Skip to main content

Chemically Processed Metal Oxides for Sensing Application: Heterojunction Room Temperature LPG Sensor

  • Chapter
  • First Online:
Chemically Deposited Nanocrystalline Metal Oxide Thin Films

Abstract

Sensors to detect the leakage of hazardous gases are indispensable to avoid accidental problems for human health. Sensors become part of industrial application and day-to-day life. Design and development of gas sensor need wide range of materials where the use of semiconducting metal oxide is on prime priority owing to its inherent exceptional chemical and physical properties and simple route of preparation through less expensive methods. Liquefied petroleum gas (LPG) is injurious to human health due to its explosive and inflammable properties. The extensive use of LPG generated a room for encroachment of sensitive and cost-effective gas sensors which can sense leakage before any severe calamities can occur. Research on sensing materials are currently aimed extensively on nanostructured materials of metal oxide semiconductor with numerous surface architectures in nano forms having their sizes in nano regime, namely, quantum dots, nanobelts, nanotubes, nanoparticles, nanowires, and nanorods due to abrupt change in conductivity under gas environment. High surface-to-volume ratios in addition to huge quantity of active sites associated with nanostructured architecture help to achieve maximum sensitivity when exposed to gas. Present chapter deals with chemically processed heterojunction-based metal oxide material towards room temperature LPG sensors with primary emphasis given on fundamental properties, basic mechanism with design and operation, recent progress, and future trends. Particularly, the chapter points out the state of the art towards the advancement in LPG sensors centered on semiconducting metal oxides with heterostructure properties. Furthermore, the comprehensive illustrations on heterojunction gas sensors based on metal oxides open up new directions for further exploration on room temperature LPG sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang D, Kim D, Ko SH, Pisano AP, Li Z, Park I (2015) Focused energy field method for the localized synthesis and direct integration of 1D nanomaterials on microelectronic devices. Adv Mater 27:1207–1215

    Article  CAS  Google Scholar 

  2. Schön G, Simon U (1995) A fascinating new field in colloid science: small ligand-stabilized metal clusters and their possible application in microelectronics. Colloid Polym Sci 273:202–218

    Article  Google Scholar 

  3. Lines MG (2008) Nanomaterials for practical functional uses. J Alloys Compd 449:242–245

    Article  CAS  Google Scholar 

  4. Fiedler S, Zwanzig M, Schmidt R, Auerswald E, Klein M, Scheel W, Reichl H (2006) Evaluation of metallic nano-lawn structures for application in microelectronic packaging. In: 2006 1st electronic system integration technology conference, 5-7 Sept 2006, pp 886–891

    Google Scholar 

  5. Kareem MA, Bello IT, Shittu HA, Awodele MK, Adedokun O, Sanusi YK (2020) Green synthesis of silver nanoparticles (AgNPs) for optical and photocatalytic applications: a review. IOP Conf Ser Mater Sci Eng 805:012020

    Article  CAS  Google Scholar 

  6. Trave E et al (2005) Towards controllable optical properties of silicon based nanoparticles for applications in opto-electronics. Opt Mater 27:1014–1019

    Article  CAS  Google Scholar 

  7. Brar VW, Sherrott MC, Jariwala D (2018) Emerging photonic architectures in two-dimensional opto-electronics. Chem Soc Rev 47:6824–6844

    Article  CAS  Google Scholar 

  8. Znajdek K, Sibiński M, Lisik Z, Apostoluk A, Zhu Y, Masenelli B, Sędzicki P (2017) Zinc oxide nanoparticles for improvement of thin film photovoltaic structures’ efficiency through down shifting conversion. Opto-Electron Rev 25:99–102

    Article  Google Scholar 

  9. Kumar S, Nehra M, Deep A, Kedia D, Dilbaghi N, Kim K-H (2017) Quantum-sized nanomaterials for solar cell applications. Renew Sustain Energy Rev 73:821–839

    Article  CAS  Google Scholar 

  10. Zhang Q, Uchaker E, Candelaria SL, Cao G (2013) Nanomaterials for energy conversion and storage. Chem Soc Rev 42:3127–3171

    Article  CAS  Google Scholar 

  11. Bai Y, Mora-Seró I, De Angelis F, Bisquert J, Wang P (2014) Titanium dioxide nanomaterials for photovoltaic applications. Chem Rev 114:10095–10130

    Article  CAS  Google Scholar 

  12. Hu YH, Wang H, Hu B (2010) Thinnest two-dimensional nanomaterial—graphene for solar energy. ChemSusChem 3:782–796

    Article  CAS  Google Scholar 

  13. Pandit B, Sankapal BR, Koinkar PM (2019) Novel chemical route for CeO2/MWCNTs composite towards highly bendable solid-state supercapacitor device. Sci Rep 9:5892

    Article  CAS  Google Scholar 

  14. Pande SA, Pandit B, Sankapal BR (2019) Vanadium oxide anchored MWCNTs nanostructure for superior symmetric electrochemical supercapacitors. Mater Des 182:107972

    Article  CAS  Google Scholar 

  15. Saha S, Samanta P, Murmu NC, Kuila T (2018) A review on the heterostructure nanomaterials for supercapacitor application. J Energy Storage 17:181–202

    Article  Google Scholar 

  16. Kumar KS, Choudhary N, Jung Y, Thomas J (2018) Recent advances in two-dimensional nanomaterials for supercapacitor electrode applications. ACS Energy Lett 3:482–495

    Article  CAS  Google Scholar 

  17. Lu X, Wang C, Favier F, Pinna N (2017) Electrospun nanomaterials for supercapacitor electrodes: designed architectures and electrochemical performance. Adv Energy Mater 7:1601301

    Article  CAS  Google Scholar 

  18. Peng X, Peng L, Wu C, Xie Y (2014) Two dimensional nanomaterials for flexible supercapacitors. Chem Soc Rev 43:3303–3323

    Article  CAS  Google Scholar 

  19. Abdalla AM, Hossain S, Azad AT, Petra PMI, Begum F, Eriksson SG, Azad AK (2018) Nanomaterials for solid oxide fuel cells: a review. Renew Sustain Energy Rev 82:353–368

    Article  CAS  Google Scholar 

  20. Guo S, Wang E (2011) Noble metal nanomaterials: controllable synthesis and application in fuel cells and analytical sensors. Nano Today 6:240–264

    Article  CAS  Google Scholar 

  21. Kaur R, Marwaha A, Chhabra VA, Kim K-H, Tripathi SK (2020) Recent developments on functional nanomaterial-based electrodes for microbial fuel cells. Renew Sustain Energy Rev 119:109551

    Article  CAS  Google Scholar 

  22. Dhathathreyan KS, Rajalakshmi N, Balaji R (2020) Nanomaterials for fuel cell technology. In: Nanotechnology for Energy Sustainability, pp 569–596. https://doi.org/10.1002/9783527696109.ch24

  23. Stamplecoskie KG, Scaiano JC (2010) Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles. J Am Chem Soc 132:1825–1827

    Article  CAS  Google Scholar 

  24. Zhang Q, Wang C-F, Ling L-T, Chen S (2014) Fluorescent nanomaterial-derived white light-emitting diodes: what’s going on. J Mater Chem C 2:4358–4373

    Article  CAS  Google Scholar 

  25. Mirzaei A, Janghorban K, Hashemi B, Neri G (2015) Metal-core@metal oxide-shell nanomaterials for gas-sensing applications: a review. J Nanopart Res 17:371

    Article  CAS  Google Scholar 

  26. Llobet E (2013) Gas sensors using carbon nanomaterials: a review. Sens Actuators B Chem 179:32–45

    Article  CAS  Google Scholar 

  27. Yang W, Gan L, Li H, Zhai T (2016) Two-dimensional layered nanomaterials for gas-sensing applications. Inorg Chem Front 3:433–451

    Article  CAS  Google Scholar 

  28. Ahmad R, Majhi SM, Zhang X, Swager TM, Salama KN (2019) Recent progress and perspectives of gas sensors based on vertically oriented ZnO nanomaterials. Adv Colloid Interface Sci 270:1–27

    Article  CAS  Google Scholar 

  29. Wang X-F, Song X-Z, Sun K-M, Cheng L, Ma W (2018) MOFs-derived porous nanomaterials for gas sensing. Polyhedron 152:155–163

    Article  CAS  Google Scholar 

  30. Gupta Chatterjee S, Chatterjee S, Ray AK, Chakraborty AK (2015) Graphene–metal oxide nanohybrids for toxic gas sensor: a review. Sens Actuators B Chem 221:1170–1181

