistry, biosynthesis, and physiological role. — In: Hayat S, Mori M, Pichtel J, Ahmad A. (ed.): — Nitric Oxide in Plant Physiology. Pp. 15–21. Wiley, Weinheim 2010.

    Google Scholar 

  • Heath, R.L., Packer, L.: Photoperoxidation in isolated chloroplast. I. Kinetics and stoichometry of fatty acid peroxidation. — Arch. Biochem. Biophys. 125: 189–198, 1968.

    Article  CAS  PubMed  Google Scholar 

  • Hermes, V.S., Dall’Asta, P., Amaral, F.P., Anacleto, K.B., Arisi, A.C.M.: The regulation of transcription of genes related to oxidative stress and glutathione synthesis in Zea mays leaves by nitric oxide. — Biol. Plant. 57: 620–626, 2013.

    Article  CAS  Google Scholar 

  • Huang, R.Q., Gao, S.F., Wang, W.J., Staunton, S., Wang, G.: Soil arsenic availability and the transfer of soil arsenic to crops in suburban areas in Fujian Province, southeast China. — Sci. total Environ. 368: 531–541, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Iqbal, M.T.: Mitigation of arsenic by water hyacinths (Eichhornia crassipes) plant. — Asian J. Water Environ. Pollut. 8: 9–14, 2011.

    CAS  Google Scholar 

  • Ismail, G.S.M.: Protective role of nitric oxide against arsenicinduced damages in germinating mung bean seeds. — Acta Physiol. Plant. 34: 1303–1311, 2012.

    Article  CAS  Google Scholar 

  • Kuo, M.C., Kao, C.H.: Aluminium effects on lipid peroxidation and antioxidative enzyme activities in rice leaves. — Biol. Plant. 46: 149–152, 2003.

    Article  CAS  Google Scholar 

  • Leão, G.A., Oliveira, J.A., Farnese, F.S., Gusman, G.S., Felipe, R.T.A.: Sulfur metabolism: different tolerances of two aquatic macrophytes exposed to arsenic. — Ecotoxicol. Environ. Safety 105: 36–42, 2014a.

    Article  PubMed  Google Scholar 

  • Leão, G.A., Oliveira, J.A., Felipe, R.T.A., Farnese, F.S., Gusman, G.S.: Anthocyanins, thiols, and antioxidant scavenging enzymes are involved in Lemna gibba tolerance to arsenic. — J. Plant Interact. 9: 143–151, 2014b.

    Article  Google Scholar 

  • Litter, M.I., Alarcón-Herrera, M.T., Arenas, M.J., Armienta, M.A., Avilés, M., Cáceres, R.E., Cipriani, H.N., Cornejo, L., Dias, L.E., Cirelli, A.F., Farfán, E.M., Garrido, S., Lorenzo, L., Morgada, M.E., Olmos-Márquez, M.A., Pérez-Carrera, A.: Small-scale and household methods to remove arsenic from water for drinking purposes in Latin America. — Sci. total Environ. 429: 107–122, 2011.

    Article  Google Scholar 

  • Marin, A.R., Pezeshki, S.R., Masschenlyn, P.H., Choi, H.S.: Effect of dimethylarsenic acid (DMAA) on growth tissue arsenic and photosynthesis in rice plants. — J. Plant Nutr. 16: 865–880, 1993.

    Article  CAS  Google Scholar 

  • Mascher, R., Lippman, B., Holzinger, S., Bergmann, H.: Arsenate toxicity: effects on oxidative stress response molecules and enzymes in red clover plants. — Plant Sci. 163: 961–969, 2002.

    Article  CAS  Google Scholar 

  • Meharg, A.A., Hartley-Whitaker, J.: Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. — New Phytol. 154: 29–43, 2002.

    Article  CAS  Google Scholar 

  • Miteva, E., Hristova, D., Nenova, V., Manev, S.: Arsenic as a factor affecting virus infection in tomato plants: changes in plant growth, peroxidase activity and chloroplast pigments. — Sci. Hort. 105: 343–358, 2005.

    Article  CAS  Google Scholar 

  • Mohammadi, M., Karr, A.L.: Superoxide anion generation in effective and ineffective soybean root nodules. — J. Plant Physiol. 158: 1023–1029, 2001.

    Article  CAS  Google Scholar 

  • Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. — Plant Cell Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Peixoto, P.H.P., Cambraia, J., Sant’ana, R., Mosquim, P.R., Moreira, M.A.: Aluminum effects on lipid peroxidation and on activities of enzymes of oxidative metabolism in sorghum. — Rev. Bras. Fisiol. Veg. 11: 137–143, 1999.

    CAS  Google Scholar 

  • Shah, K., Nongkynrih, J.M.: Metal hyperaccumulation and bioremediation. — Biol. Plant. 51: 618–634, 2007.

    Article  CAS  Google Scholar 

  • Shaibur, M.R., Kitajima, N., Imamul-Huq, SM., Kawai, S.: Arsenic-iron interaction: Effect of additional iron on arsenic-induced chlorosis in barley grown in water culture. — Soil Sci. Plant Nutr. 55: 739–746, 2009.

    Article  CAS  Google Scholar 

  • Shri, M., Kumar, S., Chakrabarty, D., Trivedi, P.K., Mallick, S., Misra, P., Shukla, D., Mishra, S., Srivastava, S., Tripathi, R.D., Tuli, R.: Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. — Ecotoxicol. Environ. Safety 72: 1102–1110, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Singh, H.P., Kaur, S., Batish, D.R., Sharma, V.P., Sharma, N., Kohli, R.K.: Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice). — Nitric Oxide 20: 289–297, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Wilkins, D.A.: The measurement of tolerance to edaphic factors by means of root growth. — New Phytol. 80: 623–633, 1978.

    Article  CAS  Google Scholar 

  • Xiong, J., Fu, G., Tao, L., Zhu, C.: Roles of nitric oxide in alleviating heavy metal toxicity in plants. — Arch. Biochem. Biophys. 497: 13–20, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, Y., Kobayashi, Y., Matsumoto, H.: Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. — Plant Physiol. 125: 199–208, 2001.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang, Z.C., Qiu, B.S.: Reactive oxygen species metabolism during the cadmium hyperaccumulation of a new hyperaccumulator Sedum alfredii (Crassulaceae). — J. Environ. Sci. 19: 1311–1317, 2007.

    Article  CAS  Google Scholar 

  • Zhao, F.J., Ma, J.F., Meharg, A.A., McGrath, S.P.: Arsenic uptake and metabolism in plants. — New Phytol. 181: 777–791, 2009.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Oliveira.

Additional information

Acknowledgments: The authors wish to thank the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Federal University of Viçosa for financial support.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrade, H.M., Oliveira, J.A., Farnese, F.S. et al. Arsenic toxicity: cell signalling and the attenuating effect of nitric oxide in Eichhornia crassipes . Biol Plant 60, 173–180 (2016). https://doi.org/10.1007/s10535-015-0572-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-015-0572-4

Additional key words

Navigation