    Article  CAS  Google Scholar 

  31. Barsan N, Koziej D, Weimar U (2007) Metal oxide-based gas sensor research: how to? Sens Actuators B Chem 121:18–35

    Article  CAS  Google Scholar 

  32. Dey A (2018) Semiconductor metal oxide gas sensors: a review. Mater Sci Eng B 229:206–217

    Article  CAS  Google Scholar 

  33. Miller DR, Akbar SA, Morris PA (2014) Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens Actuators B Chem 204:250–272

    Article  CAS  Google Scholar 

  34. Moseley PT (2017) Progress in the development of semiconducting metal oxide gas sensors: a review. Meas Sci Technol 28:082001

    Article  CAS  Google Scholar 

  35. Patil DR, Patil LA (2009) Cr2O3-modified ZnO thick film resistors as LPG sensors. Talanta 77:1409–1414

    Article  CAS  Google Scholar 

  36. Thomas B, Skariah B (2015) Spray deposited Mg-doped SnO2 thin film LPG sensor: XPS and EDX analysis in relation to deposition temperature and doping. J Alloys Compd 625:231–240

    Article  CAS  Google Scholar 

  37. Phani AR, Manorama S, Rao VJ (1999) Preparation, characterization and electrical properties of SnO2 based liquid petroleum gas sensor. Mater Chem Phys 58:101–108

    Article  CAS  Google Scholar 

  38. Unnikrishnan S, Razil M, Benny J, Varghese S, Hari CV (2017) LPG monitoring and leakage detection system. In: 2017 international conference on wireless communications, signal processing and networking (WiSPNET), 22–24 March 2017, pp 1990–1993

    Google Scholar 

  39. Patil PT, Anwane RS, Kondawar SB (2015) Development of electrospun polyaniline/ZnO composite nanofibers for LPG sensing. Procedia Mater Sci 10:195–204

    Article  CAS  Google Scholar 

  40. Patil SV, Deshmukh PR, Lokhande CD (2011) Fabrication and liquefied petroleum gas (LPG) sensing performance of p-polyaniline/n-PbS heterojunction at room temperature. Sens Actuators B Chem 156:450–455

    Article  CAS  Google Scholar 

  41. Singh S, Singh A, Yadav BC, Tandon P (2014) Synthesis, characterization, magnetic measurements and liquefied petroleum gas sensing properties of nanostructured cobalt ferrite and ferric oxide. Mater Sci Semicond Process 23:122–135

    Article  CAS  Google Scholar 

  42. Ravikiran YT, Kotresh S, Vijayakumari SC, Thomas S (2014) Liquid petroleum gas sensing performance of polyaniline-carboxymethyl cellulose composite at room temperature. Curr Appl Phys 14:960–964

    Article  Google Scholar 

  43. Shimpi NG, Hansora DP, Yadav R, Mishra S (2015) Performance of hybrid nanostructured conductive cotton threads as LPG sensor at ambient temperature: preparation and analysis. RSC Adv 5:99253–99269

    Article  CAS  Google Scholar 

  44. Drummond I (1993) Light hydrocarbon gases: a narcotic, asphyxiant, or flammable hazard? Appl Occup Environ Hyg 8:120–125

    Article  CAS  Google Scholar 

  45. Allsop T, Zhang L, Bennion I (2001) Detection of organic aromatic compounds in paraffin by a long-period fiber grating optical sensor with optimized sensitivity. Opt Commun 191:181–190

    Article  CAS  Google Scholar 

  46. Siriwardane DA, Wang C, Jiang W, Mudalige T (2020) Quantification of phospholipid degradation products in liposomal pharmaceutical formulations by ultra performance liquid chromatography-mass spectrometry (UPLC-MS). Int J Pharm 578:119077

    Article  CAS  Google Scholar 

  47. Korposh S, Chianella I, Guerreiro A, Caygill S, Piletsky S, James SW, Tatam RP (2014) Selective vancomycin detection using optical fibre long period gratings functionalised with molecularly imprinted polymer nanoparticles. Analyst 139:2229–2236

    Article  CAS  Google Scholar 

  48. Patil SJ et al (2015) Semiconductor metal oxide compounds based gas sensors: a literature review. Front Mater Sci 9:14–37

    Article  Google Scholar 

  49. Li Z et al (2019) Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Mater Horiz 6:470–506

    Article  CAS  Google Scholar 

  50. Li Z et al (2016) Facile synthesis of α-Fe2O3 micro-ellipsoids by surfactant-free hydrothermal method for sub-ppm level H2S detection. Mater Des 110:532–539

    Article  CAS  Google Scholar 

  51. Hu J et al (2018) Highly sensitive and ultra-fast gas sensor based on CeO2-loaded In2O3 hollow spheres for ppb-level hydrogen detection. Sens Actuators B Chem 257:124–135

    Article  CAS  Google Scholar 

  52. Li Z et al (2015) A fast response & recovery H2S gas sensor based on α-Fe2O3 nanoparticles with ppb level detection limit. J Hazard Mater 300:167–174

    Article  CAS  Google Scholar 

  53. Han D, Zhai L, Gu F, Wang Z (2018) Highly sensitive NO2 gas sensor of ppb-level detection based on In2O3 nanobricks at low temperature. Sens Actuators B Chem 262:655–663

    Article  CAS  Google Scholar 

  54. Dhawale DS, Lokhande CD (2011) Chemical route to synthesis of mesoporous ZnO thin films and their liquefied petroleum gas sensor performance. J Alloys Compd 509:10092–10097

    Article  CAS  Google Scholar 

  55. Ladhe RD, Gurav KV, Pawar SM, Kim JH, Sankapal BR (2012) p-PEDOT:PSS as a heterojunction partner with n-ZnO for detection of LPG at room temperature. J Alloys Compd 515:80–85

    Article  CAS  Google Scholar 

  56. Deokate RJ, Dhawale DS, Lokhande CD (2011) Sprayed CdIn2O4 thin films for liquefied petroleum gas (LPG) detection. Sens Actuators B Chem 156:954–960

    Article  CAS  Google Scholar 

  57. Sivapunniyam A, Wiromrat N, Myint MTZ, Dutta J (2011) High-performance liquefied petroleum gas sensing based on nanostructures of zinc oxide and zinc stannate. Sens Actuators B Chem 157:232–239

    Article  CAS  Google Scholar 

  58. Haridas D, Gupta V, Sreenivas K (2008) Enhanced catalytic activity of nanoscale platinum islands loaded onto SnO2 thin film for sensitive LPG gas sensors. Bull Mater Sci 31:397–400

    Article  CAS  Google Scholar 

  59. Salunkhe RR, Shinde VR, Lokhande CD (2008) Liquefied petroleum gas (LPG) sensing properties of nanocrystalline CdO thin films prepared by chemical route: effect of molarities of precursor solution. Sens Actuators B Chem 133:296–301

    Article  CAS  Google Scholar 

  60. More AM, Gunjakar JL, Lokhande CD (2008) Liquefied petroleum gas (LPG) sensor properties of interconnected web-like structured sprayed TiO2 films. Sens Actuators B Chem 129:671–677

    Article  CAS  Google Scholar 

  61. Sin Tee T et al (2016) Microwave-assisted hydrolysis preparation of highly crystalline ZnO nanorod array for room temperature photoluminescence-based CO gas sensor. Sens Actuators B Chem 227:304–312

    Article  CAS  Google Scholar 

  62. Wang H, Sun Q, Yao Y, Li Y, Wang J, Chen L (2016) A micro sensor based on TiO2 nanorod arrays for the detection of oxygen at room temperature. Ceram Int 42:8565–8571

    Article  CAS  Google Scholar 

  63. Hosseini ZS, zad AI, Mortezaali A (2015) Room temperature H2S gas sensor based on rather aligned ZnO nanorods with flower-like structures. Sens Actuators B Chem 207:865–871

    Article  CAS  Google Scholar 

  64. Li W, Liang J, Liu J, Zhou L, Yang R, Hu M (2016) Synthesis and room temperature CH4 gas sensing properties of vanadium dioxide nanorods. Mater Lett 173:199–202

    Article  CAS  Google Scholar 

  65. Tshabalala ZP, Motaung DE, Mhlongo GH, Ntwaeaborwa OM (2016) Facile synthesis of improved room temperature gas sensing properties of TiO2 nanostructures: effect of acid treatment. Sens Actuators B Chem 224:841–856

    Article  CAS  Google Scholar 

  66. Li Y, Zhang Q, Li X, Bai H, Li W, Zeng T, Xi G (2016) Ligand-free and size-controlled synthesis of oxygen vacancy-rich WO3−x quantum dots for efficient room-temperature formaldehyde gas sensing. RSC Adv 6:95747–95752

    Article  CAS  Google Scholar 

  67. Bedi RK, Singh I (2010) Room-temperature ammonia sensor based on cationic surfactant-assisted nanocrystalline CuO. ACS Appl Mater Interfaces 2:1361–1368

    Article  CAS  Google Scholar 

  68. Wei Y, Chen C, Yuan G, Gao S (2016) SnO2 nanocrystals with abundant oxygen vacancies: preparation and room temperature NO2 sensing. J Alloys Compd 681:43–49

    Article  CAS  Google Scholar 

  69. Huang Y et al (2015) A high performance hydrogen sulfide gas sensor based on porous α-Fe2O3 operates at room-temperature. Appl Surf Sci 351:1025–1033

    Article  CAS  Google Scholar 

  70. Mohamed Sali S et al (2017) Phase tuned synthesis of titanium dioxide nanoparticles for room temperature enhanced ammonia detection. RSC Adv 7:37720–37728

    Article  CAS  Google Scholar 

  71. Lupan O, Chow L, Pauporté T, Ono LK, Roldan Cuenya B, Chai G (2012) Highly sensitive and selective hydrogen single-nanowire nanosensor. Sens Actuators B Chem 173:772–780

    Article  CAS  Google Scholar 

  72. Shankar P, Rayappan JBB (2017) Monomer: design of ZnO nanostructures (nanobush and nanowire) and their room-temperature ethanol vapor sensing signatures. ACS Appl Mater Interfaces 9:38135–38145

    Article  CAS  Google Scholar 

  73. Wang Y, Jiang X, Xia Y (2003) A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. J Am Chem Soc 125:16176–16177

    Article  CAS  Google Scholar 

  74. Kumar N, Srivastava AK, Nath R, Gupta BK, Varma GD (2014) Probing the highly efficient room temperature ammonia gas sensing properties of a luminescent ZnO nanowire array prepared via an AAO-assisted template route. Dalton Trans 43:5713–5720

    Article  CAS  Google Scholar 

  75. Lupan O et al (2018) Functionalized Pd/ZnO nanowires for nanosensors. Phys Status Solidi Rapid Res Lett 12:1700321

    Article  CAS  Google Scholar 

  76. Zeng Z, Wang K, Zhang Z, Chen J, Zhou W (2008) The detection of H2S at room temperature by using individual indium oxide nanowire transistors. Nanotechnology 20:045503

    Article  CAS  Google Scholar 

  77. Li Z et al (2016) Hydrothermally synthesized CeO2 nanowires for H2S sensing at room temperature. J Alloys Compd 682:647–653

    Article  CAS  Google Scholar 

  78. Shen Y et al (2016) Highly sensitive and selective room temperature alcohol gas sensors based on TeO2 nanowires. J Alloys Compd 664:229–234

    Article  CAS  Google Scholar 

  79. Song W et al (2015) Facile synthesis of hierarchical CuO microspheres and their gas sensing properties for NOx at room temperature. Aust J Chem 68:1569–1576

    Article  CAS  Google Scholar 

  80. Yu L, Guo F, Liu S, Yang B, Jiang Y, Qi L, Fan X (2016) Both oxygen vacancies defects and porosity facilitated NO2 gas sensing response in 2D ZnO nanowalls at room temperature. J Alloys Compd 682:352–356

    Article  CAS  Google Scholar 

  81. Li Z et al (2016) Room-temperature high-performance H2S sensor based on porous CuO nanosheets prepared by hydrothermal method. ACS Appl Mater Interfaces 8:20962–20968

    Article  CAS  Google Scholar 

  82. Li Z et al (2016) High precision NH3 sensing using network nano-sheet Co3O4 arrays based sensor at room temperature. Sens Actuators B Chem 235:222–231

    Article  CAS  Google Scholar 

  83. Zhang J, Zeng D, Zhu Q, Wu J, Huang Q, Xie C (2016) Effect of nickel vacancies on the room-temperature NO2 sensing properties of mesoporous NiO nanosheets. J Phys Chem C 120:3936–3945

    Article  CAS  Google Scholar 

  84. Hazra A, Dutta K, Bhowmik B, Chattopadhyay PP, Bhattacharyya P (2014) Room temperature alcohol sensing by oxygen vacancy controlled TiO2 nanotube array. Appl Phys Lett 105:081604

    Article  CAS  Google Scholar 

  85. Zhang JZ, Yan Y (2017) Synthesis of biomorphic tube-like CuO using pomelo white flesh as biotemplate and its sensing properties over H2S at room temperature. J Mater Sci 52:13711–13718

    Article  CAS  Google Scholar 

  86. Bhowmik B, Hazra A, Dutta K, Bhattacharyya P (2014) Repeatability and stability of room-temperature acetone sensor based on TiO2 nanotubes: influence of stoichiometry variation. IEEE Trans Device Mater Reliab 14:961–967

    Article  CAS  Google Scholar 

  87. Jiang C, Zhang G, Wu Y, Li L, Shi K (2012) Facile synthesis of SnO2 nanocrystalline tubes by electrospinning and their fast response and high sensitivity to NOx at room temperature. CrstEngComm 14:2739–2747

    Article  CAS  Google Scholar 

  88. Wu B et al (2016) Templated synthesis of 3D hierarchical porous Co3O4 materials and their NH3 sensor at room temperature. Microporous Mesoporous Mater 225:154–163

    Article  CAS  Google Scholar 

  89. Gao J et al (2016) Mesoporous In2O3 nanocrystals: synthesis, characterization and NOx gas sensor at room temperature. New J Chem 40:1306–1311

    Article  CAS  Google Scholar 

  90. Wang Y, Duan G, Zhu Y, Zhang H, Xu Z, Dai Z, Cai W (2016) Room temperature H2S gas sensing properties of In2O3 micro/nanostructured porous thin film and hydrolyzation-induced enhanced sensing mechanism. Sens Actuators B Chem 228:74–84

    Article  CAS  Google Scholar 

  91. Duan H, Yan L, He Y, Li H, Liu L, Cheng Y, Du L (2017) The fabrication of In2O3 toruloid nanotubes and their room temperature gas sensing properties for H2S. Mater Res Express 4:095022

    Article  CAS  Google Scholar 

  92. Shao S, Wu H, Wang S, Hong Q, Koehn R, Wu T, Rao W-F (2015) Highly crystalline and ordered nanoporous SnO2 thin films with enhanced acetone sensing property at room temperature. J Mater Chem C 3:10819–10829

    Article  CAS  Google Scholar 

  93. Lei Y, Luo J, Yang X, Cai T, Qi R, Gu L, Zheng Z (2020) Thermal evaporation of large-area SnS2 thin films with a UV-to-NIR photoelectric response for flexible photodetector applications. ACS Appl Mater Interfaces 12:24940–24950

    Article  CAS  Google Scholar 

  94. Guo DY et al (2016) Epitaxial growth and solar-blind photoelectric properties of corundum-structured α-Ga2O3 thin films. Mater Lett 164:364–367

    Article  CAS  Google Scholar 

  95. Peng S, Zhu P, Thavasi V, Mhaisalkar SG, Ramakrishna S (2011) Facile solution deposition of ZnIn2S4 nanosheet films on FTO substrates for photoelectric application. Nanoscale 3:2602–2608

    Article  CAS  Google Scholar 

  96. Kang C et al (2019) Transformation of crystalline structure and photoelectric properties in VO2/glass thin films by inserting TiO2 buffer layers. Appl Surf Sci 463:704–712

    Article  CAS  Google Scholar 

  97. Padhi D, Gandikota S, Nguyen HB, McGuirk C, Ramanathan S, Yahalom J, Dixit G (2003) Electrodeposition of copper–tin alloy thin films for microelectronic applications. Electrochim Acta 48:935–943

    Article  CAS  Google Scholar 

  98. Hao JH, Gao J, Wong HK (2006) Laser molecular beam epitaxy growth and properties of SrTiO3 thin films for microelectronic applications. Thin Solid Films 515:559–562

    Article  CAS  Google Scholar 

  99. Singh N, Singh K, Pandey A, Kaur D (2016) Improved electrical transport properties in high quality nanocrystalline silicon carbide (nc-SiC) thin films for microelectronic applications. Mater Lett 164:28–31

    Article  CAS  Google Scholar 

  100. Li M, Katsouras I, Piliego C, Glasser G, Lieberwirth I, Blom PWM, de Leeuw DM (2013) Controlling the microstructure of poly(vinylidene-fluoride) (PVDF) thin films for microelectronics. J Mater Chem C 1:7695–7702

    Article  CAS  Google Scholar 

  101. Goncalves LM, Alpuim P, Rolo AG, Correia JH (2011) Thermal co-evaporation of Sb2Te3 thin-films optimized for thermoelectric applications. Thin Solid Films 519:4152–4157

    Article  CAS  Google Scholar 

  102. Sun Y et al (2012) Low-cost high-performance zinc antimonide thin films for thermoelectric applications. Adv Mater 24:1693–1696

    Article  CAS  Google Scholar 

  103. Goncalves LM, Alpuim P, Min G, Rowe DM, Couto C, Correia JH (2008) Optimization of Bi2Te3 and Sb2Te3 thin films deposited by co-evaporation on polyimide for thermoelectric applications. Vacuum 82:1499–1502

    Article  CAS  Google Scholar 

  104. Loureiro J et al (2014) Transparent aluminium zinc oxide thin films with enhanced thermoelectric properties. J Mater Chem A 2:6649–6655

    Article  CAS  Google Scholar 

  105. Tudu B, Tiwari A (2017) Recent developments in perpendicular magnetic anisotropy thin films for data storage applications. Vacuum 146:329–341

    Article  CAS  Google Scholar 

  106. Teteris J, Kuzmina I, Reinfelde M (2005) Application of amorphous chalcogenide thin films in optical recording technologies. Phys Status Solidi C 2:677–680

    Article  CAS  Google Scholar 

  107. Liu C-Y, Bard AJ (1998) Optoelectric charge trapping/detrapping in thin solid films of organic azo dyes: application of scanning tunneling microscopic tip contact to photoconductive films for data storage. Chem Mater 10:840–846

    Article  CAS  Google Scholar 

  108. Kryder MH (1992) Magnetic thin films for data storage. Thin Solid Films 216:174–180

    Article  CAS  Google Scholar 

  109. Tsavdaris N et al (2017) A chemical vapor deposition route to epitaxial superconducting NbTiN thin films. Chem Mater 29:5824–5830

    Article  CAS  Google Scholar 

  110. Yemane YT et al (2017) Superconducting niobium titanium nitride thin films deposited by plasma-enhanced atomic layer deposition. Supercond Sci Technol 30:095010

    Article  CAS  Google Scholar 

  111. Haindl S, Hanzawa K, Sato H, Hiramatsu H, Hosono H (2016) In-situ growth of superconducting SmO1−xFxFeAs thin films by pulsed laser deposition. Sci Rep 6:35797

    Article  CAS  Google Scholar 

  112. Gajar B, Yadav S, Sawle D, Maurya KK, Gupta A, Aloysius RP, Sahoo S (2019) Substrate mediated nitridation of niobium into superconducting Nb2N thin films for phase slip study. Sci Rep 9:8811

    Article  CAS  Google Scholar 

  113. Ingham B et al (2012) Extended X-ray absorption fine structure and X-ray diffraction examination of sputtered nickel carbon binary thin films for fuel cell applications. J Phys Chem C 116:6159–6165

    Article  CAS  Google Scholar 

  114. Yu C-C, Baek JD, Su C-H, Fan L, Wei J, Liao Y-C, Su P-C (2016) Inkjet-printed porous silver thin film as a cathode for a low-temperature solid oxide fuel cell. ACS Appl Mater Interfaces 8:10343–10349

    Article  CAS  Google Scholar 

  115. Garcia-Garcia FJ, Beltrán AM, Yubero F, González-Elipe AR, Lambert RM (2017) High performance novel gadolinium doped ceria/yttria stabilized zirconia/nickel layered and hybrid thin film anodes for application in solid oxide fuel cells. J Power Sources 363:251–259

    Article  CAS  Google Scholar 

  116. Courtin E et al (2012) Optimized sol–gel routes to synthesize yttria-stabilized zirconia thin films as solid electrolytes for solid oxide fuel cells. Chem Mater 24:4540–4548

    Article  CAS  Google Scholar 

  117. Pandit B, Jadhav CD, Chavan PG, Tarkas HS, Sali JV, Gupta RB, Sankapal BR (2020) Two-dimensional hexagonal SnSe nanosheets as binder-free electrode material for high-performance supercapacitors. IEEE Trans Power Electron 35:11344–11351

    Article  Google Scholar 

  118. Pandit B, Devika VS, Sankapal BR (2017) Electroless-deposited Ag nanoparticles for highly stable energy-efficient electrochemical supercapacitor. J Alloys Compd 726:1295–1303

    Article  CAS  Google Scholar 

  119. Pandit B, Sankapal BR (2017) Highly conductive energy efficient electroless anchored silver nanoparticles on MWCNTs as a supercapacitive electrode. New J Chem 41:10808–10814

    Article  CAS  Google Scholar 

  120. Pandit B, Sharma GK, Sankapal BR (2017) Chemically deposited Bi2S3:PbS solid solution thin film as supercapacitive electrode. J Colloid Interface Sci 505:1011–1017

    Article  CAS  Google Scholar 

  121. Abel PR et al (2013) Nanocolumnar germanium thin films as a high-rate sodium-ion battery anode material. J Phys Chem C 117:18885–18890

    Article  CAS  Google Scholar 

  122. Xu S, Gao X, Hua Y, Neville A, Wang Y, Zhang K (2020) Rapid deposition of WS2 platelet thin films as additive-free anode for sodium ion batteries with superior volumetric capacity. Energy Storage Mater 26:534–542

    Article  Google Scholar 

  123. Nayak D, Ghosh S, Adyam V (2018) Thin film manganese oxide polymorphs as anode for sodium-ion batteries: an electrochemical and DFT based study. Mater Chem Phys 217:82–89

    Article  CAS  Google Scholar 

  124. García-García FJ, Mosa J, González-Elipe AR, Aparicio M (2019) Sodium ion storage performance of magnetron sputtered WO3 thin films. Electrochim Acta 321:134669

    Article  CAS  Google Scholar 

  125. Onat B, Rosales-Solano H, Pawliszyn J (2020) Development of a biocompatible solid phase microextraction thin film coating for the sampling and enrichment of peptides. Anal Chem 92:9379–9388

    Article  CAS  Google Scholar 

  126. Kruk T, Gołda-Cępa M, Szczepanowicz K, Szyk-Warszyńska L, Brzychczy-Włoch M, Kotarba A, Warszyński P (2019) Nanocomposite multifunctional polyelectrolyte thin films with copper nanoparticles as the antimicrobial coatings. Colloids Surf B Biointerfaces 181:112–118

    Article  CAS  Google Scholar 

  127. Xu Z et al (2019) Potential of niobium-based thin films as a protective and osteogenic coating for dental implants: the role of the nonmetal elements. Mater Sci Eng C 96:166–175

    Article  CAS  Google Scholar 

  128. Wu W-Y, Chan M-Y, Hsu Y-H, Chen G-Z, Liao S-C, Lee C-H, Lui P-W (2019) Bioapplication of TiN thin films deposited using high power impulse magnetron sputtering. Surf Coat Technol 362:167–175

    Article  CAS  Google Scholar 

  129. Chopra K (2012) Thin film device applications. Springer Science & Business Media, Berlin

    Google Scholar 

  130. George J (1992) Preparation of thin films. Marcel Dekker, New york

    Google Scholar 

  131. Pandit B, Dhakate SR, Singh BP, Sankapal BR (2017) Free-standing flexible MWCNTs bucky paper: extremely stable and energy efficient supercapacitive electrode. Electrochim Acta 249:395–403

    Article  CAS  Google Scholar 

  132. Pandit B, Dubal DP, Sankapal BR (2017) Large scale flexible solid state symmetric supercapacitor through inexpensive solution processed V2O5 complex surface architecture. Electrochim Acta 242:382–389

    Article  CAS  Google Scholar 

  133. Lokhande CD (1991) Chemical deposition of metal chalcogenide thin films. Mater Chem Phys 27:1–43

    Article  CAS  Google Scholar 

  134. Ibanez JG et al (1997) Preparation of semiconducting materials in the laboratory, part 2: microscale chemical bath deposition of materials with band gap energies in the UV, VIS, and IR. J Chem Educ 74:1205

    Article  CAS  Google Scholar 

  135. Nair PK, Nair MTS, Fernandez A, Ocampo M (1989) Prospects of chemically deposited metal chalcogenide thin films for solar control applications. J Phys D Appl Phys 22:829–836

    Article  CAS  Google Scholar 

  136. Mane RS, Lokhande CD (2000) Chemical deposition method for metal chalcogenide thin films. Mater Chem Phys 65:1–31

    Article  CAS  Google Scholar 

  137. Pandit B, Dubal DP, Gómez-Romero P, Kale BB, Sankapal BR (2017) V2O5 encapsulated MWCNTs in 2D surface architecture: complete solid-state bendable highly stabilized energy efficient supercapacitor device. Sci Rep 7:43430

    Article  Google Scholar 

  138. Pandit B, Kumar N, Koinkar PM, Sankapal BR (2019) Solution processed nanostructured cerium oxide electrode: electrochemical engineering towards solid-state symmetric supercapacitor device. J Electroanal Chem 839:96–107

    Article  CAS  Google Scholar 

  139. Pande SA, Pandit B, Sankapal BR (2018) Facile chemical route for multiwalled carbon nanotube/mercury sulfide nanocomposite: high performance supercapacitive electrode. J Colloid Interface Sci 514:740–749

    Article  CAS  Google Scholar 

  140. Pandit B, Pande SA, Sankapal BR (2019) Facile SILAR processed Bi2S3:PbS solid solution on MWCNTs for high-performance electrochemical supercapacitor. Chin J Chem 37:1279–1286

    Article  CAS  Google Scholar 

  141. Pandit B, Bommineedi LK, Sankapal BR (2019) Electrochemical engineering approach of high performance solid-state flexible supercapacitor device based on chemically synthesized VS2 nanoregime structure. J Energy Chem 31:79–88

    Article  Google Scholar 

  142. Sartale SD, Lokhande CD (2001) Preparation and characterization of nickel sulphide thin films using successive ionic layer adsorption and reaction (SILAR) method. Mater Chem Phys 72:101–104

    Article  CAS  Google Scholar 

  143. Pathan HM, Kale SS, Lokhande CD, Han S-H, Joo O-S (2007) Preparation and characterization of amorphous manganese sulfide thin films by SILAR method. Mater Res Bull 42:1565–1569

    Article  CAS  Google Scholar 

  144. Pande SA, Pandit B, Sankapal BR (2017) Electrochemical approach of chemically synthesized HgS nanoparticles as supercapacitor electrode. Mater Lett 209:97–101

    Article  CAS  Google Scholar 

  145. Pandit B, Karade SS, Sankapal BR (2017) Hexagonal VS2 anchored MWCNTs: first approach to design flexible solid-state symmetric supercapacitor device. ACS Appl Mater Interfaces 9:51

    Article  CAS  Google Scholar 

  146. Pathan H, Lokhande C (2004) Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method. Bull Mater Sci 27:85–111

    Article  CAS  Google Scholar 

  147. Rheaume JM, Pisano AP (2011) A review of recent progress in sensing of gas concentration by impedance change. Ionics 17:99–108

    Article  CAS  Google Scholar 

  148. Balasubramani V, Chandraleka S, Rao TS, Sasikumar R, Kuppusamy MR, Sridhar TM (2020) Review—recent advances in electrochemical impedance spectroscopy based toxic gas sensors using semiconducting metal oxides. J Electrochem Soc 167:037572

    Article  CAS  Google Scholar 

  149. Zeng W, Liu T, Wang Z (2010) Sensitivity improvement of TiO2-doped SnO2 to volatile organic compounds. Physica E 43:633–638

    Article  CAS  Google Scholar 

  150. Sen S et al (2010) Growth of SnO2/W18O49 nanowire hierarchical heterostructure and their application as chemical sensor. Sens Actuators B Chem 147:453–460

    Article  CAS  Google Scholar 

  151. Suh JM et al (2018) p–p heterojunction of nickel oxide-decorated cobalt oxide nanorods for enhanced sensitivity and selectivity toward volatile organic compounds. ACS Appl Mater Interfaces 10:1050–1058

    Article  CAS  Google Scholar 

  152. Dandeneau CS, Jeon Y-H, Shelton CT, Plant TK, Cann DP, Gibbons BJ (2009) Thin film chemical sensors based on p-CuO/n-ZnO heterocontacts. Thin Solid Films 517:4448–4454

    Article  CAS  Google Scholar 

  153. da Silva LF et al (2017) UV-enhanced ozone gas sensing response of ZnO-SnO2 heterojunctions at room temperature. Sens Actuators B Chem 240:573–579

    Article  CAS  Google Scholar 

  154. Ma L, Fan H, Tian H, Fang J, Qian X (2016) The n-ZnO/n-In2O3 heterojunction formed by a surface-modification and their potential barrier-control in methanal gas sensing. Sens Actuators B Chem 222:508–516

    Article  CAS  Google Scholar 

  155. Ju D et al (2015) High triethylamine-sensing properties of NiO/SnO2 hollow sphere P–N heterojunction sensors. Sens Actuators B Chem 215:39–44

    Article  CAS  Google Scholar 

  156. Huang H, Gong H, Chow CL, Guo J, White TJ, Tse MS, Tan OK (2011) Low-temperature growth of SnO2 Nanorod arrays and tunable n–p–n sensing response of a ZnO/SnO2 heterojunction for exclusive hydrogen sensors. Adv Funct Mater 21:2680–2686

    Article  CAS  Google Scholar 

  157. Sahm T, Gurlo A, Bârsan N, Weimar U (2006) Basics of oxygen and SnO2 interaction; work function change and conductivity measurements. Sens Actuators B Chem 118:78–83

    Article  CAS  Google Scholar 

  158. Yamazoe N, Shimanoe K (2008) Roles of shape and size of component crystals in semiconductor gas sensors. J Electrochem Soc 155:J85

    Article  CAS  Google Scholar 

  159. Franke ME, Koplin TJ, Simon U (2006) Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2:36–50

    Article  CAS  Google Scholar 

  160. Suehiro J et al (2006) Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor. Nanotechnology 17:2567–2573

    Article  CAS  Google Scholar 

  161. Kumar S, Kim G-H, Sreenivas K, Tandon RP (2007) Mechanism of ultraviolet photoconductivity in zinc oxide nanoneedles. J Phys Condens Matter 19:472202

    Article  CAS  Google Scholar 

  162. Bera A, Basak D (2008) Carrier relaxation through two-electron process during photoconduction in highly UV sensitive quasi-one-dimensional ZnO nanowires. Appl Phys Lett 93:053102

    Article  CAS  Google Scholar 

  163. Kim H-J, Lee J-H (2014) Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens Actuators B Chem 192:607–627

    Article  CAS  Google Scholar 

  164. Lu F, Liu Y, Dong M, Wang X (2000) Nanosized tin oxide as the novel material with simultaneous detection towards CO, H2 and CH4. Sens Actuators B Chem 66:225–227

    Article  CAS  Google Scholar 

  165. Ansari SG, Boroojerdian P, Sainkar SR, Karekar RN, Aiyer RC, Kulkarni SK (1997) Grain size effects on H2 gas sensitivity of thick film resistor using SnO2 nanoparticles. Thin Solid Films 295:271–276

    Article  CAS  Google Scholar 

  166. Korotcenkov G (2008) The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater Sci Eng R Rep 61:1–39

    Article  CAS  Google Scholar 

  167. Barsan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electroceram 7:143–167

    Article  CAS  Google Scholar 

  168. Xu C, Tamaki J, Miura N, Yamazoe N (1991) Grain size effects on gas sensitivity of porous SnO2-based elements. Sens Actuators B Chem 3:147–155

    Article  CAS  Google Scholar 

  169. Wang X, Yee SS, Carey WP (1995) Transition between neck-controlled and grain-boundary-controlled sensitivity of metal-oxide gas sensors. Sens Actuators B Chem 25:454–457

    Article  CAS  Google Scholar 

  170. Bârsan N (1994) Conduction models in gas-sensing SnO2 layers: grain-size effects and ambient atmosphere influence. Sens Actuators B Chem 17:241–246

    Article  Google Scholar 

  171. Timmer B, Olthuis W, Avd B (2005) Ammonia sensors and their applications—a review. Sens Actuators B Chem 107:666–677

    Article  CAS  Google Scholar 

  172. Liu H, Gong SP, Hu YX, Liu JQ, Zhou DX (2009) Properties and mechanism study of SnO2 nanocrystals for H2S thick-film sensors. Sens Actuators B Chem 140:190–195

    Article  CAS  Google Scholar 

  173. Korotcenkov G et al (2005) Structural stability of indium oxide films deposited by spray pyrolysis during thermal annealing. Thin Solid Films 479:38–51

    Article  CAS  Google Scholar 

  174. Rao CNR, Kulkarni GU, Thomas PJ, Edwards PP (2002) Size-dependent chemistry: properties of nanocrystals. Chem A Eur J 8:28–35

    Article  CAS  Google Scholar 

  175. Ma J et al (2018) Pt nanoparticles sensitized ordered mesoporous WO3 semiconductor: gas sensing performance and mechanism study. Adv Funct Mater 28:1705268

    Article  CAS  Google Scholar 

  176. Arunkumar S, Hou T, Kim Y-B, Choi B, Park SH, Jung S, Lee D-W (2017) Au decorated ZnO hierarchical architectures: facile synthesis, tunable morphology and enhanced CO detection at room temperature. Sens Actuators B Chem 243:990–1001

    Article  CAS  Google Scholar 

  177. Wang Y, Cui X, Yang Q, Liu J, Gao Y, Sun P, Lu G (2016) Preparation of Ag-loaded mesoporous WO3 and its enhanced NO2 sensing performance. Sens Actuators B Chem 225:544–552

    Article  CAS  Google Scholar 

  178. Geng B, Fang C, Zhan F, Yu N (2008) Synthesis of polyhedral ZnSnO3 microcrystals with controlled exposed facets and their selective gas-sensing properties. Small 4:1337–1343

    Article  CAS  Google Scholar 

  179. Hyodo T, Abe S, Shimizu Y, Egashira M (2003) Gas-sensing properties of ordered mesoporous SnO2 and effects of coatings thereof. Sens Actuators B Chem 93:590–600

    Article  CAS  Google Scholar 

  180. Barsan N, Schweizer-Berberich M, Göpel W (1999) Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report. Fresenius J Anal Chem 365:287–304

    Article  CAS  Google Scholar 

  181. Wang J, Gan M, Shi J (2007) Detection and characterization of penetrating pores in porous materials. Mater Charact 58:8–12

    Article  CAS  Google Scholar 

  182. Korotcenkov G, Brinzari V, Stetter JR, Blinov I, Blaja V (2007) The nature of processes controlling the kinetics of indium oxide-based thin film gas sensor response. Sens Actuators B Chem 128:51–63

    Article  CAS  Google Scholar 

  183. McAleer JF, Moseley PT, Norris JOW, Williams DE (1987) Tin dioxide gas sensors. Part 1—aspects of the surface chemistry revealed by electrical conductance variations. J Chem Soc Faraday Trans 1(83):1323–1346

    Article  Google Scholar 

  184. Wagner T et al (2012) Photoreduction of mesoporous In2O3: mechanistic model and utility in gas sensing. Chem A Eur J 18:8216–8223

    Article  CAS  Google Scholar 

  185. Waitz T, Wagner T, Sauerwald T, Kohl C-D, Tiemann M (2009) Ordered mesoporous In2O3: synthesis by structure replication and application as a methane gas sensor. Adv Funct Mater 19:653–661

    Article  CAS  Google Scholar 

  186. Sun X, Hao H, Ji H, Li X, Cai S, Zheng C (2014) Nanocasting synthesis of In2O3 with appropriate mesostructured ordering and enhanced gas-sensing property. ACS Appl Mater Interfaces 6:401–409

    Article  CAS  Google Scholar 

  187. Qin Y, Wang F, Shen W, Hu M (2012) Mesoporous three-dimensional network of crystalline WO3 nanowires for gas sensing application. J Alloys Compd 540:21–26

    Article  CAS  Google Scholar 

  188. Wagner T, Haffer S, Weinberger C, Klaus D, Tiemann M (2013) Mesoporous materials as gas sensors. Chem Soc Rev 42:4036–4053

    Article  CAS  Google Scholar 

  189. Li Y et al (2014) Highly ordered mesoporous tungsten oxides with a large pore size and crystalline framework for H2S sensing. Angew Chem Int Ed 53:9035–9040

    Article  CAS  Google Scholar 

  190. Wagner T, Sauerwald T, Kohl CD, Waitz T, Weidmann C, Tiemann M (2009) Gas sensor based on ordered mesoporous In2O3. Thin Solid Films 517:6170–6175

    Article  CAS  Google Scholar 

  191. Liu J et al (2016) Enhanced gas sensitivity and selectivity on aperture-controllable 3D interconnected macro–mesoporous ZnO nanostructures. ACS Appl Mater Interfaces 8:8583–8590

    Article  CAS  Google Scholar 

  192. Min B-K, Choi S-D (2004) SnO2 thin film gas sensor fabricated by ion beam deposition. Sens Actuators B Chem 98:239–246

    Article  CAS  Google Scholar 

  193. Hübner M, Simion CE, Tomescu-Stănoiu A, Pokhrel S, Bârsan N, Weimar U (2011) Influence of humidity on CO sensing with p-type CuO thick film gas sensors. Sens Actuators B Chem 153:347–353

    Article  CAS  Google Scholar 

  194. Rothschild A, Litzelman SJ, Tuller HL, Menesklou W, Schneider T, Ivers-Tiffée E (2005) Temperature-independent resistive oxygen sensors based on SrTi1−xFexO3−δ solid solutions. Sens Actuators B Chem 108:223–230

    Article  CAS  Google Scholar 

  195. Waldrop JR, Grant RW (1979) Semiconductor heterojunction interfaces: nontransitivity of energy-band discontinuities. Phys Rev Lett 43:1686–1689

    Article  CAS  Google Scholar 

  196. Li S-S, Xia J-B (2007) Electronic states of a hydrogenic donor impurity in semiconductor nano-structures. Phys Lett A 366:120–123

    Article  CAS  Google Scholar 

  197. Heyd J, Peralta JE, Scuseria GE, Martin RL (2005) Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. J Chem Phys 123:174101

    Article  CAS  Google Scholar 

  198. Anothainart K, Burgmair M, Karthigeyan A, Zimmer M, Eisele I (2003) Light enhanced NO2 gas sensing with tin oxide at room temperature: conductance and work function measurements. Sens Actuators B Chem 93:580–584

    Article  CAS  Google Scholar 

  199. Hermida IDP, Wiranto G, Hiskia S, Nopriyanti R (2016) Fabrication of SnO2based CO gas sensor device using thick film technology. J Phys Conf Ser 776:012061

    Article  CAS  Google Scholar 

  200. Choi K-W, Lee J-S, Seo M-H, Jo M-S, Yoo J-Y, Sim GS, Yoon J-B (2019) Batch-fabricated CO gas sensor in large-area (8-inch) with sub-10 mW power operation. Sens Actuators B Chem 289:153–159

    Article  CAS  Google Scholar 

  201. Capone S, Siciliano P, Quaranta F, Rella R, Epifani M, Vasanelli L (2001) Moisture influence and geometry effect of Au and Pt electrodes on CO sensing response of SnO2 microsensors based on sol–gel thin film. Sens Actuators B Chem 77:503–511

    Article  CAS  Google Scholar 

  202. Karthik TVK, Hernandez AG, de la Olvera ML, Maldonado A, Pozos HG (2020) Effect of Au and Ag contacts on the CO sensitivity of SnO2 thick films. J Mater Sci Mater Electron 31:7481–7489

    Article  CAS  Google Scholar 

  203. Dai J et al (2020) Printed gas sensors. Chem Soc Rev 49:1756–1789

    Article  CAS  Google Scholar 

  204. Yoshinobu N, Akiro A, Tsuyoshi T, Osamu O, Masaru M, Kunihito K, Hiroaki Y (1986) Gas sensitivity of CuO/ZnO hetero-contact. Chem Lett 15:413–416

    Article  Google Scholar 

  205. Shinde VR, Gujar TP, Lokhande CD (2007) LPG sensing properties of ZnO films prepared by spray pyrolysis method: effect of molarity of precursor solution. Sens Actuators B Chem 120:551–559

    Article  CAS  Google Scholar 

  206. Shinde VR, Gujar TP, Lokhande CD (2007) Enhanced response of porous ZnO nanobeads towards LPG: effect of Pd sensitization. Sens Actuators B Chem 123:701–706

    Article  CAS  Google Scholar 

  207. Gurav KV, Deshmukh PR, Lokhande CD (2011) LPG sensing properties of Pd-sensitized vertically aligned ZnO nanorods. Sens Actuators B Chem 151:365–369

    Article  CAS  Google Scholar 

  208. Shinde VR, Gujar TP, Lokhande CD, Mane RS, Han S-H (2007) Development of morphological dependent chemically deposited nanocrystalline ZnO films for liquefied petroleum gas (LPG) sensor. Sens Actuators B Chem 123:882–887

    Article  CAS  Google Scholar 

  209. Gurav KV, Patil UM, Shin SW, Pawar SM, Kim JH, Lokhande CD (2012) Morphology evolution of ZnO thin films from aqueous solutions and their application to liquefied petroleum gas (LPG) sensor. J Alloys Compd 525:1–7

    Article  CAS  Google Scholar 

  210. Naveen CS, Rajeeva MP, Lamani AR, Deshmukh PR, Lokhande CD, Jayanna HS (2013) Effect of fuel to oxidant molar ratio on particle size and LPG sensing properties of ZnO nanoparticles prepared by simple solution combustion method. AIP Conf Proc 1536:1161–1162

    Article  CAS  Google Scholar 

  211. Gonugade MD, Powar SB, Salokhe BS, Lokhande CD, Kim JH, Gurav KV (2020) SILAR deposited nanocrystalline ZnO films as LPG sensor. Mater Today Proc: https://doi.org/10.1016/j.matpr.2020.04.132

  212. Shinde VR, Gujar TP, Lokhande CD, Mane RS, Han S-H (2007) Use of chemically synthesized ZnO thin film as a liquefied petroleum gas sensor. Mater Sci Eng B 137:119–125

    Article  CAS  Google Scholar 

  213. Nakate UT, Bulakhe RN, Lokhande CD, Kale SN (2016) Au sensitized ZnO nanorods for enhanced liquefied petroleum gas sensing properties. Appl Surf Sci 371:224–230

    Article  CAS  Google Scholar 

  214. Nakate UT, Patil P, Bulakhe RN, Lokhande CD, Kale SN, Naushad M, Mane RS (2016) Sprayed zinc oxide films: ultra-violet light-induced reversible surface wettability and platinum-sensitization-assisted improved liquefied petroleum gas response. J Colloid Interface Sci 480:109–117

    Article  CAS  Google Scholar 

  215. Gaikwad RS, Patil GR, Pawar BN, Mane RS, Han S-H (2013) Liquefied petroleum gas sensing properties of sprayed nanocrystalline zinc oxide thin films. Sens Actuator A Phys 189:339–343

    Article  CAS  Google Scholar 

  216. Salunkhe RR, Lokhande CD (2008) Effect of film thickness on liquefied petroleum gas (LPG) sensing properties of SILAR deposited CdO thin films. Sens Actuators B Chem 129:345–351

    Article  CAS  Google Scholar 

  217. Salunkhe RR, Dhawale DS, Dubal DP, Lokhande CD (2009) Sprayed CdO thin films for liquefied petroleum gas (LPG) detection. Sens Actuators B Chem 140:86–91

    Article  CAS  Google Scholar 

  218. Salunkhe RR, Dhawale DS, Patil UM, Lokhande CD (2009) Improved response of CdO nanorods towards liquefied petroleum gas (LPG): effect of Pd sensitization. Sens Actuators B Chem 136:39–44

    Article  CAS  Google Scholar 

  219. Bulakhe RN, Lokhande CD (2014) Chemically deposited cubic structured CdO thin films: use in liquefied petroleum gas sensor. Sens Actuators B Chem 200:245–250

    Article  CAS  Google Scholar 

  220. Deokate RJ, Lokhande CD (2014) Liquefied petroleum gas sensing properties of sprayed nanocrystalline Ga-doped CdO thin films. Sens Actuators B Chem 193:89–94

    Article  CAS  Google Scholar 

  221. Gunjakar JL, More AM, Lokhande CD (2008) Chemical deposition of nanocrystalline nickel oxide from urea containing bath and its use in liquefied petroleum gas sensor. Sens Actuators B Chem 131:356–361

    Article  CAS  Google Scholar 

  222. Dhawale DS, Salunkhe RR, Fulari VJ, Rath MC, Sawant SN, Lokhande CD (2009) Liquefied petroleum gas (LPG) sensing performance of electron beam irradiated chemically deposited TiO2 thin films. Sens Actuators B Chem 141:58–64

    Article  CAS  Google Scholar 

  223. Dhawale DS, Gujar TP, Lokhande CD (2017) TiO2 nanorods decorated with Pd nanoparticles for enhanced liquefied petroleum gas sensing performance. Anal Chem 89:8531–8537

    Article  CAS  Google Scholar 

  224. Gurav KV et al (2014) Cu2ZnSnS4 (CZTS)-based room temperature liquefied petroleum gas (LPG) sensor. Sens Actuators B Chem 190:408–413

    Article  CAS  Google Scholar 

  225. Patil SJ, Bulakhe RN, Lokhande CD (2016) Liquefied petroleum gas (LPG) sensing using spray deposited Cu2ZnSnS4 thin film. J Anal Appl Pyrolysis 117:310–316

    Article  CAS  Google Scholar 

  226. Shinde NM, Deshmukh PR, Patil SV, Lokhande CD (2013) Development of polyaniline/Cu2ZnSnS4 (CZTS) thin film based heterostructure as room temperature LPG sensor. Sens Actuator A Phys 193:79–86

    Article  CAS  Google Scholar 

  227. Patil SJ, Lokhande AC, Yadav AA, Lokhande CD (2016) Polyaniline/Cu2ZnSnS4 heterojunction based room temperature LPG sensor. J Mater Sci Mater Electron 27:7505–7508

    Article  CAS  Google Scholar 

  228. Kulkarni S, Shaikh BR, Lokhande C, Joshi S (2014–2015) ZnO/PANI nanocomposite thin films: room temperature LPG sensor. J. Shivaji University (Science & Technology) 41:1–2

    Google Scholar 

  229. Dhawale DS, Dubal DP, Jamadade VS, Salunkhe RR, Joshi SS, Lokhande CD (2010) Room temperature LPG sensor based on n-CdS/p-polyaniline heterojunction. Sens Actuators B Chem 145:205–210

    Article  CAS  Google Scholar 

  230. Joshi SS, Gujar TP, Shinde VR, Lokhande CD (2008) Fabrication of n-CdTe/p-polyaniline heterojunction-based room temperature LPG sensor. Sens Actuators B Chem 132:349–355

    Article  CAS  Google Scholar 

  231. Joshi SS, Lokhande CD, Han S-H (2007) A room temperature liquefied petroleum gas sensor based on all-electrodeposited n-CdSe/p-polyaniline junction. Sens Actuators B Chem 123:240–245

    Article  CAS  Google Scholar 

  232. Patil SV, Bulakhe RN, Deshmukh PR, Shinde NM, Lokhande CD (2013) LPG sensing by p-polyaniline/n-PbS heterojunction junction capacitance structure. Sens Actuator A Phys 201:387–394

    Article  CAS  Google Scholar 

  233. Ladhe RD, Baviskar PK, Tan WW, Zhang JB, Lokhande CD, Sankapal BR (2010) LPG sensor based on complete inorganic n-Bi2S3-p-CuSCN heterojunction synthesized by a simple chemical route. J Phys D Appl Phys 43:245302

    Article  CAS  Google Scholar 

  234. Lokhande AC et al (2017) Room temperature liquefied petroleum gas sensing using Cu2SnS3/CdS heterojunction. J Alloys Compd 709:92–103

    Article  CAS  Google Scholar 

  235. Patil S, Deshmukh P, Lokhande C (2012) Room temperature liquefied petroleum gas sensing polymer (n-polypyrrole/p-polyaniline) based heterojunction. Sens Transducers 137:104

    CAS  Google Scholar 

  236. Wang Y, Qu F, Liu J, Wang Y, Zhou J, Ruan S (2015) Enhanced H2S sensing characteristics of CuO-NiO core-shell microspheres sensors. Sens Actuators B Chem 209:515–523

    Article  CAS  Google Scholar 

  237. Ponmudi S, Sivakumar R, Sanjeeviraja C, Gopalakrishnan C, Jeyadheepan K (2019) Tuning the morphology of Cr2O3:CuO (50:50) thin films by RF magnetron sputtering for room temperature sensing application. Appl Surf Sci 466:703–714

    Article  CAS  Google Scholar 

  238. Chen K-W, Tsai J-H, Chen C-H (2019) NiO functionalized Co3O4 hetero-nanocomposites with a novel apple-like architecture for CO gas sensing applications. Mater Lett 255:126508

    Article  CAS  Google Scholar 

  239. Chen K, Chen S, Pi M, Zhang D (2019) SnO2 nanoparticles/TiO2 nanofibers heterostructures: in situ fabrication and enhanced gas sensing performance. Solid State Electron 157:42–47

    Article  CAS  Google Scholar 

  240. Lee WI, Bonyani M, Lee JK, Lee C, Choi S-B (2018) Volatile organic compound sensing properties of MoO3–ZnO core–shell nanorods. Curr Appl Phys 18:S60–S67

    Article  Google Scholar 

  241. Wang Y et al (2016) A high-response ethanol gas sensor based on one-dimensional TiO2/V2O5branched nanoheterostructures. Nanotechnology 27:425503

    Article  CAS  Google Scholar 

  242. Majhi SM, Lee H-J, Choi H-N, Cho H-Y, Kim J-S, Lee C-R, Yu Y-T (2019) Construction of novel hybrid PdO–ZnO p–n heterojunction nanostructures as a high-response sensor for acetaldehyde gas. CrstEngComm 21:5084–5094

    Article  CAS  Google Scholar 

  243. Xiao X, Zhou X, Ma J, Zhu Y, Cheng X, Luo W, Deng Y (2019) Rational synthesis and gas sensing performance of ordered mesoporous semiconducting WO3/NiO composites. ACS Appl Mater Interfaces 11:26268–26276

    Article  CAS  Google Scholar 

  244. Zhu L, Zeng W, Yang J, Li Y (2018) Fabrication of hierarchical hollow NiO/ZnO microspheres for ethanol sensing property. Mater Lett 230:297–299

    Article  CAS  Google Scholar 

  245. Zhang B, Fu W, Meng X, A R SP, Yang H (2018) Synthesis of actinomorphic flower-like SnO2 nanorods decorated with CuO nanoparticles and their improved isopropanol sensing properties. Appl Surf Sci 456:586–593

    Article  CAS  Google Scholar 

  246. Tang H, Yan M, Zhang H, Li S, Ma X, Wang M, Yang D (2006) A selective NH3 gas sensor based on Fe2O3–ZnO nanocomposites at room temperature. Sens Actuators B Chem 114:910–915

    Article  CAS  Google Scholar 

  247. Calaque PM, Vergara CJ, Ballesteros LI, Somintac A (2017) Development and characterization of a novel ZnO nanorods-SnO2:F nanoflakes thin film for room-temperature ammonia and humidity sensing. AIP Conf Proc 1808:020013

    Article  Google Scholar 

  248. Li T-t, Zheng R-r, Yu H, Xia L, Yang Y, Dong X-t (2018) In2O3 sensitized disordered porous SnO2 aerogel with remarkable gas-sensing properties at room temperature. Solid State Ion 325:17–23

    Article  CAS  Google Scholar 

  249. Xu S et al (2015) Role of the heterojunctions in In2O3-composite SnO2 nanorod sensors and their remarkable gas-sensing performance for NOx at room temperature. Nanoscale 7:14643–14651

    Article  CAS  Google Scholar 

  250. Cui G, Zhang P, Chen L, Wang X, Li J, shi C, Wang D (2017) Highly sensitive H2S sensors based on Cu2O/Co3O4 nano/microstructure heteroarrays at and below room temperature. Sci Rep 7:43887

    Article  Google Scholar 

  251. Xu H, Zhang J, Rehman AU, Gong L, Kan K, Li L, Shi K (2017) Synthesis of NiO@CuO nanocomposite as high-performance gas sensing material for NO2 at room temperature. Appl Surf Sci 412:230–237

    Article  CAS  Google Scholar 

  252. Wang J, Yang P, Wei X (2015) High-performance, room-temperature, and no-humidity-impact ammonia sensor based on heterogeneous nickel oxide and zinc oxide nanocrystals. ACS Appl Mater Interfaces 7:3816–3824

    Article  CAS  Google Scholar 

  253. Chaudhari P, Mishra S (2016) Effect of CuO as a dopant in TiO2 on ammonia and hydrogen sulphide sensing at room temperature. Measurement 90:468–474

    Article  Google Scholar 

  254. Zhou J et al (2018) Highly selective detection of NH3 and H2S using the pristine CuO and mesoporous In2O3@CuO multijunctions nanofibers at room temperature. Sens Actuators B Chem 255:1819–1830

    Article  CAS  Google Scholar 

  255. Bao M et al (2014) Plate-like p–n heterogeneous NiO/WO3 nanocomposites for high performance room temperature NO2 sensors. Nanoscale 6:4063–4066

    Article  CAS  Google Scholar 

  256. Dhawale DS, Salunkhe RR, Patil UM, Gurav KV, More AM, Lokhande CD (2008) Room temperature liquefied petroleum gas (LPG) sensor based on p-polyaniline/n-TiO2 heterojunction. Sens Actuators B Chem 134:988–992

    Article  CAS  Google Scholar 

  257. Dhawale DS, Dubal DP, More AM, Gujar TP, Lokhande CD (2010) Room temperature liquefied petroleum gas (LPG) sensor. Sens Actuators B Chem 147:488–494

    Article  CAS  Google Scholar 

  258. Bulakhe RN, Patil SV, Deshmukh PR, Shinde NM, Lokhande CD (2013) Fabrication and performance of polypyrrole (Ppy)/TiO2 heterojunction for room temperature operated LPG sensor. Sens Actuators B Chem 181:417–423

    Article  CAS  Google Scholar 

  259. Barkade SS et al (2013) Ultrasound assisted synthesis of polythiophene/SnO2 hybrid nanolatex particles for LPG sensing. Chem Eng Process 74:115–123

    Article  CAS  Google Scholar 

  260. Singh S, Verma N, Singh A, Yadav BC (2014) Synthesis and characterization of CuO–SnO2 nanocomposite and its application as liquefied petroleum gas sensor. Mater Sci Semicond Process 18:88–96

    Article  CAS  Google Scholar 

  261. Bhanvase BA, Darda NS, Veerkar NC, Shende AS, Satpute SR, Sonawane SH (2015) Ultrasound assisted synthesis of PANI/ZnMoO4 nanocomposite for simultaneous improvement in anticorrosion, physico-chemical properties and its application in gas sensing. Ultrason Sonochem 24:87–97

    Article  CAS  Google Scholar 

  262. Kotresh S, Ravikiran YT, Vijayakumari SC, Thomas S (2017) Interfacial p-n heterojunction of polyaniline-nickel ferrite nanocomposite as room temperature liquefied petroleum gas sensor. Compos Interfaces 24:549–561

    Article  CAS  Google Scholar 

  263. Kotresh S, Ravikiran YT, Vijaya Kumari SC, Ramana CVV, Batoo KM (2017) Solution based–spin cast processed LPG sensor at room temperature. Sens Actuator A Phys 263:687–692

    Article  CAS  Google Scholar 

  264. Sonawane NB, Baviskar PK, Ahire RR, Sankapal BR (2017) CdO necklace like nanobeads decorated with PbS nanoparticles: room temperature LPG sensor. Mater Chem Phys 191:168–172

    Article  CAS  Google Scholar 

  265. Chaitongrat B, Chaisitsak S (2018) Fast-LPG sensors at room temperature by α-Fe2O3 CNT nanocomposite thin films. J Nanomater 2018:9236450

    Article  CAS  Google Scholar 

  266. Zhang D, Dong G, Wu Z, Pan W, Fan X (2019) Liquefied petroleum gas sensing properties of ZnO/PPy/PbS QDs nanocomposite prepared by self-assembly combining with SILAR method. IEEE Sens J 19:2855–2862

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Authors would like to acknowledge the book editors especially Prof. Chandrakant D. Lokhande for his continuous support and timely suggestions to improve the chapter. Authors also would like to thank all who have made suggestions, as well as the publisher for the excellent cooperation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandit, B., Sankapal, B.R. (2021). Chemically Processed Metal Oxides for Sensing Application: Heterojunction Room Temperature LPG Sensor. In: Ezema, F.I., Lokhande, C.D., Jose, R. (eds) Chemically Deposited Nanocrystalline Metal Oxide Thin Films. Springer, Cham. https://doi.org/10.1007/978-3-030-68462-4_27

Download citation

Publish with us

Policies and ethics